Plastiek in het lichaam: beïnvloedt dit onze gezondheid?

Silke
Beelen

Onderzoek heeft aangetoond dat in je hele lichaam micro- en nanoplastiek aanwezig zijn. Maar wat is nu eigenlijk het effect van deze kleine plastiekdeeltjes op je lichaam? En zou het kunnen dat deze deeltjes leiden tot verhoogde kans op obesitas? 

A large pile of garbage</p>
<p>Description automatically generatedPlastiek afval in Zuid-Tangerang, Indonesië. Foto door Tom Fisk

Wat is micro- en nanoplastiek en hoe dringt het ons lichaam binnen?

Mensen produceren plastiek afval. De wereldwijde hoeveelheid afval in 2019 was ongeveer 460 miljoen ton. Dit is ongeveer evenveel als 46 keer het gewicht van de Eiffeltoren. Slechts 9% van dit afval wordt gerecycleerd. Omdat plastiek slecht biologisch afbreekbaar is, accumuleert het in de natuur, waar het wordt afgebroken tot kleinere deeltjes. Deze deeltjes zijn overal ter wereld te vinden, ook in ons voedsel en in de lucht. Voornamelijk via het eten en het inademen van de deeltjes worden ze opgenomen in het lichaam en belanden ze in ons bloed. Via het bloed worden ze dan naar verschillende organen in het lichaam getransporteerd.

Hoe kunnen kleine plastiekdeeltjes schade verrichten?

Het lichaam kan je zien als een hele grote fabriek. Cellen zijn de bouwstenen van het lichaam en werken als kleine levende machinetjes in het lichaam (de fabriek). Kleine plastiekdeeltjes kunnen in de cellen terechtkomen en hun werking verstoren. Als één cel niet meer werkt, is dit geen probleem, maar wanneer vele cellen verstoord worden, kan dit leiden tot ernstige storingen.

De vraag is, hoe toxisch zijn de plastiekdeeltjes voor deze cellen en wat betekent dit op het niveau van je lichaam. Plastiekdeeltjes reageren niet rechtstreeks met de cellen en zijn niet direct dodelijk voor de cel. Wat de deeltjes dan wel precies doen in de cellen is niet duidelijk. Het zou bijvoorbeeld kunnen dat de deeltjes in de weg zitten van cruciale elementen in de cel en zo de activiteit ervan verstoren. Een andere mogelijkheid is dat de deeltjes herkend worden als vreemd, waardoor de cel hen wil afbreken. Aangezien plastiek niet goed afbreekbaar is, kan dit leiden tot het vrijkomen van stoffen die schadelijk zijn voor de cel. Hierdoor kunnen de plastiekdeeltjes dus indirect schade brengen aan de cellen.

Wat er al geweten is

Op cellulair niveau wordt onderzoek uitgevoerd op basis van menselijke cellen die in kleine flesjes groeien. Deze cellen worden dan blootgesteld aan plastiek waarna verschillende effecten in de cellen gemeten worden. Onderzoek toonde al aan dat verschillende onderdelen in de cel, waaronder het DNA en de celwand, kunnen aangetast worden door de aanwezigheid van plastiekdeeltjes. Op het niveau van het lichaam is onderzoek moeilijker. Het is namelijk niet toegestaan om mensen bewust bloot te stellen aan plastiek om de effecten van de deeltjes te bestuderen. Tot nu toe is er dan ook geen rechtstreeks bewijs van de effecten van deze kleine deeltjes op het lichaam. Er zijn wel al een aantal hypothetische effecten zoals een verhoogde kans op een trombose, ontstekingen en een abnormaal vetmetabolisme.

Het onderzoek

In mijn onderzoek werd het effect van polystyreen nanoplastiek op darmcellen onderzocht. Dit omdat darmcellen sterk onderhevig zijn aan plastiekdeeltjes die via voedsel worden ingenomen. In tegenstelling tot vele andere studies, die acute behandelingen met hoge concentraties van micro- en nanoplastiek hanteerden, benaderde mijn proefopzet beter de werkelijkheid. Dit gebeurde door een lange periode van blootstelling aan lage concentraties plastiekdeeltjes toe te passen. Uit mijn studie bleek dat darmcellen meer vet bevatten wanneer ze werden blootgesteld aan plastiekdeeltjes. Bovendien induceren de plastiekdeeltjes een verhoogde activiteit van de cellen. De cellen zullen bijvoorbeeld meer zuurstof verbruiken en omzetten in CO2. Mijn onderzoek gaat hand in hand met andere eerdere onderzoeken die ook aantoonden dat plastiekdeeltjes zorgen voor meer vet in de cellen. Extra vervetting in cellen komt voor bij verschillende ziektes, waaronder obesitas, kanker en chronische ontstekingen.

De link met obesitas

Het aantal mensen met obesitas is stijgend. Dit is voornamelijk door hoe we leven. Er zijn heel wat gekende factoren die kans op obesitas verhogen, zoals eetgewoonten, slaap, leeftijd en of je rookt of niet. Toch heeft onderzoek aangetoond dat al deze gekende factoren samen niet voldoende zijn om het stijgende percentage aan obesitas te verklaren. Daarom wordt er aangenomen dat er nog onbekende elementen zijn die een invloed hebben op obesitas. 

Daarnaast heeft mijn onderzoek aangetoond dat nanoplastiek zou kunnen leiden tot verhoogde kans op obesitas. Dit omdat de partikels kunnen zorgen voor extra vervetting in de cellen en ontstekingsreacties kunnen initiëren die gelijkaardig zijn aan de reacties in de cellen van patiënten met obesitas. 

Hieruit kunnen we concluderen dat plastiek mogelijks één van de onbekende elementen is die leidt tot een stijging in het aantal obesitas patiënten.

Wat we hebben geleerd

  1. Plastiek afval degradeert tot zeer kleine plastiekdeeltjes die mogelijks gevaarlijk zijn voor mens, dier en natuur. Om extra ophoping van micro- en nanoplastiek te voorkomen kan je maar beter je afval goed sorteren, zo weinig mogelijk plastiek gebruiken en zeker niets in de natuur laten rondslingeren.
  2. Plastiekdeeltjes kunnen het lichaam binnendringen en daar interageren met de cellen. De exacte effecten van de plastiekdeeltjes op de cellen zijn nog niet helemaal gekend, er is dus meer onderzoek nodig.
  3. Mijn onderzoek geeft aan dat plastiekdeeltjes de kans op obesitas kan vergroten. Om deze hypothese wetenschappelijk te bewijzen is meer onderzoek noodzakelijk.


 

 

Bibliografie

Abumradsb, N. A., Raafat El-Maghrabis, M., Amrill, E.-Z., Lopezs, E., & Grimaldill, P. A. (1993). THE JOURNAL OF BIOLOGICAL CHEMISTRY Cloning of a Rat Adipocyte Membrane Protein Implicated in Binding or Transport of Long-chain Fatty Acids That Is Induced during Preadipocyte Differentiation (Vol. 268, Issue 24).

Agilent Technologies. (2020). Agilent XF Substrate Oxidation Stress Test Kits: User Manual. In Retrieved from https://www.agilent.com/cs/library/usermanuals/public/user-manual-subst….

Alberts, B. , J. A. , L. J. , R. M. , R. K. , & W. P. (2002). How cells obtain energy from food. In Molecular biology of the cell. (4th Ed.). New York, NY: Garland Science. Available from Https://Www.Ncbi.Nlm.Nih.Gov/Books/NBK26882/.

Alvarez-Román, R., Naik, A., Kalia, Y. N., Guy, R. H., & Fessi, H. (2004). Skin penetration and distribution of polymeric nanoparticles. Journal of Controlled Release, 99(1), 53–62. https://doi.org/10.1016/j.jconrel.2004.06.015

Amato-Lourenço, L. F., Carvalho-Oliveira, R., Júnior, G. R., dos Santos Galvão, L., Ando, R. A., & Mauad, T. (2021). Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials, 416. https://doi.org/10.1016/j.jhazmat.2021.126124

Antunes, J., Sobral, P., Martins, M., & Branco, V. (2023). Nanoplastics activate a TLR4/p38-mediated pro-inflammatory response in human intestinal and mouse microglia cells. Environmental Toxicology and Pharmacology, 104. https://doi.org/10.1016/j.etap.2023.104298

Avio, C. G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., D’Errico, G., Pauletto, M., Bargelloni, L., & Regoli, F. (2015). Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution, 198, 211–222. https://doi.org/10.1016/j.envpol.2014.12.021

Babaei, A. A., Rafiee, M., Khodagholi, F., Ahmadpour, E., & Amereh, F. (2022). Nanoplastics-induced oxidative stress, antioxidant defense, and physiological response in exposed Wistar albino rats. https://doi.org/10.1007/s11356-021-15920-0/Published

Barguilla, I., Domenech, J., Ballesteros, S., Rubio, L., Marcos, R., & Hernández, A. (2022). Long-term exposure to nanoplastics alters molecular and functional traits related to the carcinogenic process. Journal of Hazardous Materials, 438. https://doi.org/10.1016/j.jhazmat.2022.129470

Bender, T., & Martinou, J. C. (2016). The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? In Biochimica et Biophysica Acta - Molecular Cell Research (Vol. 1863, Issue 10, pp. 2436–2442). Elsevier B.V. https://doi.org/10.1016/j.bbamcr.2016.01.017

Bergami, E., Krupinski Emerenciano, A., González-Aravena, M., Cárdenas, C. A., Hernández, P., Silva, J. R. M. C., & Corsi, I. (2019). Polystyrene nanoparticles affect the innate immune system of the Antarctic sea urchin Sterechinus neumayeri. Polar Biology, 42(4), 743–757. https://doi.org/10.1007/s00300-019-02468-6

Bernatsky, S., Fournier, M., Pineau, C. A., Clarke, A. E., Vinet, E., & Smargiassi, A. (2011). Associations between ambient fine particulate levels and disease activity in patients with systemic lupus erythematosus (SLE). Environmental Health Perspectives, 119(1), 45–49. https://doi.org/10.1289/ehp.1002123

Boldyreva, L. V., Morozova, M. V., Saydakova, S. S., & Kozhevnikova, E. N. (2021). Fat of the gut: Epithelial phospholipids in inflammatory bowel diseases. In International Journal of Molecular Sciences (Vol. 22, Issue 21). MDPI. https://doi.org/10.3390/ijms222111682

Bolsoni-Lopes, A., & Alonso-Vale, M. I. C. (2015). Lipolysis and lipases in white adipose tissue – An update. In Archives of Endocrinology and Metabolism (Vol. 59, Issue 4, pp. 335–342). Sociedade Brasileira de Endocrinologia e Metabologia. https://doi.org/10.1590/2359-3997000000067

Bonanomi, M., Salmistraro, N., Porro, D., Pinsino, A., Colangelo, A. M., & Gaglio, D. (2022). Polystyrene micro and nano-particles induce metabolic rewiring in normal human colon cells: A risk factor for human health. Chemosphere, 303. https://doi.org/10.1016/j.chemosphere.2022.134947

Boucher, J., & Billard, G. (2019). The challenges of measuring plastic pollution. http://journals.openedition.org/factsreports/5319

Brown, R. E., Sharma, A. M., Ardern, C. I., Mirdamadi, P., Mirdamadi, P., & Kuk, J. L. (2016). Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity. Obesity Research and Clinical Practice, 10(3), 243–255. https://doi.org/10.1016/j.orcp.2015.08.007

Calcaterra, V., & Zuccotti, G. (2022). Non-Communicable Diseases and Rare Diseases: A Current and Future Public Health Challenge within Pediatrics. In Children (Vol. 9, Issue 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/children9101491

Cao, J., Xu, R., Geng, Y., Xu, S., & Guo, M. (2023). Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. Environmental Pollution, 320. https://doi.org/10.1016/j.envpol.2023.121068

Chamorro-Garcia, R., Diaz-Castillo, C., Shoucri, B. M., Käch, H., Leavitt, R., Shioda, T., & Blumberg, B. (2017). Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01944-z

Chang, K. H., Hsu, C. C., Muo, C. H., Hsu, C. Y., Liu, H. C., Kao, C. H., Chen, C. Y., Chang, M. Y., & Hsu, Y. C. (2016). Air pollution exposure increases the risk of rheumatoid arthritis: A longitudinal and nationwide study. Environment International, 94, 495–499. https://doi.org/10.1016/j.envint.2016.06.008

Chaudhry R, & Varacallo M. (2023). Biochemistry, Glycolysis. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK482303/

Chen, Q., Gundlach, M., Yang, S., Jiang, J., Velki, M., Yin, D., & Hollert, H. (2017). Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Science of the Total Environment, 584–585, 1022–1031. https://doi.org/10.1016/j.scitotenv.2017.01.156

Chen, T., Jiang, H., He, Y., Shen, Y., Huang, Z., Gu, Y., Wei, Q., Zhao, J., & Chen, X. (2024). Nanoplastics and chrysene pollution: Potential new triggers for nonalcoholic fatty liver disease and hepatitis, insights from juvenile Siniperca chuatsi. Science of the Total Environment, 922. https://doi.org/10.1016/j.scitotenv.2024.171125

Cheng, W., Li, X., Zhou, Y., Yu, H., Xie, Y., Guo, H., Wang, H., Li, Y., Feng, Y., & Wang, Y. (2022). Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Science of the Total Environment, 806. https://doi.org/10.1016/j.scitotenv.2021.150328

Cortés, C., Domenech, J., Salazar, M., Pastor, S., Marcos, R., & Hernández, A. (2020). Nanoplastics as a potential environmental health factor: effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ. Sci.: Nano, 7(1), 272–285. https://doi.org/10.1039/C9EN00523D

Daynes, R. A., & Jones, D. C. (2002). Emerging roles of PPARs in inflammation and immunity. In Nature Reviews Immunology (Vol. 2, Issue 10, pp. 748–759). https://doi.org/10.1038/nri912

Dekkers, S., Krystek, P., Peters, R. J. B., Lankveld, D. P. K., Bokkers, B. G. H., Van Hoeven-Arentzen, P. H., Bouwmeester, H., & Oomen, A. G. (2011). Presence and risks of nanosilica in food products. Nanotoxicology, 5(3), 393–405. https://doi.org/10.3109/17435390.2010.519836

Del Piano, F., Lama, A., Piccolo, G., Addeo, N. F., Iaccarino, D., Fusco, G., Riccio, L., De Biase, D., Mattace Raso, G., Meli, R., & Ferrante, M. C. (2023). Impact of polystyrene microplastic exposure on gilthead seabream (Sparus aurata Linnaeus, 1758): Differential inflammatory and immune response between anterior and posterior intestine. Science of the Total Environment, 879. https://doi.org/10.1016/j.scitotenv.2023.163201

Deloid, G. M., Cao, X., Coreas, R., Bitounis, D., Singh, D., Zhong, W., & Demokritou, P. (2022). Incineration-Generated Polyethylene Micro-Nanoplastics Increase Triglyceride Lipolysis and Absorption in an in Vitro Small Intestinal Epithelium Model. Environmental Science and Technology, 56(17), 12288–12297. https://doi.org/10.1021/acs.est.2c03195

Deloid, G. M., Sohal, I. S., Lorente, L. R., Molina, R. M., Pyrgiotakis, G., Stevanovic, A., Zhang, R., McClements, D. J., Geitner, N. K., Bousfield, D. W., Ng, K. W., Loo, S. C. J., Bell, D. C., Brain, J., & Demokritou, P. (2018). Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose. ACS Nano, 12(7), 6469–6479. https://doi.org/10.1021/acsnano.8b03074

Delon, L., Gibson, R. J., Prestidge, C. A., & Thierry, B. (2022). Mechanisms of uptake and transport of particulate formulations in the small intestine. In Journal of Controlled Release (Vol. 343, pp. 584–599). Elsevier B.V. https://doi.org/10.1016/j.jconrel.2022.02.006

Deng, J., Zeng, X., Li, J., Luo, L., Yang, Y., & Luan, T. (2023). Single-cell transcriptomic analysis reveals heterogeneity of the patterns of responsive genes and cell communications in liver cell populations of zebrafish exposed to polystyrene nanoplastics. Science of the Total Environment, 889. https://doi.org/10.1016/j.scitotenv.2023.164082

Deng, Y., Chen, H., Huang, Y., Wang, Q., Chen, W., & Chen, D. (2022). Polystyrene Microplastics Affect the Reproductive Performance of Male Mice and Lipid Homeostasis in Their Offspring. Environmental Science & Technology Letters, 9(9), 752–757. https://doi.org/10.1021/acs.estlett.2c00262

Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7. https://doi.org/10.1038/srep46687

Docter, D., Bantz, C., Westmeier, D., Galla, H. J., Wang, Q., Kirkpatrick, J. C., Nielsen, P., Maskos, M., & Stauber, R. H. (2014). The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles. Beilstein Journal of Nanotechnology, 5(1), 1380–1392. https://doi.org/10.3762/bjnano.5.151

Domenech, J., de Britto, M., Velázquez, A., Pastor, S., Hernández, A., Marcos, R., & Cortés, C. (2021). Long-term effects of polystyrene nanoplastics in human intestinal Caco-2 cells. Biomolecules, 11(10). https://doi.org/10.3390/biom11101442

Dong, C. Di, Chen, C. W., Chen, Y. C., Chen, H. H., Lee, J. S., & Lin, C. H. (2020). Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. Journal of Hazardous Materials, 385. https://doi.org/10.1016/j.jhazmat.2019.121575

Du, F., Cai, H., Zhang, Q., Chen, Q., & Shi, H. (2020). Microplastics in take-out food containers. Journal of Hazardous Materials, 399. https://doi.org/10.1016/j.jhazmat.2020.122969

Duan, J., Li, Y., Gao, J., Cao, R., Shang, E., & Zhang, W. (2022). ROS-mediated photoaging pathways of nano- and micro-plastic particles under UV irradiation. Water Research, 216. https://doi.org/10.1016/j.watres.2022.118320

Duan, J., Liang, S., Feng, L., Yu, Y., & Sun, Z. (2018). Silica nanoparticles trigger hepatic lipid-metabolism disorder in vivo and in vitro. International Journal of Nanomedicine, 13, 7303–7318. https://doi.org/10.2147/IJN.S185348

Edelblum, K. L., & Turner, J. R. (2015). Epithelial Cells: Structure, Transport, and Barrier Function. Structure, Transport, and Barrier Function. In Mucosal Immunology: Fourth Edition (Vols. 1–2, pp. 187–210). Elsevier Inc. https://doi.org/10.1016/B978-0-12-415847-4.00012-4

Egusquiza, R. J., & Blumberg, B. (2020). Environmental obesogens and their impact on susceptibility to obesity: New mechanisms and chemicals. In Endocrinology (United States) (Vol. 161, Issue 3). Endocrine Society. https://doi.org/10.1210/endocr/bqaa024

Fang, D. L., Wan, Y., Shen, W., Cao, J., Sun, Z. X., Yu, H. H., Zhang, Q., Cheng, W. H., Chen, J., & Ning, B. (2013). Endoplasmic reticulum stress leads to lipid accumulation through upregulation of SREBP-1c in normal hepatic and hepatoma cells. Molecular and Cellular Biochemistry, 381(1–2), 127–137. https://doi.org/10.1007/s11010-013-1694-7

Feingold, K. R., Shigenaga, J. K., Kazemi, M. R., McDonald, C. M., Patzek, S. M., Cross, A. S., Moser, A., & Grunfeld, C. (2012). Mechanisms of triglyceride accumulation in activated macrophages. Journal of Leukocyte Biology, 92(4), 829–839. https://doi.org/10.1189/jlb.1111537

Feng, Y., Tu, C., Li, R., Wu, D., Yang, J., Xia, Y., Peijnenburg, W. J. G. M., & Luo, Y. (2023). A systematic review of the impacts of exposure to micro- and nano-plastics on human tissue accumulation and health. In Eco-Environment and Health (Vol. 2, Issue 4, pp. 195–207). Elsevier B.V. https://doi.org/10.1016/j.eehl.2023.08.002

Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. www.pnas.org/cgi/content/full/

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. https://www.science.org

Goodman, K. E., Hua, T., & Sang, Q. X. A. (2022). Effects of Polystyrene Microplastics on Human Kidney and Liver Cell Morphology, Cellular Proliferation, and Metabolism. ACS Omega, 7(38), 34136–34153. https://doi.org/10.1021/acsomega.2c03453

Greven, A.-C., Merk, T., Karagöz, F., Mohr, K., Klapper, M., Jovanović, B., & Palić, D. (2016). Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 35(12), 3093–3100. https://doi.org/https://doi.org/10.1002/etc.3501

Guedes-Alonso, R., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2021). Analysis of microplastics-sorbed endocrine-disrupting compounds in pellets and microplastic fragments from beaches. Microchemical Journal, 171. https://doi.org/10.1016/j.microc.2021.106834

Halimu, G., Zhang, Q., Liu, L., Zhang, Z., Wang, X., Gu, W., Zhang, B., Dai, Y., Zhang, H., Zhang, C., & Xu, M. (2022). Toxic effects of nanoplastics with different sizes and surface charges on epithelial-to-mesenchymal transition in A549 cells and the potential toxicological mechanism. Journal of Hazardous Materials, 430. https://doi.org/10.1016/j.jhazmat.2022.128485

Hall, K. (2000). Impacts of marine debris and oil: economic and social costs to coastal communities. Kommunenes Internasjonale Miljøorganisasjon.

Han, M., Bushong, E. A., Segawa, M., Tiard, A., Wong, A., Brady, M. R., Momcilovic, M., Wolf, D. M., Zhang, R., Petcherski, A., Madany, M., Xu, S., Lee, J. T., Poyurovsky, M. V., Olszewski, K., Holloway, T., Gomez, A., John, M. S., Dubinett, S. M., … Shackelford, D. B. (2023). Spatial mapping of mitochondrial networks and bioenergetics in lung cancer. Nature, 615(7953), 712–719. https://doi.org/10.1038/s41586-023-05793-3

He, Y. J., Qin, Y., Zhang, T. L., Zhu, Y. Y., Wang, Z. J., Zhou, Z. S., Xie, T. Z., & Luo, X. D. (2021). Migration of (non-) intentionally added substances and microplastics from microwavable plastic food containers. Journal of Hazardous Materials, 417. https://doi.org/10.1016/j.jhazmat.2021.126074

Henne, M. (2019). And three’s a party: lysosomes, lipid droplets, and the ER in lipid trafficking and cell homeostasis. In Current Opinion in Cell Biology (Vol. 59, pp. 40–49). Elsevier Ltd. https://doi.org/10.1016/j.ceb.2019.02.011

Hernandez, L. M., Yousefi, N., & Tufenkji, N. (2017). Are there nanoplastics in your personal care products? Environmental Science and Technology Letters, 4(7), 280–285. https://doi.org/10.1021/acs.estlett.7b00187

Hillyer, J. F., & Albrecht, R. M. (2001). Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. Journal of Pharmaceutical Sciences, 90(12), 1927–1936. https://doi.org/https://doi.org/10.1002/jps.1143

Hollóczki, O., & Gehrke, S. (2020). Can Nanoplastics Alter Cell Membranes? Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry, 21(1), 9–12. https://doi.org/10.1002/cphc.201900481

Hu, M., & Palić, D. (2020). Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. In Redox Biology (Vol. 37). Elsevier B.V. https://doi.org/10.1016/j.redox.2020.101620

Huang, Y. L., Morales-Rosado, J., Ray, J., Myers, T. G., Kho, T., Lu, M., & Munford, R. S. (2014). Toll-like receptor agonists promote prolonged triglyceride storage in macrophages. Journal of Biological Chemistry, 289(5), 3001–3012. https://doi.org/10.1074/jbc.M113.524587

Hurst, C. H., & Waxman, D. J. (2003). Activation of PPARα and PPARγ by environmental phthalate monoesters. In Toxicological Sciences (Vol. 74, Issue 2, pp. 297–308). https://doi.org/10.1093/toxsci/kfg145

Im, S. S., Yousef, L., Blaschitz, C., Liu, J. Z., Edwards, R. A., Young, S. G., Raffatellu, M., & Osborne, T. F. (2011). Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metabolism, 13(5), 540–549. https://doi.org/10.1016/j.cmet.2011.04.001

Jia, R., Han, J., Liu, X., Li, K., Lai, W., Bian, L., Yan, J., & Xi, Z. (2023). Exposure to Polypropylene Microplastics via Oral Ingestion Induces Colonic Apoptosis and Intestinal Barrier Damage through Oxidative Stress and Inflammation in Mice. Toxics, 11(2). https://doi.org/10.3390/toxics11020127

Jiang, M., Wang, B., Ye, R., Yu, N., Xie, Z., Hua, Y., Zhou, R., Tian, B., & Dai, S. (2022). Evidence and Impacts of Nanoplastic Accumulation on Crop Grains. Advanced Science, 9(33). https://doi.org/10.1002/advs.202202336

Jin, H., Ma, T., Sha, X., Liu, Z., Zhou, Y., Meng, X., Chen, Y., Han, X., & Ding, J. (2021). Polystyrene microplastics induced male reproductive toxicity in mice. Journal of Hazardous Materials, 401. https://doi.org/10.1016/j.jhazmat.2020.123430

Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Science of the Total Environment, 649, 308–317. https://doi.org/10.1016/j.scitotenv.2018.08.353

Jin, Y., Xia, J., Pan, Z., Yang, J., Wang, W., & Fu, Z. (2018). Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environmental Pollution, 235, 322–329. https://doi.org/10.1016/j.envpol.2017.12.088

Kannan, K., & Vimalkumar, K. (2021). A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. In Frontiers in Endocrinology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fendo.2021.724989

Kazemi, M., Faisal Kabir, S., & Fini, E. H. (2021). State of the art in recycling waste thermoplastics and thermosets and their applications in construction. In Resources, Conservation and Recycling (Vol. 174). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2021.105776

Kim, E. H., Choi, S., Kim, D., Park, H. J., Bian, Y., Choi, S. H., Chung, H. Y., & Bae, O. N. (2022). Amine-modified nanoplastics promote the procoagulant activation of isolated human red blood cells and thrombus formation in rats. Particle and Fibre Toxicology, 19(1). https://doi.org/10.1186/s12989-022-00500-y

Kim, S. J., Long, N. P., Jung, C. W., Anh, N. H., Min, J. E., Kim, H. M., & Kwon, S. W. (2021). Exposure to nano-polystyrene induces metabolic alteration in lipid homeostasis in Caco-2. Environmental Science: Nano, 8(5), 1408–1424. https://doi.org/10.1039/D1EN00145K

Koelmans, B. , Pahl, S., Backhaus, T., Bessa, F., Van Calster, G., Contzen, N., Cronin, R., Galloway, T., Hart, A., Henderson, L. , Kalcikova, G., Kelly, F., Kolodziejczyk, B., Marku, E., Poortinga, W., Rillig, M., Van Sebille, E., Steg, L., Steinhorst, J., … Wright, S. (2019). A scientific perspective on microplastics in nature and society: Evidence review report. https://doi.org/https://doi.org/10.26356/microplastics

Kreyling, W. G., Hirn, S., Möller, W., Schleh, C., Wenk, A., Celik, G., Lipka, J., Schäffler, M., Haberl, N., Johnston, B. D., Sperling, R., Schmid, G., Simon, U., Parak, W. J., & Semmler-Behnke, M. (2014). Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano, 8(1), 222–233. https://doi.org/10.1021/nn403256v

Lai, H., Liu, X., & Qu, M. (2022). Nanoplastics and Human Health: Hazard Identification and Biointerface. In Nanomaterials (Vol. 12, Issue 8). MDPI. https://doi.org/10.3390/nano12081298

Laplante, M., & Sabatini, D. M. (2009). An Emerging Role of mTOR in Lipid Biosynthesis. In Current Biology (Vol. 19, Issue 22). https://doi.org/10.1016/j.cub.2009.09.058

Lechthaler, S., Waldschläger, K., Stauch, G., & Schüttrumpf, H. (2020). The way of macroplastic through the environment. In Environments - MDPI (Vol. 7, Issue 10, pp. 1–30). MDPI AG. https://doi.org/10.3390/environments7100073

Lee, C. W., Hsu, L. F., Wu, I. L., Wang, Y. L., Chen, W. C., Liu, Y. J., Yang, L. T., Tan, C. L., Luo, Y. H., Wang, C. C., Chiu, H. W., Yang, T. C. K., Lin, Y. Y., Chang, H. A., Chiang, Y. C., Chen, C. H., Lee, M. H., Peng, K. T., & Huang, C. C. Y. (2022). Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. Journal of Hazardous Materials, 430. https://doi.org/10.1016/j.jhazmat.2022.128431

Lee, H. S., Amarakoon, D., Wei, C. i., Choi, K. Y., Smolensky, D., & Lee, S. H. (2021). Adverse effect of polystyrene microplastics (PS-MPs) on tube formation and viability of human umbilical vein endothelial cells. Food and Chemical Toxicology, 154. https://doi.org/10.1016/j.fct.2021.112356

Leslie, H. A., van Velzen, M. J. M., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163. https://doi.org/10.1016/j.envint.2022.107199

Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Human gut microbes associated with obesity. Nature, 444(7122), 1022–1023. https://doi.org/10.1038/4441022a

Li, B., Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., Wu, Y., Zhao, H., Ji, X., & Zhang, Y. (2020). Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere, 244. https://doi.org/10.1016/j.chemosphere.2019.125492

Li, L.-C., Varghese, Z., Moorhead, J. F., Lee, C.-T., Chen, J.-B., & Ruan, X. Z. (2013). Cross-talk between TLR4-MyD88-NF-B and SCAP-SREBP2 pathways mediates macrophage foam cell formation. Am J Physiol Heart Circ Physiol, 304, 874–884. https://doi.org/10.1152/ajpheart.00096.2012.-Myeloid

Li, Y., Ye, Y., Rihan, N., Zhu, B., Jiang, Q., Liu, X., Zhao, Y., & Che, X. (2024). Polystyrene nanoplastics induce lipid metabolism disorder and alter fatty acid composition in the hepatopancreas of Pacific whiteleg shrimp (Litopenaeus vannamei). Science of the Total Environment, 906. https://doi.org/10.1016/j.scitotenv.2023.167616

Liao, Y. liang, & Yang, J. yan. (2020). Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Science of the Total Environment, 703. https://doi.org/10.1016/j.scitotenv.2019.134805

Lim, S. L., Ng, C. T., Zou, L., Lu, Y., Chen, J., Bay, B. H., Shen, H. M., & Ong, C. N. (2019). Targeted metabolomics reveals differential biological effects of nanoplastics and nanoZnO in human lung cells. Nanotoxicology, 13(8), 1117–1132. https://doi.org/10.1080/17435390.2019.1640913

Liu, L., Xu, K., Zhang, B., Ye, Y., Zhang, Q., & Jiang, W. (2021). Cellular internalization and release of polystyrene microplastics and nanoplastics. Science of the Total Environment, 779. https://doi.org/10.1016/j.scitotenv.2021.146523

Liu, L., Zheng, H., Luan, L., Luo, X., Wang, X., Lu, H., Li, Y., Wen, L., Li, F., & Zhao, J. (2021). Functionalized polystyrene nanoplastic-induced energy homeostasis imbalance and the immunomodulation dysfunction of marine clams (Meretrix meretrix) at environmentally relevant concentrations. Environmental Science: Nano, 8(7), 2030–2048. https://doi.org/10.1039/d1en00212k

Liu, Z., Zhuan, Q., Zhang, L., Meng, L., Fu, X., & Hou, Y. (2022). Polystyrene microplastics induced female reproductive toxicity in mice. Journal of Hazardous Materials, 424. https://doi.org/10.1016/j.jhazmat.2021.127629

Llorca, M., & Farré, M. (2021). Current Insights into Potential Effects of Micro-Nanoplastics on Human Health by in-vitro Tests. In Frontiers in Toxicology (Vol. 3). Frontiers Media S.A. https://doi.org/10.3389/ftox.2021.752140

Luo, Y., Li, L., Feng, Y., Li, R., Yang, J., Peijnenburg, W. J. G. M., & Tu, C. (2022). Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology, 17(4), 424–431. https://doi.org/10.1038/s41565-021-01063-3

Ma, Y., Nenkov, M., Chen, Y., Press, A. T., Kaemmerer, E., & Gassler, N. (2021). Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis. World Journal of Hepatology, 13(11), 1512–1533. https://doi.org/10.4254/wjh.v13.i11.1512

Maradonna, F., & Carnevali, O. (2018). Lipid metabolism alteration by endocrine disruptors in animal models: An overview. In Frontiers in Endocrinology (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fendo.2018.00654

Marana, M. H., Poulsen, R., Thormar, E. A., Clausen, C. G., Thit, A., Mathiessen, H., Jaafar, R., Korbut, R., Hansen, A. M. B., Hansen, M., Limborg, M. T., Syberg, K., & von Gersdorff Jørgensen, L. (2022). Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish: A full generation multi-omics study. Journal of Hazardous Materials, 424. https://doi.org/10.1016/j.jhazmat.2021.127705

Massey, J. B., Bick, D. H., & Pownall, H. J. (1997). Spontaneous transfer of monoacyl amphiphiles between lipid and protein surfaces. Biophysical Journal, 72(4), 1732–1743. https://doi.org/10.1016/S0006-3495(97)78819-2

Matsumoto, M., Hirata-Koizumi, M., & Ema, M. (2008). Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction. Regulatory Toxicology and Pharmacology, 50(1), 37–49. https://doi.org/10.1016/j.yrtph.2007.09.004

McCubrey, J. A., LaHair, M. M., & Franklin, R. A. (2006). Reactive Oxygen Species-Induced Activation of the MAP Kinase Signaling Pathways. Antioxidants & Redox Signaling, 8(9–10), 1775–1789. https://doi.org/10.1089/ars.2006.8.1775

McMahon, C. R., Holley, D., & Robinson, S. (1999). The diet of itinerant male Hooker’s sea lions, Phocarctos hookeri, at sub-Antarctic Macquarie Island. Wildlife Research, 26(6), 839–846. https://doi.org/10.1071/WR98079

Meng, X., Zhang, J., Wang, W., Gonzalez-Gil, G., Vrouwenvelder, J. S., & Li, Z. (2022). Effects of nano- and microplastics on kidney: Physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere, 288. https://doi.org/10.1016/j.chemosphere.2021.132631

Mitrano, D. M., Wick, P., & Nowack, B. (2021). Placing nanoplastics in the context of global plastic pollution. In Nature Nanotechnology (Vol. 16, Issue 5, pp. 491–500). Nature Research. https://doi.org/10.1038/s41565-021-00888-2

Mohamed Nor, N. H., Kooi, M., Diepens, N. J., & Koelmans, A. A. (2021). Lifetime Accumulation of Microplastic in Children and Adults. Environmental Science and Technology, 55(8), 5084–5096. https://doi.org/10.1021/acs.est.0c07384

Morales, P. E., Bucarey, J. L., & Espinosa, A. (2017). Muscle lipid metabolism: Role of lipid droplets and perilipins. In Journal of Diabetes Research (Vol. 2017). Hindawi Limited. https://doi.org/10.1155/2017/1789395

Mortensen, N. P., Fennell, T. R., & Johnson, L. M. (2021). Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources. In NanoImpact (Vol. 21). Elsevier B.V. https://doi.org/10.1016/j.impact.2021.100302

Mortensen, N. P., Hurst, G. B., Wang, W., Foster, C. M., Nallathamby, P. D., & Retterer, S. T. (2013). Dynamic development of the protein corona on silica nanoparticles: Composition and role in toxicity. Nanoscale, 5(14), 6372–6380. https://doi.org/10.1039/c3nr33280b

Nicholls, D. G. (2021). Mitochondrial proton leaks and uncoupling proteins. In Biochimica et Biophysica Acta - Bioenergetics (Vol. 1862, Issue 7). Elsevier B.V. https://doi.org/10.1016/j.bbabio.2021.148428

OECD. (2022). Global Plastics Outlook: Policy Scenarios to 2060 . OECD Publications. https://www.oecd.org/newsroom/global-plastic-waste-set-to-almost-triple…

Oishi, Y., Spann, N. J., Link, V. M., Muse, E. D., Strid, T., Edillor, C., Kolar, M. J., Matsuzaka, T., Hayakawa, S., Tao, J., Kaikkonen, M. U., Carlin, A. F., Lam, M. T., Manabe, I., Shimano, H., Saghatelian, A., & Glass, C. K. (2017). SREBP1 Contributes to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabolism. Cell Metabolism, 25(2), 412–427. https://doi.org/10.1016/j.cmet.2016.11.009

Oliveri Conti, G., Ferrante, M., Banni, M., Favara, C., Nicolosi, I., Cristaldi, A., Fiore, M., & Zuccarello, P. (2020). Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, 187. https://doi.org/10.1016/j.envres.2020.109677

Park, E. J., Han, J. S., Park, E. J., Seong, E., Lee, G. H., Kim, D. W., Son, H. Y., Han, H. Y., & Lee, B. S. (2020). Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicology Letters, 324, 75–85. https://doi.org/10.1016/j.toxlet.2020.01.008

Peng, M., Vercauteren, M., Grootaert, C., Rajkovic, A., Boon, N., Janssen, C., & Asselman, J. (2023). Cellular and bioenergetic effects of polystyrene microplastic in function of cell type, differentiation status and post-exposure time. Environmental Pollution, 337. https://doi.org/10.1016/j.envpol.2023.122550

Petan, T., Jarc, E., & Jusović, M. (2018). Lipid droplets in cancer: Guardians of fat in a stressful world. In Molecules (Vol. 23, Issue 8). MDPI AG. https://doi.org/10.3390/molecules23081941

Pironti, C., Notarstefano, V., Ricciardi, M., Motta, O., Giorgini, E., & Montano, L. (2023). First Evidence of Microplastics in Human Urine, a Preliminary Study of Intake in the Human Body. Toxics, 11(1). https://doi.org/10.3390/toxics11010040

Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. In Science of the Total Environment (Vol. 702). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.134455

Qu, M., Liu, Y., Xu, K., & Wang, D. (2019). Activation of p38 MAPK Signaling-Mediated Endoplasmic Reticulum Unfolded Protein Response by Nanopolystyrene Particles. Advanced Biosystems, 3(4), 1800325. https://doi.org/https://doi.org/10.1002/adbi.201800325

Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., D’Amore, E., Rinaldo, D., Matta, M., & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. In Environment International (Vol. 146). Elsevier Ltd. https://doi.org/10.1016/j.envint.2020.106274

Ramsperger, A. F. R. M., Narayana, V. K. B., Gross, W., Mohanraj, J., Thelakkat, M., Greiner, A., Schmalz, H., Kress, H., & Laforsch, C. (2020). Environmental exposure enhances the internalization of microplastic particles into cells. https://www.science.org

Regoli, F., & Winston, G. W. (1999). Quantification of Total Oxidant Scavenging Capacity of Antioxidants for Peroxynitrite, Peroxyl Radicals, and Hydroxyl Radicals Quantification of Total Oxidant Scavenging Capacity of Anti-oxidants for Peroxynitrite, Peroxyl Radicals, and Hydroxyl Radi-cals. In Toxicol. Appl. Phar-macol (Vol. 156). http://www.idealibrary.com

Reth, M. (2002). Hydrogen peroxide as second messenger in lymphocyte activation. Nature Immunology, 3(12), 1129–1134. https://doi.org/10.1038/ni1202-1129

Ribeiro, F., Garcia, A. R., Pereira, B. P., Fonseca, M., Mestre, N. C., Fonseca, T. G., Ilharco, L. M., & Bebianno, M. J. (2017). Microplastics effects in Scrobicularia plana. Marine Pollution Bulletin, 122(1–2), 379–391. https://doi.org/10.1016/j.marpolbul.2017.06.078

Rieux, A. Des, Ragnarsson, E. G. E., Gullberg, E., Préat, V., Schneider, Y. J., & Artursson, P. (2005). Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. European Journal of Pharmaceutical Sciences, 25(4–5), 455–465. https://doi.org/10.1016/j.ejps.2005.04.015

Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature. In Reproductive Toxicology (Vol. 42, pp. 132–155). https://doi.org/10.1016/j.reprotox.2013.08.008

Rodriguez Sawicki, L., Bottasso Arias, N. M., Scaglia, N., Falomir Lockhart, L. J., Franchini, G. R., Storch, J., & Córsico, B. (2017). FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(12), 1587–1594. https://doi.org/10.1016/j.bbalip.2017.09.006

Rose, S., Frye, R. E., Slattery, J., Wynne, R., Tippett, M., Pavliv, O., Melnyk, S., & James, S. J. (2014). Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0085436

Santana, M. F. M., Moreira, F. T., & Turra, A. (2017). Trophic transference of microplastics under a low exposure scenario: Insights on the likelihood of particle cascading along marine food-webs. Marine Pollution Bulletin, 121(1–2), 154–159. https://doi.org/10.1016/j.marpolbul.2017.05.061

Santillo, D., Miller, K., & Johnston, P. (2017). Microplastics as contaminants in commercially important seafood species. In Integrated Environmental Assessment and Management (Vol. 13, Issue 3, pp. 516–521). Wiley-Blackwell. https://doi.org/10.1002/ieam.1909

Schaffer’, J. E., & Lodisht, H. F. (1994). Expression Cloning and Characterization of a Novel Adipocyte Long Chain Fatty Acid Transport Protein. In Cell (Vol. 79).

Schneider, M., Stracke, F., Hansen, S., & Schaefer, U. F. (2009). Nanoparticles and their interactions with the dermal barrier. Dermato-Endocrinology, 1(4), 197–206. https://doi.org/10.4161/derm.1.4.9501

Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of Various Microplastics in Human Stool. Annals of Internal Medicine, 171(7), 453–457. https://doi.org/10.7326/M19-0618

Schwarz, D. S., & Blower, M. D. (2016). The endoplasmic reticulum: Structure, function and response to cellular signaling. In Cellular and Molecular Life Sciences (Vol. 73, Issue 1, pp. 79–94). Birkhauser Verlag AG. https://doi.org/10.1007/s00018-015-2052-6

Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., & Palanisami, T. (2021). Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk assessment. Journal of Hazardous Materials, 404. https://doi.org/10.1016/j.jhazmat.2020.124004

Serra, N. D., & Sundaram, M. V. (2021). Transcytosis in the development and morphogenesis of epithelial tissues. The EMBO Journal, 40(9). https://doi.org/10.15252/embj.2020106163

Shen, R., Yang, K., Cheng, X., Guo, C., Xing, X., Sun, H., Liu, D., Liu, X., & Wang, D. (2022). Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/STING pathway. Environmental Pollution, 300. https://doi.org/10.1016/j.envpol.2022.118986

Shi, W., Cao, Y., Chai, X., Zhao, Q., Geng, Y., Liu, D., & Tian, S. (2022). Potential health risks of the interaction of microplastics and lung surfactant. Journal of Hazardous Materials, 429. https://doi.org/10.1016/j.jhazmat.2021.128109

Shimano, H. (2009). SREBPs: Physiology and pathophysiology of the SREBP family. In FEBS Journal (Vol. 276, Issue 3, pp. 616–621). https://doi.org/10.1111/j.1742-4658.2008.06806.x

Smyth, S. H., Feldhaus, S., Schumacher, U., & Carr, K. E. (2008). Uptake of inert microparticles in normal and immune deficient mice. International Journal of Pharmaceutics, 346(1–2), 109–118. https://doi.org/10.1016/j.ijpharm.2007.06.049

Song, W., Popp, L., Yang, J., Kumar, A., Gangoli, V. S., & Segatori, L. (2015). The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge. Journal of Nanobiotechnology, 13(1). https://doi.org/10.1186/s12951-015-0149-6

Song, Z., Xiaoli, A. M., & Yang, F. (2018). Regulation and metabolic significance of De Novo lipogenesis in adipose tissues. In Nutrients (Vol. 10, Issue 10). MDPI AG. https://doi.org/10.3390/nu10101383

Sternschuss, G., Ostergard, D. R., & Patel, H. (2012). Post-implantation alterations of polypropylene in the human. In Journal of Urology (Vol. 188, Issue 1, pp. 27–32). https://doi.org/10.1016/j.juro.2012.02.2559

Stienstra, R., Duval, C., Müller, M., & Kersten, S. (2007). PPARs, obesity, and inflammation. In PPAR Research. https://doi.org/10.1155/2007/95974

Stock, V., Laurisch, C., Franke, J., Dönmez, M. H., Voss, L., Böhmert, L., Braeuning, A., & Sieg, H. (2021). Uptake and cellular effects of PE, PP, PET and PVC microplastic particles. Toxicology in Vitro, 70. https://doi.org/10.1016/j.tiv.2020.105021

Sui, A., Yao, C., Chen, Y., Li, Y., Yu, S., Qu, J., Wei, H., Tang, J., & Chen, G. (2023). Polystyrene nanoplastics inhibit StAR expression by activating HIF-1α via ERK1/2 MAPK and AKT pathways in TM3 Leydig cells and testicular tissues of mice. Food and Chemical Toxicology, 173. https://doi.org/10.1016/j.fct.2023.113634

Takeuchi, K., & Reue, K. (2009). AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab, 296, 1195–1209. https://doi.org/10.1152/ajpendo.90958.2008.-Triacylglyc

Tang, Y., Rong, J., Guan, X., Zha, S., Shi, W., Han, Y., Du, X., Wu, F., Huang, W., & Liu, G. (2020). Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species. Environmental Pollution, 258. https://doi.org/10.1016/j.envpol.2019.113845

Tanvir, A., Faruq, M., & Yusof, N. A. (2014). Polystyrene: synthesis, characteristics and applications (C. Lynwood, Ed.). Nova publisher.

Topete, M. V., Andrade, S., Bernardino, R. L., Guimarães, M., Pereira, A. M., Oliveira, S. B., Costa, M. M., Nora, M., Monteiro, M. P., & Pereira, S. S. (2023). Visceral Adipose Tissue Bioenergetics Varies According to Individuals’ Obesity Class. International Journal of Molecular Sciences, 24(2). https://doi.org/10.3390/ijms24021679

Varga, T., Czimmerer, Z., & Nagy, L. (2011). PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. In Biochimica et Biophysica Acta - Molecular Basis of Disease (Vol. 1812, Issue 8, pp. 1007–1022). https://doi.org/10.1016/j.bbadis.2011.02.014

Vianello, A., Jensen, R. L., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45054-w

Vineis, P., Robinson, O., Chadeau-Hyam, M., Dehghan, A., Mudway, I., & Dagnino, S. (2020). What is new in the exposome? In Environment International (Vol. 143). Elsevier Ltd. https://doi.org/10.1016/j.envint.2020.105887

Visalli, G., Facciolà, A., Ciarello, M. P., De Marco, G., Maisano, M., & Di Pietro, A. (2021). Acute and sub‐chronic effects of microplastics (3 and 10 μm) on the human intestinal cells ht‐29. International Journal of Environmental Research and Public Health, 18(11). https://doi.org/10.3390/ijerph18115833

Vogt, A., Combadiere, B., Hadam, S., Stieler, K. M., Lademann, J., Schaefer, H., Autran, B., Sterry, W., & Blume-Peytavi, U. (2006). 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. Journal of Investigative Dermatology, 126(6), 1316–1322. https://doi.org/10.1038/sj.jid.5700226

Völker, J., Ashcroft, F., Vedøy, Å., Zimmermann, L., & Wagner, M. (2022). Adipogenic Activity of Chemicals Used in Plastic Consumer Products. Environmental Science and Technology, 56(4), 2487–2496. https://doi.org/10.1021/acs.est.1c06316

Walczak, A. P., Kramer, E., Hendriksen, P. J. M., Tromp, P., Helsper, J. P. F. G., Van Der Zande, M., Rietjens, I. M. C. M., & Bouwmeester, H. (2015). Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology, 9(4), 453–461. https://doi.org/10.3109/17435390.2014.944599

Wang, F., Kohan, A. B., Lo, C. M., Liu, M., Howles, P., & Tso, P. (2015). Apolipoprotein A-IV: A protein intimately involved in metabolism. In Journal of Lipid Research (Vol. 56, Issue 8, pp. 1403–1418). American Society for Biochemistry and Molecular Biology Inc. https://doi.org/10.1194/jlr.R052753

Wang, F., Yu, L., Monopoli, M. P., Sandin, P., Mahon, E., Salvati, A., & Dawson, K. A. (2013). The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 9(8), 1159–1168. https://doi.org/10.1016/j.nano.2013.04.010

Wang, H., Shi, X., Gao, Y., Zhang, X., Zhao, H., Wang, L., Zhang, X., & Chen, R. (2022). Polystyrene nanoplastics induce profound metabolic shift in human cells as revealed by integrated proteomic and metabolomic analysis. Environment International, 166. https://doi.org/10.1016/j.envint.2022.107349

Wang, S., Han, Q., Wei, Z., Wang, Y., Xie, J., & Chen, M. (2022). Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing the level of acetylcholine. Food and Chemical Toxicology, 162. https://doi.org/10.1016/j.fct.2022.112904

Wang, Y. L., Lee, Y. H., Hsu, Y. H., Chiu, I. J., Huang, C. C. Y., Huang, C. C., Chia, Z. C., Lee, C. P., Lin, Y. F., & Chiu, H. W. (2021). The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells hk-2 and male c57bl/6 mice. Environmental Health Perspectives, 129(5). https://doi.org/10.1289/EHP7612

Wang, Y., Wang, S., Xu, T., Cui, W., Shi, X., & Xu, S. (2022). A new discovery of polystyrene microplastics toxicity: The injury difference on bladder epithelium of mice is correlated with the size of exposed particles. Science of the Total Environment, 821. https://doi.org/10.1016/j.scitotenv.2022.153413

Woldemar D’ambrières. (2019). Field Actions Science Reports Plastics recycling worldwide: current overview and desirable changes PLASTICS RECYCLING WORLDWIDE: CURRENT OVERVIEW AND DESIRABLE CHANGES • PLASTICS ECONOMY • RECYCLING • REGULATION • ECO-DESIGN. : http://journals.openedition.org/factsreports/5102

Woo, J. H., Seo, H. J., Lee, J. Y., Lee, I., Jeon, K., Kim, B., & Lee, K. (2023). Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-κB pathway due to mitochondrial damage. Particle and Fibre Toxicology, 20(1). https://doi.org/10.1186/s12989-022-00512-8

Wu, S., Wu, M., Tian, D., Qiu, L., & Li, T. (2020). Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells. Environmental Toxicology, 35(4), 495–506. https://doi.org/10.1002/tox.22885

Xu, D., Ma, Y., Han, X., & Chen, Y. (2021). Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. Journal of Hazardous Materials, 417. https://doi.org/10.1016/j.jhazmat.2021.126092

Xu, M., Halimu, G., Zhang, Q., Song, Y., Fu, X., Li, Y., Li, Y., & Zhang, H. (2019). Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Science of the Total Environment, 694. https://doi.org/10.1016/j.scitotenv.2019.133794

Yang, W., Jannatun, N., Zeng, Y., Liu, T., Zhang, G., Chen, C., & Li, Y. (2022). Impacts of microplastics on immunity. In Frontiers in Toxicology (Vol. 4). Frontiers Media S.A. https://doi.org/10.3389/ftox.2022.956885

Yang, Y., Bazhin, A. V., Werner, J., & Karakhanova, S. (2013). Reactive oxygen species in the immune system. International Reviews of Immunology, 32(3), 249–270. https://doi.org/10.3109/08830185.2012.755176

Yang, Y., Shao, H., Wu, Q., & Wang, D. (2020). Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans. Environmental Pollution, 256. https://doi.org/10.1016/j.envpol.2019.113439

Yang, Y., Wu, Q., & Wang, D. (2021). Dysregulation of G protein-coupled receptors in the intestine by nanoplastic exposure in Caenorhabditis elegans. Environmental Science: Nano, 8(4), 1019–1028. https://doi.org/10.1039/D0EN00991A

Yin, M., & O’Neill, L. A. J. (2021). The role of the electron transport chain in immunity. In FASEB Journal (Vol. 35, Issue 12). John Wiley and Sons Inc. https://doi.org/10.1096/fj.202101161R

Yoon, H., Shaw, J. L., Haigis, M. C., & Greka, A. (2021). Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. In Molecular Cell (Vol. 81, Issue 18, pp. 3708–3730). Cell Press. https://doi.org/10.1016/j.molcel.2021.08.027

You, M., & Arteel, G. E. (2019). Effect of ethanol on lipid metabolism70(2), 237–248. https://doi.org/https://doi.org/10.1016/j.jhep.2018.10.037

Zhang, G., Cao, G., Luo, R.-H., Song, Q., Zeng, Y., Liu, K., Qu, J., Lin, X., Liu, F.-L., Wang, G., Li, H., Li, L., Zheng, Y.-T., Boraschi, D., Wu, L., Chang, Y.-Z., & Li, Y. (2022). Microplastics interact with SARS-CoV-2 and facilitate host cell infection. Environmental Science: Nano, 9(8), 2653–2664. https://doi.org/10.1039/D2EN00019A

Zhang, W., Li, J. ya, Wei, X. chen, Wang, Q., Yang, J. yang, Hou, H., Du, Z. wei, & Wu, X. an. (2021). Effects of dibutyl phthalate on lipid metabolism in liver and hepatocytes based on PPARα/SREBP-1c/FAS/GPAT/AMPK signal pathway. Food and Chemical Toxicology, 149. https://doi.org/10.1016/j.fct.2021.112029

Zhang, Z., Xu, M., Wang, L., Gu, W., Li, X., Han, Z., Fu, X., Wang, X., Li, X., & Su, Z. (2023). Continuous oral exposure to micro- and nanoplastics induced gut microbiota dysbiosis, intestinal barrier and immune dysfunction in adult mice. Environment International, 182. https://doi.org/10.1016/j.envint.2023.108353

Zhao, Y., Bao, Z., Wan, Z., Fu, Z., & Jin, Y. (2020). Polystyrene microplastic exposure disturbs hepatic glycolipid metabolism at the physiological, biochemical, and transcriptomic levels in adult zebrafish. Science of the Total Environment, 710. https://doi.org/10.1016/j.scitotenv.2019.136279

Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2006). Mitochondrial ROS-induced ROS release: An update and review. In Biochimica et Biophysica Acta - Bioenergetics (Vol. 1757, Issues 5–6, pp. 509–517). https://doi.org/10.1016/j.bbabio.2006.04.029

Download scriptie (1.81 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2024
Promotor(en)
Prof. Jana Asselman, Prof. Andreja Rajkovic