Taalverwerking na een beroerte: wat individuele fMRI-lokalisatie ons hierover kan leren

Laura
Stalmans
  • Katja
    De Meyer

In België maken dagelijks wel 50 mensen een beroerte door. Ongeveer één op drie ontwikkelt hierdoor een stoornis in het begrijpen of produceren van taal, ook wel afasie genoemd. Dikwijls herstelt de taal bij deze mensen weer doorheen de tijd, maar er bestaat veel discussie over hoe dat herstelproces precies verloopt in de hersenen. Voor ons, als logopediestudenten, leek dit bijzonder interessant om in onze masterproef verder te onderzoeken. Ons onderzoek suggereert dat vooral activatie van de oorspronkelijke taalregio’s van belang is voor een goede taalfunctie bij personen met afasie en dat er geen evidentie is voor compensatie door andere hersennetwerken. Onze individu-gerichte fMRI-methode maakt ons onderzoek een waardevolle aanvulling op de bestaande literatuur.

Taalverwerking in de hersenen

De verwerking van taal in de hersenen is heel complex. Zelfs voor eenvoudige handelingen, zoals gedag zeggen aan je buurman of naar het nieuws luisteren, zijn verschillende hersengebieden actief. Die hersenregio’s staan met elkaar in verbinding en werken samen voor het begrijpen en produceren van taal. Dit geheel noemen we het taalnetwerk. Dit netwerk ligt verspreid doorheen de hersenen, maar ligt bij de meeste mensen voornamelijk in de linkerhersenhelft. 

Maar soms loopt het mis…

Stel je eens voor dat je wakker wordt en plotseling moeite hebt met spreken of begrijpen wat anderen zeggen. Dit is de realiteit voor veel mensen die door een beroerte afasie ontwikkelen. Afasie is een stoornis in het begrijpen of produceren van taal die ontstaat wanneer de beroerte hersenschade veroorzaakt in het taalnetwerk. De impact hiervan op het dagelijkse leven van deze mensen is enorm.

Herstel is mogelijk 

Gelukkig is er goed nieuws! Onze hersenen blijven namelijk niet bij de pakken zitten en gaan op zoek naar een oplossing. Dat blijkt uit het feit dat veel mensen na een beroerte herstellen en geleidelijk weer beter gaan functioneren. Ook bij personen met afasie verbetert het taalbegrip en uitdrukkingsvermogen vaak weer doorheen de tijd. Maar hoe komt dat dan?

Compensatie als reddende engel?  

Onderzoekers zijn nog niet zeker welk proces in de hersenen hieraan ten grondslag ligt. Sommige studies suggereren dat de vooruitgang vooral te danken is aan herstel van het taalnetwerk zelf. Andere onderzoekers beweren dat andere, niet-taalgerelateerde hersengebieden een handje helpen. Dat proces wordt compensatie genoemd, aangezien de activatie van deze andere hersengebieden zou compenseren voor het wegvallen van taalverwerking in de beschadigde taalgebieden. 

Voor taal wordt compensatie dikwijls gezocht in twee netwerken: enerzijds in de rechterhersenhelft, meer bepaald in de gebieden die qua locatie overeenkomen met het taalnetwerk in de linkerhersenhelft, en anderzijds in het ‘multiple-demandnetwerk’. Dit multiple-demandnetwerk ondersteunt cognitieve processen, zoals het werkgeheugen en cognitieve controle, en wordt vooral actief bij moeilijke taken, ongeacht de taakinhoud. Volgens sommige wetenschappers vertoont het multiple-demandnetwerk dus extra activiteit wanneer de taalverwerking door een beroerte moeizamer verloopt, om de taalverwerking zoveel mogelijk te ondersteunen.

Tegenstrijdigheden in de literatuur

Het herstelmechanisme in kaart brengen is cruciaal voor de klinische praktijk. Als compensatie door het multiple-demandnetwerk daadwerkelijk een rol zou spelen, zou taaltherapie aangevuld kunnen worden met cognitieve oefeningen. Een eenduidig antwoord is echter nog ver te zoeken in de literatuur. De uiteenlopende onderzoeksresultaten zijn deels te wijten aan het gebruik van onnauwkeurige onderzoeksmethoden. Maar hoe verloopt dat onderzoek dan? En hoe kan het beter?

Zoeken naar antwoorden met fMRI

Functionele MRI-scans zijn een belangrijke tool in het onderzoeken van hersenactiviteit. Wanneer een proefpersoon tijdens de scan een taaltaak uitvoert, kan de fMRI-afbeelding heel precies tonen waar de hersenactivatie, en daarmee het taalnetwerk, zich bevindt. Om de gevonden hersenactivatie juist te interpreteren, vergelijken we de resultaten van de personen met afasie met een gezonde controlegroep. 

Traditionele benadering van fMRI-onderzoek 

Lange tijd werd er bij deze fMRI-onderzoeken gebruikgemaakt van groepsgemiddelden. In die traditionele benadering werden de hersenafbeeldingen van verschillende proefpersonen op elkaar geprojecteerd. Enkel de gebieden die bij de meeste proefpersonen tegelijk activiteit vertoonden, werden verder geanalyseerd; de rest niet.

In realiteit is het echter wat complexer. De functionele opbouw van de hersenen verschilt namelijk van persoon tot persoon. In jouw hersenen zullen net iets andere anatomische regio’s actief zijn tijdens taalverwerking dan bij iemand anders, en dat is volkomen normaal. Als de hersenscans van de proefpersonen zomaar op elkaar geprojecteerd worden, wordt geen rekening gehouden met deze normale variatie, waardoor relevante informatie verloren gaat. 

Illustratie: Hoewel beide proefpersonen dezelfde taak volbrengen tijdens de fMRI-scan, worden er toch net verschillende anatomische regio’s geactiveerd. In de traditionele benadering wordt vooral gekeken naar de regio die bij beide proefpersonen activatie vertoont, maar daardoor wordt een deel van de relevante activatie van proefpersoon 1 en proefpersoon 2 niet meegenomen in de analyses.

 

Individuele netwerklokalisatie biedt duidelijkheid 

In plaats van alleen de overlappende activiteit tussen proefpersonen te analyseren (paars op de afbeelding), lokaliseerden en analyseerden wij de taalregio’s per individu (roos en blauw op de afbeelding) a.d.h.v. een individuele lokalisatiebenadering. Hiervoor gebruikten we twee lokalisatietaken: een luister- en een leestaak. De luistertaak werd in ons onderzoek voor het eerst toegepast bij personen met afasie. Aangezien het taalnetwerk met deze vernieuwende aanpak zeer nauwkeurig gelokaliseerd kan worden, behouden we meer relevante informatie, wat onze resultaten veel betrouwbaarder maakt.

Taalnetwerk staat centraal 

De belangrijkste bevinding van ons onderzoek is dat de linkszijdige gebieden van het oorspronkelijke taalnetwerk de belangrijkste factor lijken te zijn voor de taalfunctie bij afasie. Deze gebieden zijn namelijk minder actief bij personen met afasie dan bij gezonde ouderen. Bovendien zagen we interessante, maar niet-significante, verbanden tussen activiteit in de taalregio’s en performantie op taaltaken: meer activatie in deze gebieden lijkt samen te hangen met betere taalverwerking. 

Daarnaast vonden we geen bewijs voor compensatiemechanismen, noch in de taalgebieden in de rechterhersenhelft, noch in het cognitieve multiple-demandnetwerk. Dit multiple-demandnetwerk bleek zelfs bij geen van beide groepen betrokken bij de taalverwerking.

Van onderzoek naar de klinische praktijk

Onze resultaten moeten met voorzichtigheid geïnterpreteerd worden, vanwege de exploratieve aard van het onderzoek en de kleine steekproef. Toch draagt het onderzoek wel degelijk interessante conclusies aan, dankzij onze nauwkeurige individugerichte fMRI-methode. Nog belangrijker dan de resultaten van het onderzoek zelf, zijn de implicaties voor de klinische praktijk. Aangezien het multiple-demandnetwerk niet betrokken lijkt bij taalverwerking of compensatie bij afasie, lijkt cognitieve therapie minder effectief. In plaats daarvan lijken de bevindingen erop te wijzen dat vooral het versterken van de taalregio’s, via taalgerichte therapie, het herstel van de taalvaardigheden bevordert. Taalherstel vraagt dus taaltherapie. 

 

Bibliografie

Abiodun Salako, I. (2017). Cognitive Impairments in Aphasic Stroke Patients: Clinical Implications for Diagnosis and Rehabilitation: A Review Study. https://doi.org/10.4172/2168-975X.1000236

Accou, B., Monesi, M. J., Montoya, J., van Hamme, H., & Francart, T. (2021). Modeling the relationship between acoustic stimulus and EEG with a dilated convolutional neural network. European Signal Processing Conference, 2021-January, 1175–1179. https://doi.org/10.23919/EUSIPCO47968.2020.9287417

Allendorfer, J. B., Kissela, B. M., Holland, S. K., & Szaflarski, J. P. (2012). Different patterns of language activation in post-stroke aphasia are detected by overt and covert versions of the verb generation fMRI task. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 18(3). https://doi.org/10.12659/MSM.882518

Alyahya, R. S. W., Halai, A. D., Conroy, P., & Lambon, M. A. (2020). A unified model of post-stroke language deficits including discourse production and their neural correlates. Brain, 143(5), 1541–1554. https://doi.org/10.1093/BRAIN/AWAA074

Ardila, A. (2010). A proposed reinterpretation and reclassification of aphasic syndromes. Aphasiology, 24(3), 363–394. https://doi.org/10.1080/02687030802553704

Ashburner, J., & Friston, K. J. (2000). Voxel-Based Morphometry—The Methods. NeuroImage, 11(6), 805–821. https://doi.org/10.1006/NIMG.2000.0582

Bae, C. R., Na, Y., Cho, M., Hwang, Y. M., Tae, W. S., & Pyun, S. B. (2022). Structural Changes in the Arcuate Fasciculus and Recovery of Post-stroke Aphasia: A 6-Month Follow-up Study using Diffusion Tensor Imaging. Neurorehabilitation and Neural Repair, 36(9), 633–644. https://doi.org/10.1177/15459683221121752/FORMAT/EPUB

Berl, M. M., Duke, E. S., Mayo, J., Rosenberger, L. R., Moore, E. N., VanMeter, J., Ratner, N. B., Vaidya, C. J., & Gaillard, W. D. (2010). Functional anatomy of listening and reading comprehension during development. Brain and Language, 114(2), 115–125. https://doi.org/10.1016/J.BANDL.2010.06.002

Berns, P.E.G., Jünger, N., Boxum, E., Nouwens, F., van der Staaij, M. G., van Wessel, S., van Dun, W., van Lonkhuijzen, J.G., CBO & TNO. (2015). Logopedische richtlijn ‘Diagnostiek en behandeling van afasie bij volwassenen’. Woerden: Nederlandse Vereniging voor Logopedie en Foniatrie

Berthier, M. L. (2005). Poststroke aphasia : epidemiology, pathophysiology and treatment. Drugs & Aging, 22(2), 163–182. https://doi.org/10.2165/00002512-200522020-00006

Berthier, M. L., García-Casares, N., Walsh, S. F., Nabrozidis, A., Mier, R. J. R. de, Green, C., Dávila, G., Gutiérrez, A., & Pulvermüller, F. (2011). Recovery from Post-stroke Aphasia: Lessons from Brain Imaging and Implications for Rehabilitation and Biological Treatments. Discovery Medicine, 12(65), 275–289.

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex (New York, N.Y. : 1991), 19(12), 2767–2796. https://doi.org/10.1093/CERCOR/BHP055

Binder, J. R., Gross, W. L., Allendorfer, J. B., Bonilha, L., Chapin, J., Edwards, J. C., Grabowski, T. J., Langfitt, J. T., Loring, D. W., Lowe, M. J., Koenig, K., Morgan, P. S., Ojemann, J. G., Rorden, C., Szaflarski, J. P., Tivarus, M. E., & Weaver, K. E. (2011). Mapping anterior temporal lobe language areas with fMRI: A multicenter normative study. NeuroImage, 54(2), 1465–1475. https://doi.org/10.1016/J.NEUROIMAGE.2010.09.048

Blomert, L., Koster, C., & Kean, M.-L. (1995). Amsterdam-Nijmegen Test voor Alledaagse Taalvaardigheid (ANTAT). Hogreve Uitgevers.

Bolgina, T., Somashekarappa, V., Cappa, S. F., Cherkasova, Z., Feurra, M., Malyutina, S., Sapuntsova, A., Shtyrov, Y., & Dragoy, O. (2022). Repetitive transcranial magnetic stimulation modulates action naming over the left but not right inferior frontal gyrus. Brain Structure and Function, 227(8). https://doi.org/10.1007/s00429-022-02574-y

Bose, A., Patra, A., Antoniou, G. E., Stickland, R. C., & Belke, E. (2022). Verbal fluency difficulties in aphasia: A combination of lexical and executive control deficits. International Journal of Language & Communication Disorders, 57(3), 593. https://doi.org/10.1111/1460-6984.12710

Bradshaw, A. R., Bishop, D. V. M., & Woodhead, Z. V. J. (2017). Methodological considerations in assessment of language lateralisation with fMRI: A systematic review. PeerJ, 2017(7). https://doi.org/10.7717/peerj.3557

Brady, M. C., Kelly, H., Godwin, J., Enderby, P., & Campbell, P. (2016). Speech and language therapy for aphasia following stroke. The Cochrane Database of Systematic Reviews, 2016(6). https://doi.org/10.1002/14651858.CD000425.PUB4

Broca, P. (1865). Sur le siège de la faculté du langage articulé. Bulletins et Mémoires de La Société d’Anthropologie de Paris, 6(1), 377–393. https://doi.org/10.3406/BMSAP.1865.9495

Buchweitz, A., Mason, R. A., Tomitch, L. M. B., & Just, M. A. (2009). Brain activation for reading and listening comprehension: An fMRI study of modality effects and individual differences in language comprehension. Psychology & Neuroscience, 2(2), 111–123. https://doi.org/10.3922/J.PSNS.2009.2.003

Bunker, L. D., & Hillis, A. E. (2022). Vascular syndromes: Revisiting classification of poststroke aphasia. Handbook of Clinical Neurology, 185, 37–55. https://doi.org/10.1016/B978-0-12-823384-9.00002-5

Burke, D., MacKay, D., Worthley, J., and, E. W.-J. of memory, & 1991, undefined. (1991). On the tip of the tongue: What causes word finding failures in young and older adults? Elsevier. https://doi.org/10.1016/0749-596X(91)90026-G

Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85–100. https://doi.org/10.1037//0882-7974.17.1.85

Carey, D. P., & Johnstone, L. T. (2014). Quantifying cerebral asymmetries for language in dextrals and adextrals with random-effects meta analysis. Frontiers in Psychology, 5(NOV). https://doi.org/10.3389/fpsyg.2014.01128

Chang, A. J., Wilmskoetter, J., Fridriksson, J., McKinnon, E. T., Johnson, L. P., Basilakos, A., Jensen, J. H., Rorden, C., Bonilha, L., Leonardo Bonilha, C., & Lucas St, J. (2021). Cortical microstructural changes associated with treated aphasia recovery. Annals of Clinical and Translational Neurology, 8(9), 1884–1894. https://doi.org/10.1002/acn3.51445

Cocquyt, E. M., De Ley, L., Santens, P., Van Borsel, J., & De Letter, M. (2017). The role of the right hemisphere in the recovery of stroke-related aphasia: A systematic review. Journal of Neurolinguistics, 44, 68–90. https://doi.org/10.1016/J.JNEUROLING.2017.03.004

Crinion, J., & Price, C. J. (2005). Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke. Brain : A Journal of Neurology, 128(Pt 12), 2858–2871. https://doi.org/10.1093/BRAIN/AWH659

De Clercq, P., Gonsalves, A. R., Gerrits, R., & Vandermosten, M. (2024). Individualized functional localization of the language and multiple demand network in chronic post-stroke aphasia. BioRxiv, 2024.01.12.575350. https://doi.org/10.1101/2024.01.12.575350

De Cock, E., Batens, K., Hemelsoet, D., Boon, P., Oostra, K., & De Herdt, V. (2020). Dysphagia, dysarthria and aphasia following a first acute ischaemic stroke: incidence and associated factors. European Journal of Neurology, 27(10), 2014–2021. https://doi.org/10.1111/ENE.14385

DeDe, G. (2013). Reading and listening in people with aphasia: effects of syntactic complexity. American Journal of Speech-Language Pathology, 22(4), 579–590. https://doi.org/10.1044/1058-0360(2013/12-0111)

Diachek, E., Blank, I., Siegelman, M., Affourtit, J., & Fedorenko, E. (2020). The Domain-General Multiple Demand (MD) Network Does Not Support Core Aspects of Language Comprehension: A Large-Scale fMRI Investigation. The Journal of Neuroscience, 40(23), 4536. https://doi.org/10.1523/JNEUROSCI.2036-19.2020

Dietz, A., Vannest, J., Maloney, T., Altaye, M., Szaflarski, J. P., & Holland, S. K. (2016). The calculation of language lateralization indices in post-stroke aphasia: A comparison of a standard and a lesion-adjusted formula. Frontiers in Human Neuroscience, 10(OCT2016). https://doi.org/10.3389/FNHUM.2016.00493/ABSTRACT

Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–179. https://doi.org/10.1016/J.TICS.2010.01.004

El Hachioui, H., Lingsma, H. F., Van De Sandt-Koenderman, M., Dippel, D. W. J., Koudstaal, P. J., & Visch-Brink, E. G. (2012). Recovery of aphasia after stroke: a 1-year follow-up study. https://doi.org/10.1007/s00415-012-6607-2

El Hachioui, H., Visch-Brink, E. G., Lingsma, H. F., Van De Sandt-Koenderman, M. W. M. E., Dippel, D. W. J., Koudstaal, P. J., & Middelkoop, H. A. M. (2014). Nonlinguistic cognitive impairment in poststroke aphasia: a prospective study. Neurorehabilitation and Neural Repair, 28(3), 273–281. https://doi.org/10.1177/1545968313508467

Elkana, O., Frost, R., Kramer, U., Ben-Bashat, D., & Schweiger, A. (2013). Cerebral language reorganization in the chronic stage of recovery: A longitudinal fMRI study. Cortex, 49(1), 71–81. https://doi.org/10.1016/j.cortex.2011.09.001

Fedorenko, E. (2021). The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Current Opinion in Behavioral Sciences, 40, 105–112. https://doi.org/10.1016/J.COBEHA.2021.02.023

Fedorenko, E., & Blank, I. A. (2020). Broca’s Area Is Not a Natural Kind. Trends in Cognitive Sciences, 24(4), 270. https://doi.org/10.1016/J.TICS.2020.01.001

Fedorenko, E., Duncan, J., & Kanwisher, N. (2012). Language-Selective and Domain-General Regions Lie Side by Side within Broca’s Area. Current Biology, 22(21), 2059. https://doi.org/10.1016/J.CUB.2012.09.011

Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16616–16621. https://doi.org/10.1073/PNAS.1315235110

Fedorenko, E., Hsieh, P. J., Nieto-Castañón, A., Whitfield-Gabrieli, S., & Kanwisher, N. (2010). New Method for fMRI Investigations of Language: Defining ROIs Functionally in Individual Subjects. Journal of Neurophysiology, 104(2), 1177. https://doi.org/10.1152/JN.00032.2010

Fedorenko, E., Ivanova, A. A., & Regev, T. I. (2024). The language network as a natural kind within the broader landscape of the human brain. Nature Reviews Neuroscience 2024 25:5, 25(5), 289–312. https://doi.org/10.1038/s41583-024-00802-4

Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Sciences, 18(3), 120–126. https://doi.org/10.1016/J.TICS.2013.12.006

Fillingham, J. K., Sage, K., & Lambon Ralph, M. A. (2006). The treatment of anomia using errorless learning. Neuropsychological Rehabilitation, 16(2), 129–154. https://doi.org/10.1080/09602010443000254

Flowers, H. L., Skoretz, S. A., Silver, F. L., Rochon, E., Fang, J., Flamand-Roze, C., & Martino, R. (2016). Poststroke Aphasia Frequency, Recovery, and Outcomes: A Systematic Review and Meta-Analysis. Archives of Physical Medicine and Rehabilitation, 97(12), 2188-2201.e8. https://doi.org/10.1016/J.APMR.2016.03.006

Fonseca, J., Ferreira, J. J., & Pavão Martins, I. (2017). Cognitive performance in aphasia due to stroke: A systematic review. International Journal on Disability and Human Development, 16(2), 127–139. https://doi.org/10.1515/IJDHD-2016-0011/MACHINEREADABLECITATION/RIS

Fridriksson, J., Bonilha, L., Baker, J. M., Moser, D., & Rorden, C. (2010). Activity in Preserved Left Hemisphere Regions Predicts Anomia Severity in Aphasia. Cerebral Cortex (New York, NY), 20(5), 1013. https://doi.org/10.1093/CERCOR/BHP160

Fridriksson, J., Den Ouden, D. B., Hillis, A. E., Hickok, G., Rorden, C., Basilakos, A., Yourganov, G., & Bonilha, L. (2018). Anatomy of aphasia revisited. Brain, 141(3), 848. https://doi.org/10.1093/BRAIN/AWX363

Fridriksson, J., Nettles, C., Davis, M., Morrow, L., & Montgomery, A. (2006). Functional communication and executive function in aphasia. Clinical Linguistics & Phonetics, 20(6), 401–410. https://doi.org/10.1080/02699200500075781

Friederici, A. D., & Gierhan, S. M. E. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250–254. https://doi.org/10.1016/J.CONB.2012.10.002

Friederici, A. D., Meyer, M., & Von Cramon, D. Y. (2000). Auditory Language Comprehension: An Event-Related fMRI Study on the Processing of Syntactic and Lexical Information. Brain and Language, 74(2), 289–300. https://doi.org/10.1006/BRLN.2000.2313

Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of Functional MRI Time-Series. + Human Brain Mapping, 1, 153–171.

Geranmayeh, F., Chau, T. W., Wise, R. J. S., Leech, R., & Hampshire, A. (2017). Domain-general subregions of the medial prefrontal cortex contribute to recovery of language after stroke. Brain : A Journal of Neurology, 140(7), 1947–1958. https://doi.org/10.1093/BRAIN/AWX134

Gerstenecker, A., & Lazar, R. M. (2019). Language recovery following stroke. The Clinical Neuropsychologist, 33(5), 928. https://doi.org/10.1080/13854046.2018.1562093

Geschwind, N. (1965). Disconnexion syndromes in animals and man. I. Brain : A Journal of Neurology, 88(2), 237. https://doi.org/10.1093/BRAIN/88.2.237

Glanz, O., Derix, J., Kaur, R., Schulze-Bonhage, A., Auer, P., Aertsen, A., & Ball, T. (2018). Real-life speech production and perception have a shared premotor-cortical substrate. Scientific Reports 2018 8:1, 8(1), 1–14. https://doi.org/10.1038/s41598-018-26801-x

Gohel, S., Laino, M. E., Rajeev-Kumar, G., Jenabi, M., Peck, K., Hatzoglou, V., Tabar, V., Holodny, A. I., & Vachha, B. (2019). Resting-State Functional Connectivity of the Middle Frontal Gyrus Can Predict Language Lateralization in Patients with Brain Tumors. AJNR. American Journal of Neuroradiology, 40(2), 319–325. https://doi.org/10.3174/AJNR.A5932

Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36. https://doi.org/10.1006/NIMG.2001.0786

Graetz, P., De Bleser, R., & Willmes, K. (1992). Akense Afasie Test (AAT). Hogrefe. https://www.afasie.net/index.php/boeken/tests-vragenlijsten/item/akense…

Griffis, J. C., Nenert, R., Allendorfer, J. B., & Szaflarski, J. P. (2016). Interhemispheric Plasticity following Intermittent Theta Burst Stimulation in Chronic Poststroke Aphasia. Neural Plasticity, 2016. https://doi.org/10.1155/2016/4796906

Griffis, J. C., Nenert, R., Allendorfer, J. B., Vannest, J., Holland, S., Dietz, A., & Szaflarski, J. P. (2017). The canonical semantic network supports residual language function in chronic post-stroke aphasia. Human Brain Mapping, 38(3), 1636–1658. https://doi.org/10.1002/HBM.23476

Grysiewicz, R. A., Thomas, K., & Pandey, D. K. (2008). Epidemiology of Ischemic and Hemorrhagic Stroke: Incidence, Prevalence, Mortality, and Risk Factors. Neurologic Clinics, 26(4), 871–895. https://doi.org/10.1016/J.NCL.2008.07.003

Hachioui, H. El, Visch-Brink, E. G., Lonneke, •, De Lau, M. L., Van De Sandt-Koenderman, M. W. M. E., Femke Nouwens, •, Koudstaal, P. J., Diederik, •, & Dippel, W. J. (2017). Screening tests for aphasia in patients with stroke: a systematic review. https://doi.org/10.1007/s00415-016-8170-8

Hagoort, P. (2017). The core and beyond in the language-ready brain. Neuroscience and Biobehavioral Reviews, 81(Pt B), 194–204. https://doi.org/10.1016/J.NEUBIOREV.2017.01.048

Halai, A. D., Woollams, A. M., & Lambon Ralph, M. A. (2017). Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex, 86, 275–289. https://doi.org/10.1016/J.CORTEX.2016.04.016

Hamilton, L. S., & Huth, A. G. (2020). The revolution will not be controlled: natural stimuli in speech neuroscience. Language, Cognition and Neuroscience, 35(5), 573–582. https://doi.org/10.1080/23273798.2018.1499946

Hampshire, A., Hellyer, P. J., Parkin, B., Hiebert, N., MacDonald, P., Owen, A. M., Leech, R., & Rowe, J. (2016). Network mechanisms of intentional learning. NeuroImage, 127, 123–134. https://doi.org/10.1016/J.NEUROIMAGE.2015.11.060

Hickok, G. (2022). The dual stream model of speech and language processing. Handbook of Clinical Neurology, 185, 57–69. https://doi.org/10.1016/B978-0-12-823384-9.00003-7

Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131–138. https://doi.org/10.1016/S1364-6613(00)01463-7

Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99. https://doi.org/10.1016/J.COGNITION.2003.10.011

Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience 2007 8:5, 8(5), 393–402. https://doi.org/10.1038/nrn2113

Hier, D. B., Yoon, W. B., Mohr, J. P., Price, T. R., & Wolf, P. A. (1994). Gender and aphasia in the Stroke Data Bank. Brain and Language, 47(1), 155–167. https://doi.org/10.1006/BRLN.1994.1046

Hiersche, K. J., Schettini, E., Li, J., & Saygin, Z. M. (2023). Functional dissociation of the language network and other cognition in early childhood. BioRxiv, 2022.08.11.503597. https://doi.org/10.1101/2022.08.11.503597

Hilari, K., Needle, J. J., & Harrison, K. L. (2012). What are the important factors in health-related quality of life for people with aphasia? A systematic review. Archives of Physical Medicine and Rehabilitation, 93(1 Suppl). https://doi.org/10.1016/J.APMR.2011.05.028

Hillis, A. E., & Heidler, J. (2002). Mechanisms of early aphasia recovery. Aphasiology, 16(9), 885–895. https://doi.org/10.1080/0268703

Humphries, C., Binder, J. R., Medler, D. A., & Liebenthal, E. (2006). Syntactic and Semantic Modulation of Neural Activity during Auditory Sentence Comprehension. Journal of Cognitive Neuroscience, 18(4), 665–679. https://doi.org/10.1162/JOCN.2006.18.4.665

Humphries, C., Love, T., Swinney, D., & Hickok, G. (2005). Response of anterior temporal cortex to syntactic and prosodic manipulations during sentence processing. Human Brain Mapping, 26(2), 128–138. https://doi.org/10.1002/HBM.20148

Huygelier, H., Schraepen, B., Demeyere, N., & Gillebert, C. R. (2020). The Dutch version of the Oxford Cognitive Screen (OCS-NL): normative data and their association with age and socio-economic status. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 27(5), 765–786. https://doi.org/10.1080/13825585.2019.1680598

Ivanova, M. V., Zhong, A., Turken, A., Baldo, J. V., & Dronkers, N. F. (2021). Functional Contributions of the Arcuate Fasciculus to Language Processing. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/FNHUM.2021.672665/FULL

Jarso, S., Li, M., Faria, A., Davis, C., Leigh, R., Sebastian, R., Tsapkini, K., Mori, S., & Hillis, A. E. (2013). Distinct mechanisms and timing of language recovery after stroke. Cognitive Neuropsychology, 30(7–8), 454. https://doi.org/10.1080/02643294.2013.875467

Jefferies, E., & Lambon Ralph, M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain : A Journal of Neurology, 129(Pt 8), 2132–2147. https://doi.org/10.1093/BRAIN/AWL153

Kaestner, E., Thesen, T., Devinsky, O., Doyle, W., Carlson, C., & Halgren, E. (2021). An Intracranial Electrophysiology Study of Visual Language Encoding: The Contribution of the Precentral Gyrus to Silent Reading. Journal of Cognitive Neuroscience, 33(11), 2197–2214. https://doi.org/10.1162/JOCN_A_01764

Kagan, A., & Simmons-Mackie, N. (2013). Changing the Aphasia Narrative. The ASHA Leader, 18(11), 6–8. https://doi.org/10.1044/LEADER.FMP.18112013.6

Kalbe, E., Reinhold, N., Brand, M., Markowitsch, H. J., & Kessler, J. (2005). A new test battery to assess aphasic disturbances and associated cognitive dysfunctions -- German normative data on the aphasia check list. Journal of Clinical and Experimental Neuropsychology, 27(7), 779–794. https://doi.org/10.1080/13803390490918273

Kasselimis, D. S., Simos, P. G., Peppas, C., Evdokimidis, I., & Potagas, C. (2017). The unbridged gap between clinical diagnosis and contemporary research on aphasia: A short discussion on the validity and clinical utility of taxonomic categories. Brain and Language, 164, 63–67. https://doi.org/10.1016/J.BANDL.2016.10.005

Kemmerer, D. (2015). Cognitive Neuroscience of Language. Psychology Press.

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42(3), 627–633. https://doi.org/10.3758/BRM.42.3.627/METRICS

Kim, H., Wang, K., Cutting, L. E., Willcutt, E. G., Petrill, S. A., Leopold, D. R., Reineberg, A. E., Thompson, L. A., & Banich, M. T. (2022). The Angular Gyrus as a Hub for Modulation of Language-related Cortex by Distinct Prefrontal Executive Control Regions. Journal of Cognitive Neuroscience, 34(12), 2275–2296. https://doi.org/10.1162/JOCN_A_01915

Kries, J., De Clercq, P., Lemmens, R., Francart, T., & Vandermosten, M. (2023). Acoustic and phonemic processing are impaired in individuals with aphasia. Scientific Reports, 13(1). https://doi.org/10.1038/S41598-023-37624-W

Lam, J. M. C., & Wodchis, W. P. (2010). The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents. Medical Care, 48(4), 380–387. https://doi.org/10.1097/MLR.0B013E3181CA2647

Landrigan, J. F., Zhang, F., & Mirman, D. (2021). A data-driven approach to post-stroke aphasia classification and lesion-based prediction. Brain, 144(5), 1372–1383. https://doi.org/10.1093/BRAIN/AWAB010

Le, H., & Lui, M. Y. (2022). Aphasia. The Curated Reference Collection in Neuroscience and Biobehavioral Psychology, 181–192. https://doi.org/10.1016/B978-0-12-809324-5.02991-6

Lee, A. M. C., Cerisano, S., Humphreys, K. R., & Watter, S. (2017). Talking Is Harder Than Listening: The Time Course of Dual-Task Costs During Naturalistic Conversation. https://doi.org/10.1037/cep0000114

Li, R., Mukadam, N., & Kiran, S. (2022). Functional MRI evidence for reorganization of language networks after stroke. Handbook of Clinical Neurology, 185, 131–150. https://doi.org/10.1016/B978-0-12-823384-9.00007-4

Lichtheim, L. (1885). On Aphasia. Brain, 7(4), 433–484. https://doi.org/10.1093/BRAIN/7.4.433

Luzzatti, C., Mauri, I., Castiglioni, S., Zuffi, M., Spartà, C., Somalvico, F., & Franceschi, M. (2020). Evaluating Semantic Knowledge Through a Semantic Association Task in Individuals With Dementia. American Journal of Alzheimer’s Disease and Other Dementias, 35. https://doi.org/10.1177/1533317520917294/ASSET/IMAGES/LARGE/10.1177_153…

Malik-Moraleda, S., Ayyash, D., Gallée, J., Affourtit, J., Hoffmann, M., Mineroff, Z., Jouravlev, O., & Fedorenko, E. (2022). An investigation across 45 languages and 12 language families reveals a universal language network. Nature Neuroscience, 25(8), 1014–1019. https://doi.org/10.1038/S41593-022-01114-5

Meier, E. L., Kelly, C. R., Goldberg, E. B., & Hillis, A. E. (2022). Executive control deficits and lesion correlates in acute left hemisphere stroke survivors with and without aphasia. Brain Imaging and Behavior, 16(2), 868. https://doi.org/10.1007/S11682-021-00580-Y

Menenti, L., Gierhan, S. M. E., Segaert, K., & Hagoort, P. (2011). Shared language: overlap and segregation of the neuronal infrastructure for speaking and listening revealed by functional MRI. Psychological Science, 22(9), 1173–1182. https://doi.org/10.1177/0956797611418347

Menke, R., Meinzer, M., Kugel, H., Deppe, M., Baumgärtner, A., Schiffbauer, H., Thomas, M., Kramer, K., Lohmann, H., Flöel, A., Knecht, S., & Breitenstein, C. (2009). Imaging short- and long-term training success in chronic aphasia. BMC Neuroscience, 10, 118. https://doi.org/10.1186/1471-2202-10-118

Montaño, A., Hanley, D. F., & Hemphill, J. C. (2021). Hemorrhagic stroke. Handbook of Clinical Neurology, 176, 229–248. https://doi.org/10.1016/B978-0-444-64034-5.00019-5

Murphy, T. H., & Corbett, D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews Neuroscience 2009 10:12, 10(12), 861–872. https://doi.org/10.1038/nrn2735

Murray, L. L. (2012). Attention and Other Cognitive Deficits in Aphasia: Presence and Relation to Language and Communication Measures. American Journal of Speech-Language Pathology, 21(2). https://doi.org/10.1044/1058-0360(2012/11-0067)

Naeser, M. A., Martin, P. I., Nicholas, M., Baker, E. H., Seekins, H., Kobayashi, M., Theoret, H., Fregni, F., Maria-Tormos, J., Kurland, J., Doron, K. W., & Pascual-Leone, A. (2005). Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain and Language, 93(1), 95–105. https://doi.org/10.1016/J.BANDL.2004.08.004

Nenert, R., Allendorfer, J. B., Martin, A. M., Banks, C., Vannest, J., Holland, S. K., Hart, K. W., Lindsell, C. J., & Szaflarski, J. P. (2018). Longitudinal fMRI study of language recovery after a left hemispheric ischemic stroke. Restorative Neurology and Neuroscience, 36(3), 359–385. https://doi.org/10.3233/RNN-170767

Newport, E. L., Seydell-Greenwald, A., Landau, B., Turkeltaub, P. E., Chambers, C. E., Martin, K. C., Rennert, R., Giannetti, M., Dromerick, A. W., Ichord, R. N., Carpenter, J. L., Berl, M. M., & Gaillard, W. D. (2022). Language and developmental plasticity after perinatal stroke. Proceedings of the National Academy of Sciences of the United States of America, 119(42). https://doi.org/10.1073/PNAS.2207293119/-/DCSUPPLEMENTAL

Nieto-Castañón, A., & Fedorenko, E. (2012). Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. NeuroImage, 63(3), 1646–1669. https://doi.org/10.1016/J.NEUROIMAGE.2012.06.065

Nouwens, F., Visch-Brink, E., de Sandt-Koenderman, M., Dippel, D., Koudstaal, P., & Lau, L. M. L. (2015). Optimal timing of speech and language therapy for aphasia after stroke; more evidence needed. Expert Review of Neurotherapeutics. https://doi.org/10.1586/14737175.2015.1058161

Oh, A., Duerden, E. G., & Pang, E. W. (2014). The role of the insula in speech and language processing. Brain and Language, 135, 96–103. https://doi.org/10.1016/J.BANDL.2014.06.003

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4

Olulade, O. A., Seydell-Greenwald, A., Chambers, C. E., Turkeltaub, P. E., Dromerick, A. W., Berl, M. M., Gaillard, W. D., & Newport, E. L. (2020). The neural basis of language development: Changes in lateralization over age. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23477–23483. https://doi.org/10.1073/PNAS.1905590117/ASSET/201A6213-7E80-4FEF-83E0-A…

OpenAI (2023). ChatGPT (versie 14 maart 2023) [large language model]. https://chatopenai.com

        Note: We acknowledge the use of ChatGPT as a language support tool. ChatGPT was used solely for enhancing clarity of the text, through grammar or vocabulary suggestions. It was not used to generate any new content or ideas. All research, analyses, interpretations and conclusions in this master thesis are the result of the authors’ own work. 

O’Sullivan, M., Brownsett, S., & Copland, D. (2019). Language and language disorders: neuroscience to clinical practice. Practical Neurology, 19(5), 380. https://doi.org/10.1136/PRACTNEUROL-2018-001961

Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 13091–13095. https://doi.org/10.1073/PNAS.0405148101

Park, Y. H., Jang, J. W., Park, S. Y., Wang, M. J., Lim, J. S., Baek, M. J., Kim, B. J., Han, M. K., Bae, H. J., Ahn, S., & Kim, S. (2015). Executive function as a strong predictor of recovery from disability in patients with acute stroke: a preliminary study. Journal of Stroke and Cerebrovascular Diseases : The Official Journal of National Stroke Association, 24(3), 554–561. https://doi.org/10.1016/J.JSTROKECEREBROVASDIS.2014.09.033

Peña-Casanova, J., Vinaixa, L., Diéguez-Vide, F., Gramunt-Fombuena, N., & Soler-Campillo, A. (2019). Assessment of aphasia: dialectical and cultural considerations in neurology. Neurologia, 37(7), 596–603. https://doi.org/10.1016/J.NRL.2019.07.002

Postman-Caucheteux, W. A., Birn, R. M., Pursley, R. H., Butman, J. A., Solomon, J. M., Picchioni, D., McArdle, J., & Braun, A. R. (2010). Single-trial fMRI Shows Contralesional Activity Linked to Overt Naming Errors in Chronic Aphasic Patients. Journal of Cognitive Neuroscience, 22(6), 1299. https://doi.org/10.1162/JOCN.2009.21261

Preetha, U. M., & Perumal, R. C. (2022). Quality of Communication Life (QoCL) In Persons with Expressive Aphasia With And Without Communication Intervention - A Comparative Study. Neurology India, 70(3), 1125–1130. https://doi.org/10.4103/0028-3886.349635

Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62–88. https://doi.org/10.1111/J.1749-6632.2010.05444.X

Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. In NeuroImage (Vol. 62, Issue 2). https://doi.org/10.1016/j.neuroimage.2012.04.062

Price, C. J., Crinion, J., & Williams, L. (2005). The latest on functional imaging studies of aphasic stroke. In Current Opinion in Neurology (Vol. 18).

Price, C. J., Seghier, M. L., & Leff, A. P. (2010). Predicting language outcome and recovery after stroke: the PLORAS system. Nature Reviews. Neurology, 6(4), 202–210. https://doi.org/10.1038/NRNEUROL.2010.15

Price, C. J., Warburton, E. A., Moore, C. J., Frackowiak, R. S. J., & Friston, K. J. (2001). Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions. Journal of Cognitive Neuroscience, 13(4), 419–429. https://doi.org/10.1162/08989290152001853

Pulvermuller, F., & Berthier, M. (2008). Aphasia therapy on a neuroscience basis. Aphasiology, 22(6), 563. https://doi.org/10.1080/02687030701612213

Pulvermüller, F., Huss, M., Kherif, F., Del Prado Martin, F. M., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7865–7870. https://doi.org/10.1073/PNAS.0509989103/ASSET/D7B3BC52-C30C-4DBC-AB4F-B…

Raboyeau, G., De Boissezon, X., Marie, N., Balduyck, S., Puel, M., Bézy, C., Démonet, J. F., & Cardebat, D. (2008). Right hemisphere activation in recovery from aphasia. Neurology, 70(4), 290–298. https://doi.org/10.1212/01.WNL.0000287115.85956.87

Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30(6), 730–748. https://doi.org/10.1016/J.NEUBIOREV.2006.07.001

Robson, H., Zahn, R., Keidel, J. L., Binney, R. J., Sage, K., & Lambon Ralph, M. A. (2014). The anterior temporal lobes support residual comprehension in Wernicke’s aphasia. Brain : A Journal of Neurology, 137(Pt 3), 931–943. https://doi.org/10.1093/BRAIN/AWT373

Rohde, A., Worrall, L., Godecke, E., O’Halloran, R., Farrell, A., & Massey, M. (2018). Diagnosis of aphasia in stroke populations: A systematic review of language tests. PloS One, 13(3). https://doi.org/10.1371/JOURNAL.PONE.0194143

Rorden, C., Bonilha, L., Fridriksson, J., Bender, B., & Karnath, H. O. (2012). Age-specific CT and MRI templates for spatial normalization. NeuroImage, 61(4), 957–965. https://doi.org/10.1016/J.NEUROIMAGE.2012.03.020

Rosen, H. J., Petersen, S. E., Linenweber, M. R., Snyder, A. Z., White, D. A., Chapman, L., Dromerick, A. W., Fiez, J. A., & Corbetta, M. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55(12), 1883–1894. https://doi.org/10.1212/WNL.55.12.1883

Rossi, E., & Diaz, M. (2016). How aging and bilingualism influence language processing: theoretical and neural models. Linguistic Approaches to Bilingualism, 6(1–2), 9–42. https://doi.org/10.1075/LAB.14029.ROS

Saur, D., & Hartwigsen, G. (2012). Neurobiology of Language Recovery After Stroke: Lessons From Neuroimaging Studies. Archives of Physical Medicine and Rehabilitation, 93(1), S15–S25. https://doi.org/10.1016/J.APMR.2011.03.036

Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain, 129(6), 1371–1384. https://doi.org/10.1093/BRAIN/AWL090

Saver, J. L. (2006). Time is brain--quantified. Stroke, 37(1), 263–266. https://doi.org/10.1161/01.STR.0000196957.55928.AB

Schevenels, K., Price, C. J., Zink, I., Smedt, B. De, & Vandermosten, M. (2020). A Review on Treatment-Related Brain Changes in Aphasia. Neurobiology of Language, 1(4), 402–433. https://doi.org/10.1162/NOL_A_00019

Schumacher, R., Halai, A. D., & Lambon Ralph, M. A. (2019). Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain, 142(10), 3202. https://doi.org/10.1093/BRAIN/AWZ258

Scott, T. L., Gallée, J., & Fedorenko, E. (2017). A new fun and robust version of an fMRI localizer for the frontotemporal language system. Cognitive Neuroscience, 8(3), 167–176. https://doi.org/10.1080/17588928.2016.1201466/SUPPL_FILE/PCNS_A_1201466…

Sebastian, R., Long, C., Purcell, J. J., Faria, A. V., Lindquist, M., Jarso, S., Race, D., Davis, C., Posner, J., Wright, A., & Hillis, A. E. (2016). Imaging network level language recovery after left PCA stroke. Restorative Neurology and Neuroscience, 34(4), 473. https://doi.org/10.3233/RNN-150621

Segaert, K., Menenti, L., Weber, K., Petersson, K. M., & Hagoort, P. (2012). Shared syntax in language production and language comprehension--an FMRI study. Cerebral Cortex (New York, N.Y. : 1991), 22(7), 1662–1670. https://doi.org/10.1093/CERCOR/BHR249

Seghier, M. L. (2013). The Angular Gyrus: Multiple Functions and Multiple Subdivisions. The Neuroscientist, 19(1), 43. https://doi.org/10.1177/1073858412440596

Seghier, M. L., & Price, C. J. (2018). Interpreting and Utilising Intersubject Variability in Brain Function. Trends in Cognitive Sciences, 22(6), 517–530. https://doi.org/10.1016/J.TICS.2018.03.003

Shafto, M. A., & Tyler, L. K. (2014). Language in the aging brain: the network dynamics of cognitive decline and preservation. Science (New York, N.Y.), 346(6209), 583–587. https://doi.org/10.1126/SCIENCE.1254404

Shain, C., Blank, I. A., van Schijndel, M., Schuler, W., & Fedorenko, E. (2020). fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. Neuropsychologia, 138. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2019.107307

Sheppard, S. M., & Sebastian, R. (2021). Diagnosing and managing post-stroke aphasia. https://doi.org/10.1080/14737175.2020.1855976

Sihvonen, A. J., Vadinova, V., Garden, K. L., Meinzer, M., Roxbury, T., O’Brien, K., Copland, D., McMahon, K. L., & Brownsett, S. L. E. (2023). Right hemispheric structural connectivity and poststroke language recovery. Human Brain Mapping, 44(7), 2897–2904. https://doi.org/10.1002/HBM.26252

Simic, T., Rochon, E., Greco, E., & Martino, R. (2019). Baseline executive control ability and its relationship to language therapy improvements in post-stroke aphasia: a systematic review. Neuropsychological Rehabilitation, 29(3), 395–439. https://doi.org/10.1080/09602011.2017.1307768

Sliwinska, M. W., Violante, I. R., Wise, R. J. S., Leech, R., Devlin, J. T., Geranmayeh, F., & Hampshire, A. (2017). Stimulating Multiple-Demand Cortex Enhances Vocabulary Learning. The Journal of Neuroscience, 37(32), 7606. https://doi.org/10.1523/JNEUROSCI.3857-16.2017

Springer, J. A., Binder, J. R., Hammeke, T. A., Swanson, S. J., Frost, J. A., Bellgowan, P. S. F., Brewer, C. C., Perry, H. M., Morris, G. L., & Mueller, W. M. (1999). Language dominance in neurologically normal and epilepsy subjects. A functional MRI study. Brain, 122(11). https://doi.org/10.1093/brain/122.11.2033

Stahl, B., Mohr, B., Büscher, V., Dreyer, F. R., Lucchese, G., & Pulvermüller, F. (2017). Efficacy of intensive aphasia therapy in patients with chronic stroke: a randomised controlled trial. Journal of Neurology, Neurosurgery, and Psychiatry, 89(6), 586–592. https://doi.org/10.1136/JNNP-2017-315962

Stefaniak, J. D., Geranmayeh, F., & Lambon Ralph, M. A. (2022). The multidimensional nature of aphasia recovery post-stroke. Brain, 145(4), 1354–1367. https://doi.org/10.1093/brain/awab377

Stiers, P., Mennes, M., & Sunaert, S. (2010). Distributed task coding throughout the multiple demand network of the human frontal–insular cortex. NeuroImage, 52(1), 252–262. https://doi.org/10.1016/J.NEUROIMAGE.2010.03.078

Stockert, A., Wawrzyniak, M., Klingbeil, J., Wrede, K., Kümmerer, D., Hartwigsen, G., Kaller, C. P., Weiller, C., & Saur, D. (2020). Dynamics of language reorganization after left temporo-parietal and frontal stroke. Brain : A Journal of Neurology, 143(3), 844–861. https://doi.org/10.1093/BRAIN/AWAA023

Stokes, R. C., Venezia, J. H., & Hickok, G. (2019). The motor system’s [modest] contribution to speech perception. Psychonomic Bulletin and Review, 26(4), 1354–1366. https://doi.org/10.3758/S13423-019-01580-2/FIGURES/5

Stowe, L. A., Paans, A. M. J., Wijers, A. A., Zwarts, F., Mulder, G., & Vaalburg, W. (1999). Sentence comprehension and word repetition: A positron emission tomography investigation. Psychophysiology, 36(6), 786–801. https://doi.org/10.1111/1469-8986.3660786

Swinburn, K., Porter, G., & Howard, D. (2004). Comprehensive aphasia test. https://psycnet.apa.org/doiLanding?doi=10.1037/t13733-000

Swinburn, K., Porter, G., Howard, D., Visch-Brink, E., Vandenborre, D., de Smet, H. J., & Mariën, P. (2014). CAT-NL.

Szaflarski, J. P., Allendorfer, J. B., Banks, C., Vannest, J., & Holland, S. K. (2013). Recovered vs. not-recovered from post-stroke aphasia: the contributions from the dominant and non-dominant hemispheres. Restorative Neurology and Neuroscience, 31(4), 347–360. https://doi.org/10.3233/RNN-120267

Szaflarski, J. P., Binder, J. R., Possing, E. T., McKiernan, K. A., Ward, B. D., & Hammeke, T. A. (2002). Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology, 59(2). https://doi.org/10.1212/WNL.59.2.238

Tremblay, P., & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 60–71. https://doi.org/10.1016/J.BANDL.2016.08.004

Tucker, B. V., Ford, C., & Hedges, S. (2021). Speech aging: Production and perception. In Wiley Interdisciplinary Reviews: Cognitive Science (Vol. 12, Issue 5). https://doi.org/10.1002/wcs.1557

Turkeltaub, P. E. (2015). Brain Stimulation and the Role of the Right Hemisphere in Aphasia Recovery. Current Neurology and Neuroscience Reports, 15(11). https://doi.org/10.1007/S11910-015-0593-6

Tyler, L. K., Marslen-Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., Papoutsi, M., & Stamatakis, E. A. (2011). Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain, 134(2), 415. https://doi.org/10.1093/BRAIN/AWQ369

van der Meulen, I., van Gelder-Houthuizen, J., Wiegers, J., Wielaert, S., & van de Sandt-Koenderman, M. (2008). Scenario Test. Bohn Stafleu van Loghum.

Van Ewijk, E., Dijkhuis, L., Hofs-Van Kats, M., Hendrickx-Jessurun, M., Wijngaarden, M., & De Hilster, C. (2020). Nederlandse Benoem Test. Bohn stafleu van loghum.

van Oers, C. A. M. M., Vink, M., van Zandvoort, M. J. E., van der Worp, H. B., de Haan, E. H. F., Kappelle, L. J., Ramsey, N. F., & Dijkhuizen, R. M. (2010). Contribution of the left and right inferior frontal gyrus in recovery from aphasia. A functional MRI study in stroke patients with preserved hemodynamic responsiveness. NeuroImage, 49(1), 885–893. https://doi.org/10.1016/J.NEUROIMAGE.2009.08.057

Vandenborre, D., Visch-Brink, E., & Mariën, P. (2014). Afasieonderzoek van vroeger tot nu (pp. 17–26). https://www.academia.edu/18056746/Afasieonderzoek_van_vroeger_tot_nu

Vasileiadi, M., Schuler, A. L., Woletz, M., Linhardt, D., Windischberger, C., & Tik, M. (2023). Functional connectivity explains how neuronavigated TMS of posterior temporal subregions differentially affect language processing. Brain Stimulation, 16(4), 1062–1071. https://doi.org/10.1016/J.BRS.2023.06.014

Visch-Brink, E., Van de Sandt-Koenderman, M., & El Hachioui, H. (2010). ScreeLing. Bohn Stafleu Van Loghum.

Vogel, A. P., Maruff, P., & Morgan, A. T. (2010). Evaluation of communication assessment practices during the acute stages post stroke. Journal of Evaluation in Clinical Practice, 16(6), 1183–1188. https://doi.org/10.1111/J.1365-2753.2009.01291.X

Wernicke Carl. (1874). Der aphasische symptomencomplex: eine psychologische studie auf anatomischer basis. https://books.google.be/books?hl=nl&lr=&id=pe9AAAAAYAAJ&oi=fnd&pg=PA3&d…

Wilson, S. M., & Schneck, S. M. (2021). Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing. Neurobiology of Language (Cambridge, Mass.), 2(1), 22–82. https://doi.org/10.1162/NOL_A_00025

Wilson, S. M., Yen, M., & Eriksson, D. K. (2018). An adaptive semantic matching paradigm for reliable and valid language mapping in individuals with aphasia: https://doi.org/10.1002/hbm.24077

Wong, C., & Gallate, J. (2012). The function of the anterior temporal lobe: A review of the empirical evidence. Brain Research, 1449, 94–116. https://doi.org/10.1016/J.BRAINRES.2012.02.017

World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. (2013). JAMA, 310(20), 2191–2194. https://doi.org/10.1001/JAMA.2013.281053

Xie, X., Zhang, T., Bai, T., Chen, C., Ji, G. J., Tian, Y., Yang, J., & Wang, K. (2022). Resting-State Neural-Activity Alterations in Subacute Aphasia after Stroke. Brain Sciences, 12(5). https://doi.org/10.3390/BRAINSCI12050678

Xing, C., Arai, K., Lo, E. H., & Hommel, M. (2012). Pathophysiologic cascades in ischemic stroke. International Journal of Stroke : Official Journal of the International Stroke Society, 7(5), 378. https://doi.org/10.1111/J.1747-4949.2012.00839.X

Yao, Y., & Wang, C. (2020). Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. Npj Regenerative Medicine 2020 5:1, 5(1), 1–11. https://doi.org/10.1038/s41536-020-00099-8

 

Download scriptie (2.63 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2024
Promotor(en)
Professor Maaike Vandermosten