Californische tripsen: een bedreiging voor onze gewassen
Zowel roofmijten als mieren spelen als predatoren een belangrijke rol in de bestrijding van Californische tripsen (Frankliniella occidentalis), maar hun gezamenlijke inzet levert nog betere resultaten op! Als je in de zomer door de velden fietst en kleine, langwerpige, donkere insecten op je kleding terugvindt, dan zijn dit waarschijnlijk Californische tripsen. Tripsen zijn kleine insecten waarvan er vele soorten bestaan, waaronder de Californische trips. Hoewel deze beestjes op het eerste gezicht onschuldig lijken, kunnen ze in groten getale flinke schade aanrichten aan planten, waaronder belangrijke land- en tuinbouwgewassen. Gelukkig staan onze landbouwers er niet alleen voor in hun strijd tegen deze plaag. Ze krijgen hulp van een leger natuurlijke vijanden!
Natuurlijke vijanden als oplossing
Onder de natuurlijke vijanden van de Californische trips vallen onder andere verschillende roofmijtsoorten, waaronder ook de soort Amblyseius swirskii. Ook de rode schorpioenmier (Crematogaster scutellaris) jaagt op tripsen. Beide predatorsoorten eten graag Californische tripsen. Dit bracht onderzoekers op het idee om deze predatoren gezamenlijk in te zetten ter bestrijding van tripsen. De logische gedachte was dat ze samen wellicht beter in staat zouden zijn om deze schadelijke insecten te onderdrukken dan wanneer ze elk afzonderlijk worden ingezet. Maar de interacties tussen predatorinsecten zijn niet altijd voorspelbaar. Soms werken ze samen, soms vermijden ze elkaar en in sommige gevallen doden ze elkaar zelfs. Gelukkig hebben eerdere studies aangetoond dat de rode schorpioenmier en de roofmijt Amblyseius swirskii goed met elkaar overweg kunnen. Nog beter, wanneer ze samen worden ingezet tegen Californische tripsen, blijkt dat ze een synergetisch effect hebben: de tripsenpopulatie wordt effectiever onderdrukt dan wanneer elk van de predatoren afzonderlijk wordt ingezet. De vraag is natuurlijk hoe dit mogelijk is. Het lijkt erop dat de twee soorten predatoren elkaar op een gunstige manier beïnvloeden, wat resulteert in een grotere sterfte onder de tripsen. Dit bracht ons tot twee verschillende hypothesen die dit verschijnsel zouden kunnen verklaren.
Een eerste verklaring
Ten eerste bestaan er verschillende vormen en maten van Californische trips afhankelijk van het levensstadium waarin het insect zich bevindt. Net als veel andere insecten doorloopt de trips verschillende levensstadia: van ei tot eerstestadium nimfe, tweedestadium nimfe, prepop, pop en uiteindelijk adult (volwassene). De eerste hypothese was dat de verschillende predatoren zich wellicht op verschillende levensstadia van de trips richten. Dit idee werd getest in speciaal ontwikkelde testarena's waarin bonenplanten werden geplaatst. Tripsen werden zorgvuldig opgekweekt tot ze het gewenste levensstadium bereikten, waarna de predatoren samen met tien tripsen losgelaten werden in de testarena. Na twee dagen werden de overlevende tripsen geteld.
Uit deze experimenten bleek dat de roofmijten voornamelijk de nimfen en in mindere mate de poppen van de tripsen doodden. De mieren daarentegen richtten zich vooral op de volwassen tripsen en ook op de poppen. Dit resultaat suggereert dat mieren moeite hebben om de kleinere levensstadia van de Californische trips te detecteren, terwijl roofmijten te klein en niet sterk genoeg zijn om de volwassen tripsen aan te vallen. Hierdoor vullen de predatoren elkaar goed aan: de roofmijten richten zich op de jongere tripsen en de mieren op de wat oudere exemplaren.
Een tweede verklaring
Naast de bovenstaande hypothese was er nog een tweede mogelijke verklaring voor de samenwerking tussen de mieren en de roofmijten. Het idee was dat tripsen zich zouden verbergen in kleine ruimtes zoals bloemknoppen, gekrulde bladeren of op plaatsen met een dicht bladerdek, omdat deze ruimtes moeilijk bereikbaar zijn voor mieren (die flink wat groter zijn dan tripsen). Roofmijten daarentegen, zijn heel wat kleiner dan mieren en kunnen dus wel in deze nauwe ruimtes jagen. De aanwezigheid van mieren zou er bovendien voor kunnen zorgen dat de tripsen in hun schuilplaatsen worden gedreven, waar ze vervolgens ten prooi vallen aan de roofmijten. Dit zou kunnen betekenen dat roofmijten nog efficiënter jagen op tripsen dankzij de mieren.
Ook deze hypothese werd getest in dezelfde testarena's, waarbij op kunstmatige wijze een schuilplaats voor de Californische tripsen werd gecreëerd die niet toegankelijk was voor de mieren. De proeven duurden veertien dagen, waarna de resultaten met en zonder schuilplaats met elkaar werden vergeleken. De resultaten van deze proeven waren minder duidelijk dan bij de eerste hypothese, maar één ding was wel zeker: de aanwezigheid van schuilplaatsen beperkte het aantal tripsen dat door de mieren werd gedood, terwijl de roofmijten in combinatie met de mieren significant meer tripsen konden doden. Een interessante observatie was dat de zuigschade aan de bladeren veroorzaakt door tripsen bij de aanwezigheid van mieren geconcentreerd was op de plaats waar de schuilplaats zich bevond. Deze observatie suggereert dat mieren de tripsen naar deze schuilplaatsen drijven wat, zoals in de tweede hypothese werd geopperd, mogelijk de jacht voor de roofmijten vergemakkelijkt.
De rode schorpioenmier binnenkort in onze tuinbouwkassen?
Zowel de rode schorpioenmier als de roofmijt Amblyseius swirskii kunnen goed overleven in de Vlaamse tuinbouwkassen. In de tuinbouw wordt al geruime tijd gebruikgemaakt van biologische bestrijding, waarbij predatoren worden ingezet om plagen te beheersen. De roofmijt Amblyseius swirskii wordt al op grote schaal commercieel ingezet voor de bestrijding van verschillende plagen, waaronder Californische tripsen. De rode schorpioenmier is veelbelovend, maar wordt nog niet commercieel gebruikt. Voor deze mier is verder onderzoek nodig om vast te stellen of hij geen schade aan gewassen veroorzaakt of andere nuttige insecten verstoort.
Beide predatorsoorten zouden, met hun unieke samenwerkingsverbanden, een waardevolle bijdrage aan de bestrijding van de Californische trips kunnen leveren in serres. Hoewel de rode schorpioenmier nog niet commercieel beschikbaar is, lijkt de toekomst veelbelovend voor deze biologische bestrijder. Verdere studies zullen meer inzicht moeten geven in de rol van deze mieren en hoe ze het beste kunnen worden ingezet zonder negatieve bijwerkingen.
Adandonon, A., Vayssières, J.-F., Sinzogan, A., & Van Mele, P. (2009). Density of pheromone sources of the weaver ant Oecophylla longinoda affects oviposition behaviour and damage by mango fruit flies (Diptera: Tephritidae). International Journal of Pest Management, 55(4), 285-292. Adar, E., Inbar, M., Gal, S., Doron, N., Zhang, Z.-Q., & Palevsky, E. (2012). Plant-feeding and non-plant feeding phytoseiids: differences in behavior and cheliceral morphology. Experimental and Applied Acarology, 58, 341-357. Ando, K., Grumet, R., Terpstra, K., & Kelly, J. D. (2007). Manipulation of plant architecture to enhance crop disease control. CABI Reviews, 2(026), 1-8. Ant maniacs. (2022). Crematogaster scutellaris. Beschikbaar: https://antmaniacs.com/en/crematogaster-scutellaris/#mejor hormiguero [Geraadpleegd op 2/11/2023]. Arthurs, S., & Heinz, K. M. (2006). Evaluation of the nematodes Steinernema feltiae and Thripinema nicklewoodi as biological control agents of western flower thrips Frankliniella occidentalis infesting chrysanthemum. Biocontrol Science and Technology, 16(2), 141-155. Arthurs, S., McKenzie, C. L., Chen, J., Dogramaci, M., Brennan, M., Houben, K., & Osborne, L. (2009). Evaluation of Neoseiulus cucumeris and Amblyseius scutel (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biological control, 49(1), 91-96. Baker, B. P., Green, T. A., & Loker, A. J. (2020). Biological control and integrated pest management in organic and conventional systems. Biological Control, 140(2020). Artikel 104095. Bakker, F., & Sabelis, M. (1989). How larvae of Thrips tabaci reduce the attack success of phytoseiid predators. Entomologia Experimentalis Et Applicata, 50(1), 47-51. Bale, J. S., van Lenteren, J. C., & Bigler, F. (2007). Biological control and sustainable food production. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1492), 761-776. Bartlett, B. (1961). The influence of ants upon parasites, predators, and scale insects. Annals of the Entomological Society of America, 54(4), 543-551. BASF. (2013). Nemasys®. Advanced biocontrol for Western Flower Thrips. Beschikbaar: https://better turf.basf.ca/content/dam/cxm/agriculture/better-turf/canada/english/tech sheets/BASF_Nemasys_WesterFlowerThrips_TechSheet.pdf Basu, S., Clark, R. E., Fu, Z., Lee, B. W., & Crowder, D. W. (2021). Insect alarm pheromones in response to predators: Ecological trade offs and molecular mechanisms. Insect Biochemistry and Molecular Biology, 128(2021). Artikel 103514. Belt, T. (2002). The naturalist in Nicaragua: University Press of the Pacific. Bernard, F. (1968). Les fourmis (Hymenoptera Formicidae): d'Europe occidentale et septentrionale (Vol. 3). Parijs: Masson. Biobest. (z.d.). Swirskii-System - voracious predatory mite that devours whitefly and thrips. Beschikbaar: https://www.biobestgroup.com/products/swirskii-system [Geraadpleegd op 9/10/2023]. Bioline AgroSciences. (z.d.). Thripline. Frankliniella occidentalis. Beschikbaar: https://www.biolineagrosciences.com/?products=thripline#tab-delivery [Geraadpleegd op 17/12/2023]. PAGINA 61/78 Blaimer, B. B. (2012). A subgeneric revision of Crematogaster and discussion of regional species-groups (Hymenoptera: Formicidae). Zootaxa, 3482(1), 47–67. Blüthgen, N., E. Stork, N., & Fiedler, K. (2004). Bottom‐up control and co‐occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos, 106(2), 344-358. Boer, P. (2021). Schorpioenmieren - Crematogaster. Beschikbaar: https://www.nlmieren.nl/websitepages/CREMATOGASTER.html [Geraadpleegd op 4/10/2023]. Boer, P., Noordijk, J., & van Loon, A. J. (2021). Schorpioenmieren Crematogaster in Nederland (Hymenoptera: Formicidae). Nederlandse Faunistische Mededelingen, 57, 19-28. Bolton, B. (1995). A taxonomic and zoogeographical census of the extant ant taxa (Hymenoptera, Formicidae). Journal of Natural History, 29(4), 1037-1056. Bottrell, D. G. (1979). Integrated pest management. Washington: Council on Environmental Quality. Bronstein, J. L. (1991). The nonpollinating wasp fauna of Ficus pertusa: exploitation of a mutualism? Oikos, 61(2), 175-186. Broughton, S., Cousins, D. A., & Rahman, T. (2015). Evaluation of semiochemicals for their potential application in mass trapping of Frankliniella occidentalis (Pergande) in roses. Crop Protection, 67, 130-135. Broughton, S., & Harrison, J. (2012). Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syrphidae, Hemerobiidae) in deciduous fruit trees in Western Australia. Crop protection, 42, 156-163. Bryan, D. E. (1956). The Frankliniella occidentalis (Pergande) complex in California (Thysanoptera: Thripidae) (Vol. 10): University of California Press. Buckland, K., Reeve, J., Alston, D., Nischwitz, C., & Drost, D. (2013). Effects of nitrogen fertility and crop rotation on onion growth and yield, thrips densities, Iris yellow spot virus and soil properties. Agriculture, Ecosystems and Environment, 177, 63 74. Buckley, R., & Gullan, P. (1991). More aggressive ant species (Hymenoptera: Formicidae) provide better protection for soft scales and mealybugs (Homoptera: Coccidae, Pseudococcidae). Biotropica, 23(3), 282-286. Buitenhuis, R., Murphy, G., Shipp, L., & Scott-Dupree, C. (2015). Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Experimental and Applied Acarology 65, 451-464. Buitenhuis, R., & Shipp, J. (2005). Efficacy of entomopathogenic nematode Steinernema feltiae (Rhabditida: Steinernematidae) as influenced by Frankliniella occidentalis (Thysanoptera: Thripidae) developmental stage and host plant stage. Journal of Economic Entomology, 98(5), 1480-1485. Buitenhuis, R., Shipp, L., & Scott-Dupree, C. (2010a). Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biological Control, 52(2), 110-114. Buitenhuis, R., Shipp, L., & Scott-Dupree, C. (2010b). Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans)(Acari: Phytoseiidae). Bulletin of Entomological Research, 100(2), 167-173. CABI. (2020). CABI compendium. Frankliniella occidentalis (western flower thrips). Centre for Agricultural Bioscience International. Beschikbaar: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.24426 [Geraadpleegd op 8/12/2023]. PAGINA 62/78 Callan, E. M. (1943). Natural enemies of the cacao thrips. Bulletin of Entomological Research, 34(4), 313-321. Calvo, F., Bolckmans, K., & Belda, J. (2011). Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl, 56(2), 185-192. Calvo, F., Knapp, M., van Houten, Y. M., Hoogerbrugge, H., & Belda, J. E. (2015). Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent? Experimental and Applied Acarology, 65(4), 419-433. Carney, V., Diamond, J., Murphy, G., & Marshall, D. (2002). The potential of Atheta coriaria Kraatz (Coleoptera: Staphylinidae), as a biological control agent for use in greenhouse crops. IOBC/WPRS Bulletin, 25(1), 37-40. Chivers, D. P., Brown, G. E., & Smith, R. J. F. (1996). The evolution of chemical alarm signals: Attracting predators benefits alarm signal senders. American Naturalist, 148(4), 649-659. Cloyd, R. A. (2009). Western flower thrips (Frankliniella occidentalis) management on ornamental crops grown in greenhouses: Have we reached an impasse. Pest Technology, 3(1), 1-9. Cluever, J. D., Smith, H. A., Funderburk, J. E., & Frantz, G. (2021). Western flower thrips (Frankliniella occidentalis [Pergande]). Beschikbaar: https://edis.ifas.ufl.edu/publication/IN1089 [Geraadpleegd op 8/12/2023]. Colomer, I., Aguado, P., Medina, P., Heredia, R. M., Fereres, A., Belda, J. E., & Viñuela, E. (2011). Field trial measuring the compatibility of methoxyfenozide and flonicamid with Orius laevigatus Fieber (Hemiptera: Anthocoridae) and Amblyseius swirskii (Athias‐Henriot)(Acari: Phytoseiidae) in a commercial pepper greenhouse. Pest Management Science, 67(10), 1237-1244. Dalir, S., Hajiqanbar, H., Fathipour, Y., & Khanamani, M. (2021). A comprehensive picture of foraging strategies of Neoseiulus cucumeris and Amblyseius swirskii on western flower thrips. Pest Management Science, 77(12), 5418-5429. Damman, H. (1987). Leaf quality and enemy avoidance by the larvae of a pyralid moth. Ecology, 68(1), 88-97. Dáttilo, W., Aguirre, A., De la Torre, P. L., Kaminski, L. A., García-Chávez, J., & Rico-Gray, V. (2016). Trait-mediated indirect interactions of ant shape on the attack of caterpillars and fruits. Biology Letters, 12(8). Artikel 20160401. Dawkins, R., & Krebs, J. R. (1979). Arms races between and within species. Proceedings of the Royal Society of London. Series B. Biological Sciences, 205(1161), 489-511. De Koninck, W., De ketelaere, A., Vandenberghe, M., & Vankerkhoven, F. (2022). First outdoor record of Crematogaster scutellaris (Olivier, 1792) in Belgium (Hymenoptera: Formicidae). Bulletin de la Société Royale Belge d’Entomologie, 158(2022), 175-182. De Puysseleyr, V., Höfte, M., & De Clercq, P. (2011). Ovipositing Orius laevigatus increase tomato resistance against Frankliniella occidentalis feeding by inducing the wound response. Arthropod-Plant Interactions, 5, 71-80. Dejean, A., McKey, D., Gibernau, M., & Belin-Depoux, M. (2000). The arboreal ant mosaic in a Cameroonian rainforest. Sociobiology, 35(2), 403-423. Del Bene, G., Gargani, E., & Landi, S. (1998). Heliothrips haemorrhoidalis (Bouché) and Frankliniella occidentalis (Pergande)(Thysanoptera Thripidae): life cycle, harmfulness, control. Advances in Horticultural Science, 12(1), 31-37. Demirozer, O., Tyler‐Julian, K., Funderburk, J., Leppla, N., & Reitz, S. (2012). Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Pest Management Science, 68(12), 1537-1545. Dicke, M., & Sabelis, M. W. (1987). How plants obtain predatory mites as bodyguards. Netherlands Journal of Zoology, 38(2-4), 148-165. PAGINA 63/78 Diehl, S. (1993). Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships. Oikos, 68(1), 151-157. Doğramaci, M., Arthurs, S. P., Chen, J., McKenzie, C., Irrizary, F., & Osborne, L. (2011). Management of chilli thrips Scirtothrips dorsalis (Thysanoptera: Thripidae) on peppers by Amblyseius swirskii (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae). Biological Control, 59(3), 340-347. Doğramaci, M., Kakkar, G., Kumar, V., Chen, J., & Arthurs, S. (2013). Amblyseius swirskii Athias-Henriot (Arachnida: Mesostigmata: Phytoseiidae). Beschikbaar: https://entnemdept.ufl.edu/creatures/BENEFICIAL/swirksi_mite.htm [Geraadpleegd op 6/12/2023]. Du Merle, P., & Mazet, R. (1983). Les facteurs de mortalité des oeufs de Tortrix viridana L.(Lep., Tortricidae). II. Parasitisme par un Trichogramma (Hym., Trichogrammatidae) et" maladies". Agronomie, 3(4), 359-367. Ebssa, L., Borgemeister, C., Berndt, O., & Poehling, H.-M. (2001). Impact of entomopathogenic nematodes on different soil-dwelling stages of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), in the laboratory and under semi field conditions. Biocontrol Science and Technology, 11(4), 515-525. Ebssa, L., Borgemeister, C., & Poehling, H.-M. (2004). Effectiveness of different species/strains of entomopathogenic nematodes for control of western flower thrips (Frankliniella occidentalis) at various concentrations, host densities, and temperatures. Biological Control, 29(1), 145-154. Eeckhout, E. (2022). Interacties tussen de mier Crematogaster scutellaris en de roofmijt Amblyseius swirskii bij de biologische bestrijding van Frankliniella occidentalis. (Masterthesis). Universiteit Gent, Gent. Ehler, L. (1996). Structure and impact of natural enemy guilds in biological control of insect pests. In Food Webs: Integration of Patterns & Dynamics (pp. 337-342). Boston: Springer. Ehler, L. (2006). Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Management Science, 62(9), 787-789. Ensley, S. M. (2018). Pyrethrins and pyrethroids. In Veterinary Toxicology (pp. 515-520): Elsevier. EPPO. (2002). Frankliniella occidentalis (FRANOC). Beschikbaar: https://gd.eppo.int/taxon/FRANOC [Geraadpleegd op 21/11/2023]. EPPO/IOBC. (2021). Safe use of biological control. PM 6/3 (5) Biological control agents safely used in the EPPO region. EPPO Bulletin, 51(3), 452-454. Espinoza, K., Valera, D. L., Torres, J. A., López, A., & Molina-Aiz, F. D. (2016). Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture. Computers and Electronics in Agriculture, 127, 495-505. Everaert, B. (2021). Biologisch bestrijdingspotentieel van de mier Crematogaster scutellaris tegen plagen in kasteelten. (Masterthesis). Universiteit Gent, Gent. Fasulo, T. R., & Denmark, H. A. (2009). common name: twospotted spider mite; scientific name: Tetranychus urticae Koch (Arachnida: Acari: Tetranychidae). Beschikbaar: https://ap.lc/srJkU [Geraadpleegd op 27/03/2024]. Ferguson, K. I., & Stiling, P. (1996). Non-additive effects of multiple natural enemies on aphid populations. Oecologia, 108(2), 375 379. Flechtmann, C. H., & McMurtry, J. A. (1992a). Studies of cheliceral and deutosternal morphology of some Phytoseiidae (Acari: Mesostigmata) by scanning electron microscopy. International Journal of Acarology, 18(3), 163-169. PAGINA 64/78 Flechtmann, C. H., & McMurtry, J. A. (1992b). Studies on how phytoseiid mites feed on spider mites and pollen. International Journal of Acarology, 18(3), 157-162. Flint, M. L., & Roberts, P. A. (1988). Using crop diversity to manage pest problems: some California examples. American Journal of Alternative Agriculture, 3(4), 163-167. French, N., Parr, W., Gould, H., Williams, J., & Simmonds, S. (1976). Development of biological methods for the control of Tetranychus urticae on tomatoes using Phytoseiulus persimilis. Annals of Applied Biology, 83(2), 177-189. Frizzi, F., Masoni, A., Ottonetti, L., Tucci, L., & Santini, G. (2020). Resource-dependent mutual association with sap-feeders and a high predation rate in the ant Crematogaster scutellaris: help or harm in olive pest control? Biocontrol, 65, 601-611. Frizzi, F., Rispoli, A., Chelazzi, G., & Santini, G. (2016). Effect of water and resource availability on ant feeding preferences: a field experiment on the Mediterranean ant Crematogaster scutellaris. Insectes Sociaux, 63, 565-574. Funderburk, J., Martini, X., Adkins, S., Freeman, J., Hutton, S., Smith, H., McAvoy, G., Snodgrass, C., Paret, M., & Leppla, N. (2022). Managing thrips and tospoviruses in tomato. EDIS Document ENY-859, University Florida, Gainesville. Funderburk, J., Reitz, S., Stansly, P., Olson, S., Sui, D., McAvoy, G., Whidden, A., Demirozer, O., Nuessly, G., & Leppla, N. (2011). Managing thrips in pepper and eggplant. EDIS Document ENY-658, University Florida, Gainesville. Fytoweb. (2015). Gewasbeschermingsmiddelen en Bemestingsproducten. Beschikbaar: https://fytoweb.be/nl/gewasbeschermingsmiddelen/toelatingen-van-gewasbe… [Geraadpleegd op 17/12/2023]. Gallardo, A., Jiménez, A., Antonietty, C., Villagrán, M., Ocete, M., & Soria, F. (2012). Forecasting infestation by Coraebus undatus (Coleoptera, Buprestidae) in cork oak forests. International Journal of Pest Management, 58(3), 275-280. Gallura disinfestazioni. (z.d.). Crematogaster scutellaria. Beschikbaar: https://www.galluradisinfestazioni.com/pests/ants/crematogaster scutellaria#:~:text=LIFECYCLE%3A%20The%20lifecycle%20of%20an,6%20weeks%20develop%20into%20larvae [Geraadpleegd op 2/11/2023]. Gao, Y., Lei, Z., & Reitz, S. R. (2012). Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Management Science, 68(8), 1111-1121. Gerson, U., & Weintraub, P. G. (2007). Mites for the control of pests in protected cultivation. Pest Management Science, 63(7), 658 676. Ghasemzadeh, S., Leman, A., & Messelink, G. J. (2017). Biological control of Echinothrips americanus by phytoseiid predatory mites and the effect of pollen as supplemental food. Experimental and Applied Acarology 73(2), 209-221. Gillespie, D. (1989). Biological control of thrips [Thysanoptera: Thripidae] on greenhouse cucumber by Amblyseius cucumeris. Entomophaga, 34, 185-192. Gnanvossou, D., Hanna, R., & Dicke, M. (2003). Infochemical-mediated intraguild interactions among three predatory mites on cassava plants. Oecologia, 135, 84-90. Gonzalez, F., Tkaczuk, C., Dinu, M. M., Fiedler, Ż., Vidal, S., Zchori-Fein, E., & Messelink, G. J. (2016). New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. Journal of Pest Science, 89, 295-311. PAGINA 65/78 Gonzalez, R., & Campos, M. (1989). Evaluation of natural enemies of the Phloeotribus scarabaeoides (Bern.)(Col: Scolytidae) in Granada olive groves. Acta Horticulturae, 286, 355-358. Hamilton, J. G., Hall, D. R., & Kirk, W. D. (2005). Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. Journal of Chemical Ecology, 31(6), 1369-1379. Hast, M. (2022). De mier Crematogaster Scutellaris als biologische bestrijder van Spodoptera Littoralis en haar interactie met de gaasvlieg Chrysoperla Carnea. (Masterthesis). Universiteit Gent, Gent. He, Z., Guo, J. F., Reitz, S. R., Lei, Z. R., & Wu, S. Y. (2020). A global invasion by the thrip, Frankliniella occidentalis: Current virus vector status and its management. Insect Science, 27(4), 626-645. Helle, W., & Sabelis, M. W. (1985). Spider mites: their biology, natural enemies and control (Vol. 1): Elsevier Amsterdam. Hillocks, R. J. (2012). Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Protection, 31(1), 85-93. Hölldobler, B., & Lumsden, C. J. (1980). Territorial strategies in ants. Science, 210(4471), 732-739. Hölldobler, B., & Wilson, E. O. (1978). The multiple recruitment systems of the African weaver ant Oecophylla longinoda (Latreille)(Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 3(1978), 19-60. Holt, R. D., & Hochberg, M. E. (1997). When is biological control evolutionarily stable (or is it)? Ecology, 78(6), 1673-1683. Holt, R. D., & Polis, G. A. (1997). A theoretical framework for intraguild predation. The American Naturalist, 149(4), 745-764. Huang, H. T., & Yang, P. (1987). The ancient cultured citrus ant. Bioscience, 37(9), 665-671. Huffaker, C. B. (2012). Theory and practice of biological control. New York: Elsevier. IRAC. (2020). Mechanisms of Insecticide Resistance in Western Flower Thrips, Frankliniella occidentalis (Pergande). Beschikbaar: https://irac-online.org/documents/frankliniella-occidentalis-irm-poster… [Geraadpleegd op 17/12/2023]. IRAC. (z.d.). Western flower thrips Frankliniella occidentalis. Beschikbaar: https://irac-online.org/pests/frankliniella-occidentalis/ [Geraadpleegd op 17/12/2023]. Ishida, H., Murai, T., Sonoda, S., Yoshida, H., Izumi, Y., & Tsumuki, H. (2003). Effects of temperature and photoperiod on development and oviposition of Frankliniella occidentalis (Pergande)(Thysanoptera: Thripidae). Applied Entomology and Zoology, 38(1), 65-68. Itioka, T., & Inoue, T. (1996). Density-dependent ant attendance and its effects on the parasitism of a honeydew-producing scale insect, Ceroplastes rubens. Oecologia, 106, 448-454. Jacobson, R., Chandler, D., Fenlon, J., & Russell, K. (2001). Compatibility of beauveria bassiana (balsamo) vuillemin with amblyseius cucumeris oudemans (acarina: Phytoseiidae) to control frankliniella occidentalis pergande (thysanoptera: Thripidae) on cucumber plants. Biocontrol Science and Technology, 11(3), 391-400. James, D. G., Stevens, M. M., O'Malley, K. J., & Faulder, R. J. (1999). Ant foraging reduces the abundance of beneficial and incidental arthropods in citrus canopies. Biological Control, 14(2), 121-126. Janssen, A., Bruin, J., Jacobs, G., Schraag, R., & Sabelis, M. W. (1997). Predators use volatiles to avoid prey patches with conspecifics. Journal of Animal Ecology, 66(2), 223-232. PAGINA 66/78 Janssen, A., Pallini, A., Venzon, M., & Sabelis, M. W. (1998). Review Behaviour and indirect interactions in food webs of plant inhabiting arthropods. Experimental and Applied Acarology 22, 497-521. Janssen, A., van Alphen, J. J., Sabelis, M. W., & Bakker, K. (1995). Specificity of odour-mediated avoidance of competition in Drosophila parasitoids. Behavioral Ecology and Sociobiology, 36, 229-235. Jensen, S. E. (2000). Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integrated Pest Management Reviews, 5(2), 131-146. Kajita, H. (1986). Predation by Amblyseius spp.(Acarina: Phytoseiidae) and Orius sp.(Hemiptera: Anthocoridae) on Thrips palmi Karny (Thysanoptera: Thripidae). Applied Entomology and Zoology, 21(3), 482-484. Kakehashi, N., Suzuki, Y., & Iwasa, Y. (1984). Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control. Journal of Applied Ecology, 21(1), 115-131. Kerdelhué, C., & Rasplus, J.-Y. (1996). Non-pollinating Afrotropical fig wasps affect the fig-pollinator mutualism in Ficus within the subgenus Sycomorus. Oikos, 75(1), 3-14. Kirk, W. D. (2002). The pest and vector from the West: Frankliniella occidentalis. Paper presented at the Thrips and Tospoviruses: Proceedings of the 7th international symposium on thysanoptera. Kirk, W. D., & Terry, L. I. (2003). The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agricultural and Forest Entomology, 5(4), 301-310. Kirst, H. A., Michel, K. H., Mynderase, J. S., Chio, E. H., Yao, R. C., Nakasukasa, W. M., Boeck, L. D., Occlowitz, J. L., Paschal, J. W., & Deeter, J. B. (1992). Discovery, isolation, and structure elucidation of a family of structurally unique, fermentation-derived tetracyclic macrolides. In Synthesis and Chemistry of Agrochemicals III (pp. 214-225): ACS Publications. Knapp, M., van Houten, Y., Hoggerbrugge, H., & Bolckmans, K. (2013). Amblydromalus limonicus (Acari: Phytoseiidae) as a biocontrol agent: review and new findings. Acaralogia, 53, 102-202. Knapp, M., van Houten, Y., van Baal, E., & Groot, T. (2018). Use of predatory mites in commercial biocontrol: current status and future prospects. Acarologia, 58(Suppl), 72-82. Kumm, S., & Moritz, G. (2010). Life‐cycle variation, including female production by virgin females in Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Applied Entomology, 134(6), 491-497. Lee, H.-S., & Gillespie, D. R. (2011). Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Experimental and Applied Acarology, 53(1), 17-27. Loomans, A. J. (2006). Exploration for hymenopterous parasitoids of thrips. Bulletin of Insectology, 59(2), 69-83. López Sebastián, E., Selfa, J., & Tinaut, A. (2004). About Crematogaster scutellaris (Olivier, 1791)(Hymenoptera, Formicidae) as egg predator of the pine processionary moth. Boletín de Sanidad Vegetal. Plagas (España), 30(4), 699-701. Losey, J. E., & Denno, R. F. (1998). Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology, 79(6), 2143-2152. Losey, J. E., & Denno, R. F. (1999). Factors facilitating synergistic predation: the central role of synchrony. Ecological Applications, 9(2), 378-386. PAGINA 67/78 Luna-Espino, H. M., Jiménez-Pérez, A., & Castrejón-Gómez, V. R. (2020). Assessment of Chrysoperla comanche (Banks) and Chrysoperla externa (Hagen) as biological control agents of Frankliniella occidentalis (Pergande)(Thysanoptera: Thripidae) on tomato (Solanum lycopersicum) under glasshouse conditions. Insects, 11(2), 87. Majer, J. (1993). Comparison of the arboreal ant mosaic in Ghana, Brazil, Papua New Guinea and Australia-its structure and influence on arthropod diversity. In Hymenoptera and Biodiversity (Vol. 1993, pp. 115-141). Wallingford: CAB international. Malik, M., Nawaz, M., Ellington, J., Sanderson, R., & El-Heneidy, A. (2009). Effect of different nitrogen regimes on onion thrips, Thrips tabaci Lindemann, on onions, Allium cepa L. Southwestern Entomologist, 34(3), 219-225. Masoni, A., Frizzi, F., Turillazzi, S., & Santini, G. (2019). Making the right choice: how Crematogaster scutellaris queens choose to co found in relation to nest availability. Insectes Sociaux, 66, 257-263. Matsuda, H., Abrams, P. A., & Hori, H. (1993). The effect of adaptive antipredator behavior on exploitative competition and mutualism between predators. Oikos, 68(3), 549-559. McMurtry, J., & Croft, B. (1997). Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology, 42(1), 291-321. Messelink, G. J., & Jansen, A. (2008). Do whiteflies help controlling thrips? IOBC/WPRS Bulletin, 2008(32), 131-134. Messelink, G. J., & van Holstein-Saj, R. (2008). Improving thrips control by the soil-dwelling predatory mite Macrocheles robustulus (Berlese). IOBC/WPRS Bulletin, 32, 135. Messelink, G. J., Van Maanen, R., Van Holstein-Saj, R., Sabelis, M. W., & Janssen, A. (2010). Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. BioControl, 55, 387-398. Messelink, G. J., van Maanen, R., van Steenpaal, S., & Janssen, A. (2008). Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biological Control, 44(3), 372-379. Messelink, G. J., Van Steenpaal, S. E., & Ramakers, P. M. (2006). Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl, 51(6), 753-768. Migeon, A., & Dorkeld, F. (2024). Spider Mites Web: a comprehensive database for the Tetranychidae. Beschikbaar: https://www1.montpellier.inrae.fr/CBGP/spmweb [Geraadpleegd op 27/03/2024]. Momen, F. M., & Abdel-Khalek, A. (2021). Intraguild predation in three generalist predatory mites of the family Phytoseiidae (Acari: Phytoseiidae). Egyptian Journal of Biological Pest Control, 31(1), 1-7. Montero-Astúa, M., Ullman, D. E., & Whitfield, A. E. (2016). Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Virology, 493, 39-51. Moran, M. D., & Hurd, L. (1997). A trophic cascade in a diverse arthropod community caused by a generalist arthropod predator. Oecologia, 113, 126-132. Morris, T., Campos, M., Jervis, M., McEwen, P., & Kidd, N. (1998). Potential effects of various ant species on green lacewing, Chrysoperla carnea (Stephens)(Neuropt., Chrysopidae) egg numbers. Journal of Applied Entomology, 122(1‐5), 401-403. Morris, T., Symondson, W. O. C., Kidd, N. A., & Campos, M. (2002). The effect of different ant species on the olive moth, Prays oleae (Bern.), in Spanish olive orchard. Journal of Applied Entomology, 126(5), 224-230. PAGINA 68/78 Mouden, S., Sarmiento, K. F., Klinkhamer, P. G. L., & Leiss, K. A. (2017). Integrated pest management in western flower thrips: past, present and future. Pest Management Science, 73(5), 813-822. Mound, L. A., & Teulon, D. A. (1995). Thysanoptera as phytophagous opportunists. In Thrips Biology and Management (Vol. 276, pp. 3-19). Boston: Springer. Murphy, G., Ferguson, G., & Shipp, L. (2022). Thrips in greenhouse crops - biology, damage and management. Beschikbaar: https://www.ontario.ca/page/thrips-greenhouse-crops-biology-damage-and-… [Geraadpleegd op 17/12/2023]. Nakahara, S. (1997). Annotated list of the Frankliniella species of the world (Thysanoptera: Thripidae). Contributions on Entomology, International, 2(3/4), 355-389. Ness, J., Mooney, K., & Lach, L. (2010). Ants as mutualists. In Ant Ecology (pp. 97-114). New York: Oxford University Press. Nguyen, D. T., Vangansbeke, D., & De Clercq, P. (2014). Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Experimental and Applied Acarology, 62(2), 181-194. Nomikou, M., Janssen, A., & Sabelis, M. W. (2003). Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Experimental and Applied Acarology, 31, 15-26. Nomikou, M., Janssen, A., Schraag, R., & Sabelis, M. (2001). Phytoseiid predators as potential biological control agents for Bemisia tabaci. Experimental and Applied Acarology, 25, 271-291. Nomikou, M., Janssen, A., Schraag, R., & Sabelis, M. W. (2002). Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Experimental and Applied Acarology, 27, 57-68. Nurariaty, A., Nasruddin, A., & Gassa, A. (2020). Association between thrips and ants on chili and watermelon plants. Paper presented at the IOP Conference Series: Earth and Environmental Science. Offenberg, J. (2001). Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behavioral Ecology and Sociobiology, 49, 304-310. Offenberg, J. (2014). Pest repelling properties of ant pheromones. IOBC/WPRS Bulletin, 99, 173-176. Offenberg, J. (2015). Ants as tools in sustainable agriculture. Journal of Applied Ecology, 52(5), 1197-1205. Offenberg, J., Havanon, S., Aksornkoae, S., MacIntosh, D. J., & Nielsen, M. G. (2004a). Observations on the Ecology of Weaver Ants (Oecophylla smaragdina Fabricius) in a Thai Mangrove Ecosystem and Their Effect on Herbivory of Rhizophora mucronata Lam. Biotropica, 36(3), 344-351. Offenberg, J., Nielsen, M. G., MacIntosh, D. J., Havanon, S., & Aksornkoae, S. (2004b). Evidence that insect herbivores are deterred by ant pheromones. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(suppl_6), S433-S435. Onzo, A., Houedokoho, A. F., & Hanna, R. (2012). Potential of the predatory mite, Amblyseius swirskii to suppress the broad mite, Polyphagotarsonemus latus on the gboma eggplant, Solanum macrocarpon. Journal of Insect Science, 12(1), 7. Opit, G., Nechols, J., & Margolies, D. (2004). Biological control of twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), using Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseidae) on ivy geranium: assessment of predator release ratios. Biological control, 29(3), 445-452. Opit, G., Nechols, J. R., Margolies, D. C., & Williams, K. A. (2005). Survival, horizontal distribution, and economics of releasing predatory mites (Acari: Phytoseiidae) using mechanical blowers. Biological Control, 33(3), 344-351. PAGINA 69/78 Orr, D. (2009). Biological control and integrated pest management. In Integrated Pest Management: Innovation-Development Process (Vol. 1, pp. 207-239). Dordrecht: Springer. Otsuki, H., & Yano, S. (2014). Functionally different predators break down antipredator defenses of spider mites. Entomologia Experimentalis et Applicata, 151(1), 27-33. Park, H.-H., Shipp, L., & Buitenhuis, R. (2010). Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). Journal of Economic Entomology, 103(3), 563-569. Park, H.-H., Shipp, L., Buitenhuis, R., & Ahn, J. J. (2011). Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). Journal of Asia-Pacific Entomology, 14(4), 497-501. Peng, R. K., & Christian, K. (2004). The weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae), an effective biological control agent of the red-banded thrips, Selenothrips rubrocinctus (Thysanoptera: Thripidae) in mango crops in the Northern Territory of Australia. International Journal of Pest Management, 50(2), 107-114. Pereira, J. A., Bento, A., Cabanas, J., Torres, L., Herz, A., & Hassan, S. A. (2004). Ants as predators of the egg parasitoid Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) applied for biological control of the olive moth, Prays oleae (Lepidoptera: Plutellidae) in Portugal. Biocontrol Science and Technology, 14(7), 653-664. Pijnakker, J., & Ramakers, P. (2008). Predatory mites for biocontrol of Western Flower Thrips, Frankliniella occidentalis (Pergande), in cut rose. IOBC/WPRS Bulletin, 32, 171-174. Polis, G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food-web theory. The American Naturalist, 138(1), 123-155. Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation - potential competitors that eat each other. Annual Review of Ecology and Systematics, 20, 297-330. Polis, G. A., & Strong, D. R. (1996). Food web complexity and community dynamics. The American Naturalist, 147(5), 813-846. Pozzebon, A., Boaria, A., & Duso, C. (2015). Single and combined releases of biological control agents against canopy-and soil dwelling stages of Frankliniella occidentalis in cyclamen. BioControl, 60, 341-350. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., & Weis, A. E. (1980). Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11(1), 41-65. Radeghieri, P. (2004). Cameraria ohridella (Lepidoptera Gracillariidae) predation by Crematogaster scutellaris (Hymenoptera Formicidae) in Northern Italy (Preliminary note). Bulletin of Insectology, 57(1), 63-64. Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283(2021). Artikel 124657. Reimer, N. (1988). Predation on Liothrips urichi Karny (Thysanoptera: Phlaeothripidae): a case of biotic interference. Environmental Entomology, 17(1), 132-134. Reitz, S. R. (2009). Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): the making of a pest. Florida Entomologist, 92(1), 7-13. PAGINA 70/78 Reitz, S. R., Gao, Y., Kirk, W. D., Hoddle, M. S., Leiss, K. A., & Funderburk, J. E. (2020). Invasion biology, ecology, and management of western flower thrips. Annual Review of Entomology, 65, 17-37. Richard, F.-J., Fabre, A., & Dejean, A. (2001). Predatory behavior in dominant arboreal ant species: the case of Crematogaster sp.(Hymenoptera: Formicidae). Journal of Insect Behavior, 14(2), 271-282. Riley, D. G., Angelella, G., & McPherson, R. (2011). Pine pollen dehiscence relative to thrips population dynamics. Entomologia Experimentalis et Applicata, 138(3), 223-233. Riudavets, J. (1995). Predators of Frankliniella occidentalis (Perg.) and Thrips tabaci Lind.: a review. Wageningen Agricultural University Papers, 95(1), 43-87. Rodriguez, D., & Coy-Barrera, E. (2023). Overview of Updated Control Tactics for Western Flower Thrips. Insects, 14(7). Artikel 649. Romeih, A., El-Saidy, E., & El-Arnaouty, S. (2004). Suitability of Ephestia kuehneilla and Corycera cephalonica eggs as alternative preys for rearing predatory mites. Egyptian Journal of Biological Pest Control, 14(1), 101-105. Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., & Jaffee, B. A. (1995). Intraguild predation among biological-control agents - theory and evidence. Biological Control, 5(3), 303-335. Sabelis, M. W., & Van Rijn, P. C. (1997). Predation by insects and mites. In Thrips As Crop Pests (pp. 259-354). Willingford: CAB International. Saemi, S., Rahmani, H., Kavousi, A., & Chi, H. (2017). Group-rearing did not affect the life table and predation rate of Phytoseiulus persimilis (Acari: Phytoseiidae) fed on Tetranychus urticae. Systematic and Applied Acarology, 22(10), 1698-1714. Sakata, H. (1995). Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Researches on Population Ecology, 37, 159-164. Sampson, C., & Kirk, W. D. (2013). Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLoS One, 8(11). Artikel 80787. Sanders, D., & Platner, C. (2007). Intraguild interactions between spiders and ants and top-down control in a grassland food web. Oecologia, 150, 611-624. Schatz, B., Proffit, M., Rakhi, B., Borges, R. M., & Hossaert‐McKey, M. (2006). Complex interactions on fig trees: ants capturing parasitic wasps as possible indirect mutualists of the fig–fig wasp interaction. Oikos, 113(2), 344-352. Schifani, E., Giannetti, D., Costi, E., Franconi, G., Campostrini, A., Maistrello, L., & Grasso, D. A. (2023). Interactions between egg parasitoids and predatory ants for the biocontrol of the invasive brown marmorated stink bug Halyomorpha halys. Journal of Applied Entomology, 147(9), 868-874. Sih, A., Englund, G., & Wooster, D. (1998). Emergent impacts of multiple predators on prey. Trends in Ecology and Evolution, 13(9), 350-355. Smargiassi, S., Masoni, A., Frizzi, F., Balzani, P., Desiato, E., Benelli, G., Canale, A., & Santini, G. (2023). Keep Your Eggs Away: Ant Presence Reduces Ceratitis capitata Oviposition Behaviour through Trait-Mediated Indirect Interactions. Insects, 14(6), 532. Smith, H. S. (1919). On Some Phases of Insect Control by the Biological Method. Journal of Economic Entomology, 12(4), 288-292. Stadler, B., & Dixon, A. F. (2005). Ecology and evolution of aphid-ant interactions. Annual Review of Ecology, Evolution, and Systematics, 36, 345-372. PAGINA 71/78 Stansly, P. A., & Castillo, J. A. (2009). Control of broad mites, spider mites, and whiteflies using predaceous mites in open-field pepper and eggplant. Proceedings of the Florida State Horticultural Society, 122(2009), 253-257. Stavisky, J., Funderburk, J., Brodbeck, B. V., Olson, S. M., & Andersen, P. C. (2002). Population dynamics of Frankliniella spp. and tomato spotted wilt incidence as influenced by cultural management tactics in tomato. Journal of Economic Entomology, 95(6), 1216-1221. Stijger, H. (2005). Trips zit in iedere kas en gaat er nooit meer weg. Onder Glas, 5(6), 39-41. Strong, D. R. (1992). Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73(3), 747 754. Stumpf, N., Zebitz, C. P., Kraus, W., Moores, G. D., & Nauen, R. (2001). Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 69(2), 131-142. Swanson, A. C., Schwendenmann, L., Allen, M. F., Aronson, E. L., Artavia‐León, A., Dierick, D., Fernandez‐Bou, A. S., Harmon, T. C., Murillo‐Cruz, C., & Oberbauer, S. F. (2019). Welcome to the Atta world: A framework for understanding the effects of leaf‐cutter ants on ecosystem functions. Functional Ecology, 33(8), 1386-1399. Swirski, E. (1967). Laboratory studies on the feeding, development and reproduction of the predaceous mites Amblyseius rubini Swirski and Amitai and Amblyseius swirski Athias (Acarina: Phytoseiidae) on various kinds of food substances. Israel Journal of Agricultural Research, 17(2), 101-119. Swirski, E., & Amitai, S. (1997). Annotated) ilist (of Phytoseiid) mites (Mesostigmata: Phytoseiidae) in Israel. Israel Journal of Entomology, 31(1997), 21-46. Teich, Y. (1966). Mites of the family of Phytoseiidae as predators of the tobacco whitefly, Bemisia tabaci Gennadius. Israel Journal of Agricultural Research, 16(3), 141-142. Teuton, D., Davidson, M., Perry, N., Nielsen, M., Van Tol, R., & de Kogel, W. (2011). Recent developments with methyl isonicotinate, a semiochemical used in thrips pest management. New Zealand Plant Protection, 64(2011), 287-287. Tillberg, C. V. (2004). Friend or foe? A behavioral and stable isotopic investigation of an ant–plant symbiosis. Oecologia, 140, 506 515. Tirello, P., Pozzebon, A., Cassanelli, S., Van Leeuwen, T., & Duso, C. (2012). Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays. Experimental and Applied Acarology, 57, 53-64. Tobin, J. E. (1995). Ecology and diversity of tropical forest canopy ants. In Forest Canopies (pp. 129-147). San Diego: Academic Press. Trichilo, P. J., & Leigh, T. F. (1986). Predation on spider mite eggs by the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), an opportunist in a cotton agroecosystem. Environmental Entomology, 15(4), 821-825. Ugine, T. A., Wraight, S. P., & Sanderson, J. P. (2007). Effects of manipulating spray-application parameters on efficacy of the entomopathogenic fungus Beauveria bassiana against western flower thrips, Frankliniella occidentalis, infesting greenhouse impatiens crops. Biocontrol Science and Technology, 17(2), 193-219. Van Butsele, J. (2020). Invloed van klimaat op het predatiepotentieel van de mier Crematogaster scutellaris op de Californische trips. (Masterthesis). Universiteit Gent, Gent. PAGINA 72/78 Van Hoeyweghen, M. (2021). Impact van de interactie tussen mieren en bladluizen op biologische plaagbeheersing. (Masterthesis). Universiteit Gent, Gent. Van Leeuwen, T., Van Pottelberge, S., Nauen, R., & Tirry, L. (2007). Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Management Science, 63(12), 1172-1177. Van Leeuwen, T., Van Pottelberge, S., & Tirry, L. (2006). Biochemical analysis of a chlorfenapyr‐selected resistant strain of Tetranychus urticae Koch. Pest Management Science, 62(5), 425-433. Van Lenteren, J. (2012a). IOBC Internet book of biological control(Vol. 6, pp. 182). Van Lenteren, J. (2012b). The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57(1), 1-20. Van Maanen, R., Messelink, G. J., Van Holstein-Saj, R., Sabelis, M. W., & Janssen, A. (2012). Prey temporarily escape from predation in the presence of a second prey species. (Doctoraatsthesis). Universiteit Amsterdam, Amsterdam. Vandermeer, J., Perfecto, I., Ibarra Nuñez, G., Phillpott, S., & Garcia Ballinas, A. (2002). Ants (Azteca sp.) as potential biological control agents in shade coffee production in Chiapas, Mexico. Agroforestry Systems, 56, 271-276. Vandicke, J. (2015). Enriched artificial diets for the predatory bug Orius thripoborus and the parasitoid fly Exorista larvarum. (Masterthesis). Universiteit Gent, Gent. Vangansbeke, D., Nguyen, D. T., Audenaert, J., Verhoeven, R., Gobin, B., Tirry, L., & De Clercq, P. (2016). Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe? Pest Management Science, 72(3), 466-473. Venzon, M., Pallini, A., & Janssen, A. (2001). Interactions mediated by predators in arthropod food webs. Neotropical Entomology, 30(1), 1-9. Vermeiren, J. (2023). Predatiepotentieel van de mier Crematogaster scutellaris op rupsen en tripsen in kasteelten. (Masterthesis). Universiteit Gent, Gent. Wäckers, F. L., Alberola, J. S., Garcia-Marí, F., & Pekas, A. (2017). Attract and distract: Manipulation of a food-mediated protective mutualism enhances natural pest control. Agriculture, Ecosystems and Environment, 246, 168-174. Wakil, W., Gulzar, S., Wu, S., Rasool, K. G., Husain, M., Aldawood, A. S., & Toews, M. D. (2023). Development of Insecticide Resistance in Field Populations of Onion Thrips, Thrips tabaci (Thysanoptera: Thripidae). Insects, 14(4), 376. Way, M. (1954). Studies on the association of the ant Oecophylla longinoda (Latr.)(Formicidae) with the scale insect Saissetia zanzibarensis Williams (Coccidae). Bulletin of Entomological Research, 45(1), 113-134. Way, M., Cammell, M., & Paiva, M. (1992). Studies on egg predation by ants (Hymenoptera: Formicidae) especially on the eucalyptus borer Phoracantha semipunctata (Coleoptera: Cerambycidae) in Portugal. Bulletin of Entomological Research, 82(3), 425-432. Way, M., & Khoo, K. (1992). Role of ants in pest management. Annual review of Entomology, 37(1), 479-503. Wcislo, W. T., & Schatz, B. (2003). Predator recognition and evasive behavior by sweat bees, Lasioglossum umbripenne (Hymenoptera: Halictidae), in response to predation by ants, Ectatomma ruidum (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 53, 182-189. Weintraub, P. G., Pivonia, S., & Steinberg, S. (2011). How many Orius laevigatus are needed for effective western flower thrips, Frankliniella occidentalis, management in sweet pepper? Crop Protection, 30(11), 1443-1448. PAGINA 73/78 Wiethoff, J., Poehling, H.-M., & Meyhöfer, R. (2004). Combining plant-and soil-dwelling predatory mites to optimise biological control of thrips. Experimental and Applied Acarology, 34, 239-261. Wimmer, D., Hoffmann, D., & Schausberger, P. (2008). Prey suitability of western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Science and Technology, 18(6), 533 542. Wu, S., Gao, Y., Xu, X., Wang, E., Wang, Y., & Lei, Z. (2014). Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Science and Technology, 24(10), 1110-1121. WUR. (z.d.). Beschrijving van de Roofmijten: Phytoseiidae. Beschikbaar: https://www.wur.nl/upload_mm/8/b/5/70eb6297-39ed 4b8e-a24b-827b900ae5e4_2%29%20Beschrijving%20van%20de%20roofmijten_NL.pdf Xiao, Y., Avery, P., Chen, J., McKenzie, C., & Osborne, L. (2012). Ornamental pepper as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pests in greenhouse vegetable production. Biological Control, 63(3), 279-286. Xu, X., & Enkegaard, A. (2010). Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the twospotted spider mite Tetranychus urticae. Journal of Insect Science, 10(1), 149. Zhang, B., Qian, W., Qiao, X., Xi, Y., & Wan, F. (2019). Invasion biology, ecology, and management of Frankliniella occidentalis in China. Archives of Insect Biochemistry and Physiology, 102(3). Artikel 21613.