Oud en versleten? Zo simpel is het toch niet!

Margot
Soetaert
  • Emma
    Spiessens

Van beroemdheden tot je eigen grootouders, iedereen heeft vroeg of laat wel eens te maken met artrose. Maar wat is artrose eigenlijk? Deze conditie, ook wel osteoartritis genoemd, is de meest prevalente gewrichtsaandoening ter wereld. Er werd lang gedacht dat artrose gelijkstond aan slijtage van het kraakbeen. Echter wordt het steeds duidelijker dat er meer aan de hand is. Recent wetenschappelijk onderzoek toont aan dat ontstekingsprocessen in het gewricht mee aan de basis van deze aandoening liggen. Toch blijft het onduidelijk hoe deze ziekte exact ontstaat. 

 

Hoe ziet een gewricht er uit? 

Afbeelding met schermopname</p>
<p>Automatisch gegenereerde beschrijving

Een gewricht bestaat uit twee botuiteinden die elk bekleed zijn met een laag kraakbeen. De gewrichtsruimte is langs weerszijden begrensd door een gewrichtskapsel. Dit gewrichtskapsel is aan de binnenkant afgelijnd door een slijmvlieslaagje, dat het synoviale membraan genoemd wordt. De functie van dit membraan is het produceren van gewrichtsvocht, een soort olie die ervoor zorgt dat het gewricht soepel beweegt. 

 

Hoe ziet het synoviale membraan er uit? 

In dit membraan bevinden zich, onder andere, twee soorten cellen. De eerste soort zijn fibroblasten. Deze cellen produceren de componenten van het gewrichtsvocht die instaan voor onderhoud van het kraakbeen. Daarnaast zijn er de macrofagen, dewelke een deel van het immuunsysteem vormen. In het geval van artrose zien we dat het synoviale membraan verdikt en dat de aanwezige cellen zich vermenigvuldigen. Deze vermenigvuldigde cellen brengen eiwitten tot expressie op hun celmembraan. Wetenschappelijk onderzoek heeft aangetoond dat deze bijdragen tot het ontstaan van artrose. Fibroblasten bezitten eiwitten die zorgen voor afbraak van het kraakbeen, aantrekking van ontstekingscellen in het gewricht en andere waarvan de functie nog onbekend is. Macrofagen bevatten voornamelijk eiwitten die een rol spelen in het onstekingsproces.

 

Waarom dit onderzoek? 

Tot op heden bestaat er nog steeds geen effectieve behandeling en kan men zich enkel behelpen met pijnstilling en, op lange termijn, een gewrichtsprothese. Deze ingrepen gaan echter gepaard met reële risico’s zowel voor patiënt als voor maatschappij. Door onderzoek naar eiwitten op het celoppervlak wordt meer inzicht in het ziekteproces verkregen. Op basis hiervan kunnen tools ontwikkeld worden voor vroege diagnosestelling. Verder kan dit helpen bij het creëren van nieuwe behandelingen die inwerken op het ziektemechanisme en die het verdere verloop van de ziekte zouden kunnen vertragen of zelfs voorkomen.

Bibliografie

1. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: A disease of the joint as
an organ. Arthritis & Rheumatism. 2012;64(6):1697-707.
2. Finney A, Dziedzic KS, Lewis M, Healey E. Multisite peripheral joint pain: a cross-sectional
study of prevalence and impact on general health, quality of life, pain intensity and consultation
behaviour. BMC Musculoskelet Disord. 2017;18(1):535.
3. Felson DT. Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther.
2009;11(1):203.
4. Long H, Liu Q, Yin H, Wang K, Diao N, Zhang Y, et al. Prevalence Trends of Site-Specific
Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019. Arthritis
& Rheumatology. 2022;74(7):1172-83.
5. Sciensano. Non-communicable Diseases: Musculoskeletal disorders Brussels, Belgium:
Sciensano; 2022. Available from: https://www.healthybelgium.be/en/health-status/non-communicablediseases/
musculoskeletal-disorders.
6. Jordan KP, Jöud A, Bergknut C, Croft P, Edwards JJ, Peat G, et al. International comparisons
of the consultation prevalence of musculoskeletal conditions using population-based healthcare data
from England and Sweden. Ann Rheum Dis. 2014;73(1):212-8.
7. Hunter DJ, McDougall JJ, Keefe FJ. The Symptoms of Osteoarthritis and the Genesis of Pain.
Rheumatic Disease Clinics of North America. 2008;34(3):623-43.
8. Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and burden of osteoarthritis.
Br Med Bull. 2013;105:185-99.
9. Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Practice & Research Clinical
Rheumatology. 2014;28(1):5-15.
10. Osteoarthritis: New Insights. Part 1: The Disease and Its Risk Factors. Annals of Internal
Medicine. 2000;133(8):635-46.
11. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex
differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage.
2005;13(9):769-81.
12. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ.
Osteoarthritis. The Lancet. 2015;386(9991):376-87.
13. Guermazi A, Niu J, Hayashi D, Roemer FW, Englund M, Neogi T, et al. Prevalence of
abnormalities in knees detected by MRI in adults without knee osteoarthritis: Population based
observational study (Framingham Osteoarthritis Study). BMJ (Online). 2012;345(7874).
14. Wood G, Neilson J, Cottrell E, Hoole SP. Osteoarthritis in people over 16: diagnosis and
management—updated summary of NICE guidance. BMJ. 2023;380:p24.
15. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA. Osteoarthritis - an untreatable
disease? Nat Rev Drug Discov. 2005;4(4):331-44.
16. Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with
therapeutic implications. Arthritis Res Ther. 2017;19(1):18.
17. Buckley CD. Macrophages form a protective cellular barrier in joints. Nature.
2019;572(7771):590-2.
18. Smith MD. The normal synovium. Open Rheumatol J. 2011;5:100-6.
19. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone.
2012;51(2):249-57.
20. Wu CL, Harasymowicz NS, Klimak MA, Collins KH, Guilak F. The role of macrophages in
osteoarthritis and cartilage repair. Osteoarthritis Cartilage. 2020;28(5):544-54.
21. Prieto-Potin I, Largo R, Roman-Blas JA, Herrero-Beaumont G, Walsh DA. Characterization of
multinucleated giant cells in synovium and subchondral bone in knee osteoarthritis and rheumatoid
arthritis. BMC Musculoskelet Disord. 2015;16(1):226.
22. Milner JM, Kevorkian L, Young DA, Jones D, Wait R, Donell ST, et al. Fibroblast activation
protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in
osteoarthritis. Arthritis Res Ther. 2006;8(1):R23.
PAGE
46/50
23. Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, et al. Macrophages play a key role in tissue
repair and regeneration. PeerJ. 2022;10:e14053.
24. Loeser RF. Pathogenesis of osteoarthritis: Wolters Kluwer; 2021. Available from:
https://www.uptodate.com/contents/pathogenesis-of-osteoarthritis/print.
25. Bröker BM, Edwards JCW, Fanger MW, Lydyard PM. The Prevalence and Distribution of
Macrophages Bearing FcγR I, FcγR II, and FcγR III in Synovium. Scandinavian Journal of
Rheumatology. 1990;19(2):123-35.
26. Zhang L, Xing R, Huang Z, Ding L, Zhang L, Li M, et al. Synovial Fibrosis Involvement in
Osteoarthritis. Front Med (Lausanne). 2021;8:684389.
27. Rim YA, Ju JH. The Role of Fibrosis in Osteoarthritis Progression. Life. 2021;11(1):3.
28. Sweeney SE, Firestein GS. Rheumatoid arthritis: regulation of synovial inflammation. Int J
Biochem Cell Biol. 2004;36(3):372-8.
29. CLUSTER OF DIFFERENTIATION (CD) ANTIGENS. Immunology Guidebook. 2004:47-124.
30. Denu RA, Nemcek S, Bloom DD, Goodrich AD, Kim J, Mosher DF, Hematti P. Fibroblasts and
Mesenchymal Stromal/Stem Cells Are Phenotypically Indistinguishable. Acta Haematol.
2016;136(2):85-97.
31. Hussaini HM, Seo B, Rich AM. Immunohistochemistry and Immunofluorescence. In: Seymour
GJ, Cullinan MP, Heng NCK, Cooper PR, editors. Oral Biology: Molecular Techniques and
Applications. New York, NY: Springer US; 2023. p. 439-50.
32. Magaki S, Hojat SA, Wei B, So A, Yong WH. An Introduction to the Performance of
Immunohistochemistry. In: Yong WH, editor. Biobanking: Methods and Protocols. New York, NY:
Springer New York; 2019. p. 289-98.
33. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and
applications. Crit Rev Biotechnol. 2017;37(2):163-76.
34. McKinnon KM. Flow Cytometry: An Overview. Curr Protoc Immunol. 2018;120:5.1.-5.1.11.
35. Wilkerson MJ. Principles and applications of flow cytometry and cell sorting in companion
animal medicine. Vet Clin North Am Small Anim Pract. 2012;42(1):53-71.
36. Ibrahim SF, van den Engh G. High-speed cell sorting: fundamentals and recent advances.
Current Opinion in Biotechnology. 2003;14(1):5-12.
37. Shen MJ, Olsthoorn RCL, Zeng Y, Bakkum T, Kros A, Boyle AL. Magnetic-Activated Cell
Sorting Using Coiled-Coil Peptides: An Alternative Strategy for Isolating Cells with High Efficiency and
Specificity. ACS Appl Mater Interfaces. 2021;13(10):11621-30.
38. Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V.
Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J
Mol Sci. 2022;23(9).
39. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of
osteoarthritis. Nature Reviews Rheumatology. 2014;10(7):437-41.
40. Kotlarz H, Gunnarsson CL, Fang H, Rizzo JA. Insurer and out-of-pocket costs of osteoarthritis
in the US: evidence from national survey data. Arthritis Rheum. 2009;60(12):3546-53.
41. Mak S, Thomas A. Steps for Conducting a Scoping Review. J Grad Med Educ.
2022;14(5):565-7.
42. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. International
Journal of Social Research Methodology. 2005;8(1):19-32.
43. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The
PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
44. Brühl H, Mack M, Niedermeier M, Lochbaum D, Schölmerich J, Straub RH. Functional
expression of the chemokine receptor CCR7 on fibroblast-like synoviocytes. Rheumatology (Oxford).
2008;47(12):1771-4.
45. Capellino S, Cosentino M, Luini A, Bombelli R, Lowin T, Cutolo M, et al. Increased expression
of dopamine receptors in synovial fibroblasts from patients with rheumatoid arthritis: inhibitory effects
of dopamine on interleukin-8 and interleukin-6. Arthritis Rheumatol. 2014;66(10):2685-93.
46. Chang X, Shen J, Yang H, Xu Y, Gao W, Wang J, et al. Upregulated expression of CCR3 in
osteoarthritis and CCR3 mediated activation of fibroblast-like synoviocytes. Cytokine. 2016;77:211-9.
47. Dong L, Zhao Y, Sun C, Ou Yang Z, Chen F, Hu W, et al. ASIC1a-CMPK2-mediated M1
macrophage polarization exacerbates chondrocyte senescence in osteoarthritis through IL-18. Int
Immunopharmacol. 2023;124:110878.
PAGE
47/50
48. Gu C, Chen M, Li X, Geng D, Wang C. MAGL regulates synovial macrophage polarization vis
inhibition of mitophagy in osteoarthritic pain. Mol Med Rep. 2023;27(6).
49. Hsueh MF, Zhang X, Wellman SS, Bolognesi MP, Kraus VB. Synergistic Roles of
Macrophages and Neutrophils in Osteoarthritis Progression. Arthritis Rheumatol. 2021;73(1):89-99.
50. Huang W, Zhang L, Cheng C, Shan W, Ma R, Yin Z, Zhu C. Parallel comparison of fibroblastlike
synoviocytes from the surgically removed hyperplastic synovial tissues of rheumatoid arthritis and
osteoarthritis patients. BMC Musculoskelet Disord. 2019;20(1):591.
51. Kraus VB, McDaniel G, Huebner JL, Stabler TV, Pieper CF, Shipes SW, et al. Direct in vivo
evidence of activated macrophages in human osteoarthritis. Osteoarthritis Cartilage.
2016;24(9):1613-21.
52. Lin YM, Hsu CJ, Liao YY, Chou MC, Tang CH. The CCL2/CCR2 axis enhances vascular cell
adhesion molecule-1 expression in human synovial fibroblasts. PLoS One. 2012;7(11):e49999.
53. Liu JF, Hou SM, Tsai CH, Huang CY, Hsu CJ, Tang CH. CCN4 induces vascular cell
adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion.
Biochim Biophys Acta. 2013;1833(5):966-75.
54. Manferdini C, Paolella F, Gabusi E, Gambari L, Piacentini A, Filardo G, et al. Adipose stromal
cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by
PGE2: in vitro evaluation. Osteoarthritis Cartilage. 2017;25(7):1161-71.
55. Manferdini C, Paolella F, Gabusi E, Silvestri Y, Gambari L, Cattini L, et al. From osteoarthritic
synovium to synovial-derived cells characterization: synovial macrophages are key effector cells.
Arthritis Res Ther. 2016;18:83.
56. Manferdini C, Saleh Y, Dolzani P, Gabusi E, Trucco D, Filardo G, Lisignoli G. Impact of
Isolation Procedures on the Development of a Preclinical Synovial Fibroblasts/Macrophages in an In
Vitro Model of Osteoarthritis. Biology (Basel). 2020;9(12).
57. Mimpen JY, Hedley R, Ridley A, Baldwin MJ, Windell D, Bhalla A, et al. Cellular
characterisation of advanced osteoarthritis knee synovium. Arthritis Res Ther. 2023;25(1):154.
58. Moriya M, Uchida K, Takano S, Iwase D, Inoue G, Muaki M, et al. Expression and regulation
of macrophage-inducible C-type lectin in human synovial macrophages. Cent Eur J Immunol.
2020;45(4):377-81.
59. Noda K, Dufner B, Ito H, Yoshida K, Balboni G, Straub RH. Differential inflammation-mediated
function of prokineticin 2 in the synovial fibroblasts of patients with rheumatoid arthritis compared with
osteoarthritis. Sci Rep. 2021;11(1):18399.
60. Pörings AS, Lowin T, Dufner B, Grifka J, Straub RH. A thyroid hormone network exists in
synovial fibroblasts of rheumatoid arthritis and osteoarthritis patients. Sci Rep. 2019;9(1):13235.
61. Ren G, Al-Jezani N, Railton P, Powell JN, Krawetz RJ. CCL22 induces pro-inflammatory
changes in fibroblast-like synoviocytes. iScience. 2021;24(1):101943.
62. Saito I, Koshino T, Nakashima K, Uesugi M, Saito T. Increased cellular infiltrate in
inflammatory synovia of osteoarthritic knees. Osteoarthritis Cartilage. 2002;10(2):156-62.
63. Tsuneyoshi Y, Tanaka M, Nagai T, Sunahara N, Matsuda T, Sonoda T, et al. Functional folate
receptor beta-expressing macrophages in osteoarthritis synovium and their M1/M2 expression
profiles. Scandinavian journal of rheumatology. 2012;41(2):132-40.
64. van Nie L, Salinas-Tejedor L, Dychus N, Fasbender F, Hülser ML, Cutolo M, et al. Dopamine
induces in vitro migration of synovial fibroblast from patients with rheumatoid arthritis. Sci Rep.
2020;10(1):11928.
65. Watanabe S, Matsushita T, Nishida K, Nagai K, Hoshino Y, Matsumoto T, Kuroda R. Knee
Osteotomy Decreases Joint Inflammation Based on Synovial Histology and Synovial Fluid Analysis.
Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2023.
66. Young L, Katrib A, Cuello C, Vollmer-Conna U, Bertouch JV, Roberts-Thomson PJ, et al.
Effects of intraarticular glucocorticoids on macrophage infiltration and mediators of joint damage in
osteoarthritis synovial membranes: findings in a double-blind, placebo-controlled study. Arthritis
Rheum. 2001;44(2):343-50.
67. Athanasou NA, Quinn J. Immunocytochemical analysis of human synovial lining cells:
phenotypic relation to other marrow derived cells. Ann Rheum Dis. 1991;50(5):311-5.
68. Fiorito S, Magrini L, Adrey J, Mailhé D, Brouty-Boyé D. Inflammatory status and cartilage
regenerative potential of synovial fibroblasts from patients with osteoarthritis and chondropathy.
Rheumatology (Oxford). 2005;44(2):164-71.
PAGE
48/50
69. Manni L, Lundeberg T, Fiorito S, Bonini S, Vigneti E, Aloe L. Nerve growth factor release by
human synovial fibroblasts prior to and following exposure to tumor necrosis factor-alpha, interleukin-
1 beta and cholecystokinin-8: the possible role of NGF in the inflammatory response. Clin Exp
Rheumatol. 2003;21(5):617-24.
70. Ohashi Y, Uchida K, Fukushima K, Satoh M, Koyama T, Tsuchiya M, et al. Correlation
between CD163 expression and resting pain in patients with hip osteoarthritis: Possible contribution of
CD163+ monocytes/macrophages to pain pathogenesis. J Orthop Res. 2022;40(6):1365-74.
71. Pattacini L, Casali B, Boiardi L, Pipitone N, Albertazzi L, Salvarani C. Angiotensin II protects
fibroblast-like synoviocytes from apoptosis via the AT1-NF-kappaB pathway. Rheumatology (Oxford).
2007;46(8):1252-7.
72. Honorati MC, Bovara M, Cattini L, Piacentini A, Facchini A. Contribution of interleukin 17 to
human cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage.
2002;10(10):799-807.
73. Sampey AV, Hutchinson P, Morand EF. Annexin I surface binding sites and their regulation
on human fibroblast-like synoviocytes. Arthritis Rheum. 2000;43(11):2537-42.
74. Choi HS, Ryu CJ, Choi HM, Park JS, Lee JH, Kim KI, et al. Effects of the pro-inflammatory
milieu on the dedifferentiation of cultured fibroblast-like synoviocytes. Mol Med Rep. 2012;5(4):1023-
6.
75. Kunisch E, Fuhrmann R, Roth A, Winter R, Lungershausen W, Kinne RW. Macrophage
specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for
immunohistochemistry and flow cytometry. Ann Rheum Dis. 2004;63(7):774-84.
76. Mardanpour K, Rahbar M, Mardanpour N. Is CD163 - A Marker of Progression in
Osteoarthritis? J Kermanshah Univ Med Sci. 2018;22(4):e69850.
77. Wäldele S, Koers-Wunrau C, Beckmann D, Korb-Pap A, Wehmeyer C, Pap T, Dankbar B.
Deficiency of fibroblast activation protein alpha ameliorates cartilage destruction in inflammatory
destructive arthritis. Arthritis Res Ther. 2015;17(1):12.
78. Bauer S, Jendro MC, Wadle A, Kleber S, Stenner F, Dinser R, et al. Fibroblast activation
protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res Ther.
2006;8(6):R171.
79. Fonseca JE, Edwards JC, Blades S, Goulding NJ. Macrophage subpopulations in rheumatoid
synovium: reduced CD163 expression in CD4+ T lymphocyte-rich microenvironments. Arthritis
Rheum. 2002;46(5):1210-6.
80. Iguchi T, Kurosaka M, Ziff M. Electron microscopic study of HLA-DR and
monocyte/macrophage staining cells in the rheumatoid synovial membrane. Arthritis Rheum.
1986;29(5):600-13.
81. Payet M, Ah-Pine F, Guillot X, Gasque P. Inflammatory Mesenchymal Stem Cells Express
Abundant Membrane-Bound and Soluble Forms of C-Type Lectin-like CD248. Int J Mol Sci.
2023;24(11):9546.
82. Schlaak JF, Schwarting A, Knolle P, Meyer zum Büschenfelde KH, Mayet W. Effects of Th1
and Th2 cytokines on cytokine production and ICAM-1 expression on synovial fibroblasts. Ann Rheum
Dis. 1995;54(7):560-5.
83. Naeim F. Chapter 2 - Principles of Immunophenotyping. In: Naeim F, Rao PN, Grody WW,
editors. Hematopathology. Oxford: Academic Press; 2008. p. 27-55.
84. Bradley JE, Ramirez G, Hagood JS. Roles and regulation of Thy-1, a context-dependent
modulator of cell phenotype. Biofactors. 2009;35(3):258-65.
85. Post TW, Arce MA, Liszewski MK, Thompson ES, Atkinson JP, Lublin DM. Structure of the
gene for human complement protein decay accelerating factor. J Immunol. 1990;144(2):740-4.
86. Kisselbach L, Merges M, Bossie A, Boyd A. CD90 Expression on human primary cells and
elimination of contaminating fibroblasts from cell cultures. Cytotechnology. 2009;59(1):31-44.
87. Underhill C. CD44: The hyaluronan receptor. Journal of Cell Science. 1992;103(2):293-8.
88. Sneath RJ, Mangham DC. The normal structure and function of CD44 and its role in
neoplasia. Mol Pathol. 1998;51(4):191-200.
89. Xue M, McKelvey K, Shen K, Minhas N, March L, Park SY, Jackson CJ. Endogenous MMP-9
and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage
degradation. Rheumatology (United Kingdom). 2014;53(12):2270-9.
PAGE
49/50
90. Ghersi G, Dong H, Goldstein LA, Yeh Y, Hakkinen L, Larjava HS, Chen WT. Regulation of
fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem.
2002;277(32):29231-41.
91. Monsky WL, Lin CY, Aoyama A, Kelly T, Akiyama SK, Mueller SC, Chen WT. A potential
marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma
cells. Cancer Res. 1994;54(21):5702-10.
92. Lauzier A, Charbonneau M, Harper K, Jilaveanu-Pelmus M, Dubois CM. Formation of
invadopodia-like structures by synovial cells promotes cartilage breakdown in collagen-induced
arthritis: involvement of the protein tyrosine kinase Src. Arthritis Rheum. 2011;63(6):1591-602.
93. Lafrenie RM, Yamada KM. Integrin-dependent signal transduction. J Cell Biochem.
1996;61(4):543-53.
94. Mizuno T, Yoshihara Y, Inazawa J, Kagamiyama H, Mori K. cDNA cloning and chromosomal
localization of the human telencephalin and its distinctive interaction with lymphocyte functionassociated
antigen-1. J Biol Chem. 1997;272(2):1156-63.
95. Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: a potent suppressor of antitumor immune
responses. Trends Immunol. 2012;33(5):231-7.
96. Weidle UH, Eggle D, Klostermann S, Swart GW. ALCAM/CD166: cancer-related issues.
Cancer Genomics Proteomics. 2010;7(5):231-43.
97. Yang Y, Hutchinson P, Morand EF. Inhibitory effect of annexin I on synovial inflammation in
rat adjuvant arthritis. Arthritis Rheum. 1999;42(7):1538-44.
98. Yang Y, Leech M, Hutchinson P, Holdsworth SR, Morand EF. Antiinflammatory effect of
lipocortin 1 in experimental arthritis. Inflammation. 1997;21(6):583-96.
99. Kontsekova S, Polcicova K, Takacova M, Pastorekova S. Endosialin: molecular and
functional links to tumor angiogenesis. Neoplasma. 2016;63(2):183-92.
100. Radu P, Zurzu M, Paic V, Bratucu M, Garofil D, Tigora A, et al. CD34-Structure, Functions
and Relationship with Cancer Stem Cells. Medicina (Kaunas). 2023;59(5).
101. Remst DF, Blaney Davidson EN, van der Kraan PM. Unravelling osteoarthritis-related
synovial fibrosis: a step closer to solving joint stiffness. Rheumatology (Oxford). 2015;54(11):1954-63.
102. Gerrits T, Zandbergen M, Wolterbeek R, Bruijn JA, Baelde HJ, Scharpfenecker M. Endoglin
Promotes Myofibroblast Differentiation and Extracellular Matrix Production in Diabetic Nephropathy.
Int J Mol Sci. 2020;21(20).
103. Chen K, Chen J, Li D, Zhang X, Mehta JL. Angiotensin II regulation of collagen type I
expression in cardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension.
2004;44(5):655-61.
104. Köller M, Aringer M, Kiener H, Erlacher L, Machold K, Eberl G, et al. Expression of adhesion
molecules on synovial fluid and peripheral blood monocytes in patients with inflammatory joint
disease and osteoarthritis. Ann Rheum Dis. 1999;58(11):709-12.
105. Cerutti C, Ridley AJ. Endothelial cell-cell adhesion and signaling. Exp Cell Res.
2017;358(1):31-8.
106. Wee H, Oh HM, Jo JH, Jun CD. ICAM-1/LFA-1 interaction contributes to the induction of
endothelial cell-cell separation: implication for enhanced leukocyte diapedesis. Exp Mol Med.
2009;41(5):341-8.
107. Vaisar T, Kassim SY, Gomez IG, Green PS, Hargarten S, Gough PJ, et al. MMP-9 Sheds the
β2 Integrin Subunit (CD18) from Macrophages*S. Molecular & Cellular Proteomics. 2009;8(5):1044-
60.
108. Couture A, Garnier A, Docagne F, Boyer O, Vivien D, Le-Mauff B, et al. HLA-Class II Artificial
Antigen Presenting Cells in CD4(+) T Cell-Based Immunotherapy. Front Immunol. 2019;10:1081.
109. Lattanzi R, Maftei D, Negri L, Fusco I, Miele R. PK2β ligand, a splice variant of prokineticin 2,
is able to modulate and drive signaling through PKR1 receptor. Neuropeptides. 2018;71:32-42.
110. Gabrilovac J, Čupić B, Živković E, Horvat L, Majhen D. Expression, regulation and functional
activities of aminopeptidase N (EC 3.4.11.2; APN; CD13) on murine macrophage J774 cell line.
Immunobiology. 2011;216(1):132-44.
111. Koch AE, Kunkel SL, Harlow LA, Johnson B, Evanoff HL, Haines GK, et al. Enhanced
production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J Clin Invest.
1992;90(3):772-9.
PAGE
50/50
112. Koch AE, Kunkel SL, Harlow LA, Mazarakis DD, Haines GK, Burdick MD, et al. Macrophage
inflammatory protein-1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis. J
Clin Invest. 1994;93(3):921-8.
113. Martel-Pelletier J, McCollum R, Fujimoto N, Obata K, Cloutier JM, Pelletier JP. Excess of
metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in
osteoarthritis and rheumatoid arthritis. Lab Invest. 1994;70(6):807-15.
114. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate Mapping Analysis
Reveals That Adult Microglia Derive from Primitive Macrophages. Science. 2010;330(6005):841-5.
115. Hashimoto D, Chow A, Noizat C, Teo P, Beasley Mary B, Leboeuf M, et al. Tissue-Resident
Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating
Monocytes. Immunity. 2013;38(4):792-804.
116. Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A Lineage
of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science. 2012;336(6077):86-90.
117. Culemann S, Grüneboom A, Nicolás-Ávila JÁ, Weidner D, Lämmle KF, Rothe T, et al. Locally
renewing resident synovial macrophages provide a protective barrier for the joint. Nature.
2019;572(7771):670-5.
118. Yi Y-S, Ayala-López W, Kularatne SA, Low PS. Folate-Targeted Hapten Immunotherapy of
Adjuvant-Induced Arthritis: Comparison of Hapten Potencies. Molecular Pharmaceutics.
2009;6(4):1228-36.

Download scriptie (1.73 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2024
Promotor(en)
Ruth Wittoek
Thema('s)