Een Sociale Bodem is een Efficiënte Bodem

Björn
Hendrickx

 


Je komt terug van een wandeling, draait het slot om en veegt je voeten aan de mat. Zonder het te beseffen, veeg je een hele samenleving van je zolen af. In dat zand - de bodem – schuilen organismegroepen zoals bacteriën, schimmels en microscopische wormen en insecten. Doorheen de jaren is die afgeschraapte gemeenschap echter sterk veranderd. Ook hier vinden we de biodiversiteitscrisis terug en dat heeft heel wat gevolgen voor de functionering van de bodem.

Een bodem functioneert?

Elk organisme in de bodem vervult een bepaald takenpakket. Dit kan het verwerken van afval zijn, maar ook bijvoorbeeld de productie van voedingstoffen. Daarbij is het belangrijk dat de bodemgemeenschap bestaat uit een verzameling van verschillende organismegroepen die met elkaar in interactie gaan. De optelsom van al deze organismen en hun interacties komt uit op een functionerende bodem. 

 

In mijn experiment creëerde ik 240 miniatuur ecosystemen in bloempotten.
Ik vormde met hen een gradiënt van diversiteit. 

Elk ecosysteem bestond uit planten, maar ik liet de diversiteit aan organismen in de bodem steeds toenemen. Ik vertrok van een basis van enkel bacteriën en voegde aan de volgende reeksen ecosystemen steeds meer organismegroepen toe. Zo onderzocht ik het effect dat deze hogere diversiteit had op zowel de bacteriëngroep, als de plantengemeenschap.

 

Mijn onderzoek bevestigt dat de meest diverse bodems het best functioneren. Belangrijker nog, wanneer bepaalde organismen aanwezig waren dan had dit ook een duidelijk effect op andere groepen. Zo zag ik dat de bacteriëngroepen in de meest diverse bodems zelf ook meer divers werden. Het resultaat was dat deze meer diverse bacteriëngroepen zelf óók efficiënter functioneerden.

Stikstof tot nadenken

Specifiek keek ik naar hun capaciteit om stikstof te recycleren. De aanwezige schimmels, wormen en insecten hadden duidelijk een invloed op de samenstelling van de bacteriëngroep. Zowel de hoeveelheid, als de representatie van bacteriële stikstofrecyclers nam toe wanneer de bodemgemeenschap meer divers werd. Als gevolg vloeit stikstof vlotter doorheen deze ecosystemen.

Cruciaal om vervuiling weg te werken, maar stikstof is ook een essentiële voedingstof voor elk levend wezen. Zo rekenen planten op stikstof om bladgroen aan te maken om vervolgens aan fotosynthese te doen.

74% van alle soorten vindt zijn thuis in bodems

Het gras is groener in de sociale bodem

Deze stikstofrecyclage, in combinatie met andere geoptimaliseerde functies, wierp zijn vruchten af. De meest productieve planten groeiden in de meest diverse bodems. Kruiden groeiden aanzienlijk beter, waardoor zij onder andere meer bloemen zullen dragen en meer bestuivers kunnen voeden. In de monotone bodems groeiden de planten dan weer meer wortels. Dit kan een signaal zijn dat zij meer moeten investeren om voldoende voedsel te vinden.

Oké, maar wie boeit dit eigenlijk?

160 miljard soorten. Tot wel 74% van alle soorten vindt zijn thuis in bodems verspreid over de wereld. Reken dan nog eens de extra soorten erbij die dat niet doen, maar wel afhankelijk zijn van voorgaande. Bijen, katten, olifanten, regenwouden, Donald Trump en Kamala Harris. Uiteindelijk steunen ze allemaal wankelend als een Jenga toren op de bodemgemeenschap. Duw tegen het foute blokje en je stort in.

Misschien overdrijf je nu

Absoluut niet. De boterham van deze ochtend, het biertje van vanavond. Het grote merendeel van ons voedsel vindt zijn oorsprong in de bodem. Een gezonde bodem is daarbij steviger verankerd en zo bestendig tegen erosie. Daarnaast zijn bodems essentieel voor waterzuivering en dienen ze als een opslag voor CO2 waardoor ze bijdragen aan de buffering van klimaatopwarming. 

 

Een gezonde bodem is niet enkel divers, maar ook sociaal


Samen zijn we…

De drijfveer achter dit alles is het grote interactienetwerk in de bodem. Een diverse bodemgemeenschap bezit veel mogelijke predatoren en concurrenten. Dat betekent dat het onmogelijk is voor de “sterkste” soorten om te domineren. Zij worden in toom gehouden, waardoor er plaats overblijft voor “zwakkere” soorten om te groeien. Verder kunnen organismegroepen in symbiose gaan, een samenwerking die hen toelaat om beter te presteren dan toen zij alleen waren. Ten laatste is er ook het decompositienetwerk. Organisch afval en bodemorganismen komen in vele maten. Langs een lopende band wordt dit afval doorgegeven aan steeds kleinere organismen en wordt het door hen in steeds kleinere stukjes gehakt. Uiteindelijk kunnen bacteriën en schimmels het afval omzetten naar nutriënten die weer als voedsel kunnen dienen voor het ganse ecosysteem. Wanneer er een tandwiel ontbreekt uit de lopende band, dan hoopt het afval zich hier op en vertraagt ook het proces dat deze nutriënten vrijgeeft. Een gezonde bodem is dus niet enkel divers, maar ook sociaal. 

Wat nu?

Klimaatextremen, overbemesting, vervuiling, versnippering van onze natuurgebieden. Onze biodiversiteit keldert drastisch. We moeten samen op zoek naar alternatieven en oplossingen om de diversiteit van onze bodems en hun functies te kunnen koesteren. Dit loont niet enkel de natuur, maar ook onszelf en de toekomst die we opbouwen.

Er valt zeker wat te leren van onze onderburen. Een diverse bodem-gemeenschap is een bodem die samenwerkt. Met een hogere biodiversiteit komt een efficiëntere werking. Een hoog aantal organismegroepen zorgt ervoor dat deze groepen zelf óók meer divers zijn, zoals we zagen voor bacteriën. Stikstof wordt beter gerecycleerd en planten groeien beter. Ongetwijfeld heeft mijn onderzoek slecht het puntje van de schoenzool geschraapt en dragen bodemgemeenschappen bij aan tal van andere facetten in ons dagelijks leven. Toch is het al duidelijk dat deze ondergrondse bodemgemeenschappen de fundering zijn van ons bovengrondse bestaan.

Bibliografie

[1] StockSnap (Pixabay.com)

[2] Björn Hendrickx

[3] Björn Hendrickx, gemaakt met BrioRender.com
 

REFERENCES 

1. Prakash, S. & Verma, A. K. ANTHROPOGENIC ACTIVITIES AND BIODIVERSITY THREATS. International Journal of Biological Innovations 04, 94–103 (2022). 2. Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: A late pleistocene, holocene, and anthropocene continuum. Anthropocene 4, 14–23 (2013). 3. Ehrlich, P. R., Ceballos, G. & García, A. The Sixth Extinction Crisis The Sixth Extinction Crisis Loss of Animal Populations and Species. JournalofCosmology.com vol. 8 https://www.researchgate.net/publication/285807372 (2010). 4. Turvey, S. T. & Crees, J. J. Extinction in the Anthropocene. Current Biology vol. 29 R982–R986 Preprint at https://doi.org/10.1016/j.cub.2019.07.040 (2019). 5. Nelson, G. C. et al. Anthropogenic Drivers of Ecosystem Change: An Overview. vol. 11 https://www.jstor.org/stable/26266018 (2006). 6. Jaureguiberry, P. et al. The Direct Drivers of Recent Global Anthropogenic Biodiversity Loss. Sci. Adv vol. 8 https://www.science.org (2022). 7. Eisenhauer, N. et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. Journal of Vegetation Science 27, 1061–1070 (2016). 8. Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Global Environmental Change 28, 289–297 (2014). 9. Pereira, H. M. et al. Scenarios for Global Biodiversity in the 21st Century. https://www.science.org (2010) doi:10.1126/science.1196624. 10. Hanley, N. & Perrings, C. The Economic Value of Biodiversity. (2019) doi:10.1146/annurevresource-100518. 11. Khalifa, S. A. M. et al. Overview of bee pollination and its economic value for crop production. Insects 12, (2021). 12. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol Monogr 75, 3–35 (2005). 13. Voris, P. Van, O’neill, R. V, Emanuel, W. R. & Shugart, H. H. Functional Complexity and Ecosystem Stability. Source: Ecology vol. 61 (1980). 14. Griffin, J. N. et al. Biodiversity and the stability of ecosystem functioning. in Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (Oxford University Press, 2009). doi:10.1093/acprof:oso/9780199547951.003.0006. 15. Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol Lett 16, 106–115 (2013). 16. Montoya, J. M. & Raffaelli, D. Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B: Biological Sciences vol. 365 2013–2018 Preprint at https://doi.org/10.1098/rstb.2010.0114 (2010). 17. Tallis, H. & Kareiva, P. Essay Ecosystem Services. Current Biology vol. 15 http://esd.uvm.edu/. 69 18. Fu, B., Wang, S., Su, C. & Forsius, M. Linking ecosystem processes and ecosystem services. Current Opinion in Environmental Sustainability vol. 5 4–10 Preprint at https://doi.org/10.1016/j.cosust.2012.12.002 (2013). 19. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015). 20. Ives, A. R., Cardinale, B. J. & Snyder, W. E. A synthesis of subdisciplines: Predator-prey interactions, and biodiversity and ecosystem functioning. Ecology Letters vol. 8 102–116 Preprint at https://doi.org/10.1111/j.1461-0248.2004.00698.x (2005). 21. Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecology Letters vol. 11 1351–1363 Preprint at https://doi.org/10.1111/j.1461-0248.2008.01250.x (2008). 22. Andresen, E., Arroyo-Rodríguez, V. & Escobar, F. Tropical Biodiversity: The Importance of Biotic Interactions for Its Origin, Maintenance, Function, and Conservation. in Ecological Networks in the Tropics: An Integrative Overview of Species Interactions from Some of the Most SpeciesRich Habitats on Earth (eds. Dáttilo, W. & Rico-Gray, V.) 1–13 (Springer International Publishing, Cham, 2018). doi:10.1007/978-3-319-68228-0_1. 23. Boyce, M. S. Wolves for Yellowstone: Dynamics in time and space. J Mammal 99, 1021–1031 (2018). 24. Beschta, R. L. & Ripple, W. J. Earth Surface Processes and Landforms Earth Surf. Earth Surf. Process. Landforms 31, 1525–1539 (2006). 25. Stocker, G. C. & Irvine, A. K. Seed Dispersal by Cassowaries (Casuarius casuarius) in North Queensland’s Rainforests. Biotropica 15, 170–176 (1983). 26. Campbell, M. A. et al. The southern cassowary (Casuarius casuarius johnsonii) remains an important disperser of native plants in fragmented rainforest landscapes. Austral Ecol 48, 787– 802 (2023). 27. Hartemink, A. E. & McBratney, A. A soil science renaissance. Geoderma 148, 123–129 (2008). 28. Puig de la Bellacasa, M. Re-animating soils: Transforming human–soil affections through science, culture and community. Sociological Review 67, 391–407 (2019). 29. Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J. & Lavelle, P. The values of soil animals for conservation biology. Eur J Soil Biol 42, (2006). 30. Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc Natl Acad Sci U S A 120, (2023). 31. Mishra, A., Singh, L. & Singh, D. Unboxing the black box—one step forward to understand the soil microbiome: A systematic review. Microbial Ecology vol. 85 669–683 Preprint at https://doi.org/10.1007/s00248-022-01962-5 (2023). 32. Delgado-Baquerizo, M., Grinyer, J., Reich, P. B. & Singh, B. K. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct Ecol 30, 1862–1873 (2016). 33. Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7, (2016). 70 34. Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature vol. 515 505–511 Preprint at https://doi.org/10.1038/nature13855 (2014). 35. Fitter, A. H. et al. ESSAY REVIEW Biodiversity and ecosystem function in soil. Funct Ecol 19, 369–377 (2005). 36. Yin, B., Crowley, D., Sparovek, G., De Melo, W. J. & Borneman, J. Bacterial Functional Redundancy along a Soil Reclamation Gradient. APPLIED AND ENVIRONMENTAL MICROBIOLOGY vol. 66 https://journals.asm.org/journal/aem (2000). 37. Setälä, H., Berg, M. P. & Jones, T. H. Trophic structure and functional redundancy in soil communities. in Biological Diversity and Function in Soils 236–249 (Cambridge University Press, 2009). doi:10.1017/cbo9780511541926.014. 38. Louca, S. et al. Function and functional redundancy in microbial systems. Nat Ecol Evol 2, 936– 943 (2018). 39. Maron, P. A. et al. High microbial diversity promotes soil ecosystem functioning. Appl Environ Microbiol 84, (2018). 40. Allison, S. D. & Martiny, J. B. H. Resistance, Resilience, and Redundancy in Microbial Communities. www.pnas.org/cgi/content/full/ (2008). 41. Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11, (2020). 42. Eisenhauer, N., Scheu, S. & Jousset, A. Bacterial diversity stabilizes community productivity. PLoS One 7, (2012). 43. Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol 4, 210–220 (2020). 44. Eisenhauer, N., Hines, J., Maestre, F. T. & Rillig, M. C. Reconsidering functional redundancy in biodiversity research. npj Biodiversity 2, (2023). 45. DYNAMIC FOOD WEBS: MULTISPECIES ASSEMBLAGES, ECOSYSTEM DEVELOPMENT, AND ENVIRONMENTAL CHANGE. 46. Trap, J., Bonkowski, M., Plassard, C., Villenave, C. & Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil vol. 398 1–24 Preprint at https://doi.org/10.1007/s11104-015-2671-6 (2016). 47. Clarholm, M. INTERACTIONS OF BACTERIA, PROTOZOA AND PLANTS LEADING TO MINERALIZATION OF SOIL NITROGEN. Soil &of. Biochem vol. 17 (1985). 48. Jiao, S., Peng, Z., Qi, J., Gao, J. & Wei, G. Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling. https://journals.asm.org/journal/msystems (2021). 49. Coleman, D. C., Callaham, M. A. & Crossley, D. A. Decomposition and Nutrient Cycling. in Fundamentals of Soil Ecology 173–211 (Elsevier, 2018). doi:10.1016/b978-0-12-805251- 8.00005-3. 50. Bani, A. et al. The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology vol. 126 75–84 Preprint at https://doi.org/10.1016/j.apsoil.2018.02.017 (2018). 71 51. Hayatsu, M., Tago, K. & Saito, M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition vol. 54 33–45 Preprint at https://doi.org/10.1111/j.1747-0765.2007.00195.x (2008). 52. Seppey, C. V. W. et al. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem 112, 68–76 (2017). 53. Erktan, A., Rillig, M. C., Carminati, A., Jousset, A. & Scheu, S. Protists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumerprey systems. Biogeosciences 17, 4961–4980 (2020). 54. Rønn, R., McCaig, A. E., Griffiths, B. S. & Prosser, J. I. Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68, 6094–6105 (2002). 55. Asiloglu, R. et al. Top-down effects of protists are greater than bottom-up effects of fertilisers on the formation of bacterial communities in a paddy field soil. Soil Biol Biochem 156, (2021). 56. Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: Puppet Masters of the Rhizosphere Microbiome. Trends in Plant Science vol. 24 165–176 Preprint at https://doi.org/10.1016/j.tplants.2018.10.011 (2019). 57. Hai-Feng, X., Gen, L., Da-Ming, L., Feng, H. & Hui-Xin, L. Effect of Different Bacterial-Feeding Nematode Species on Soil Bacterial Numbers, Activity, and Community Composition * 1. Pedosphere vol. 24 (2014). 58. Nitrogen mineralisation in soil in microcosms with or without bacterivorous nematodes and nematophagous mites. 59. Djigal, D., Brauman, A., Diop, T. A., Chotte, J. L. & Villenave, C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biol Biochem 36, 323–331 (2004). 60. Salminen, J., Hernesmaa, A., Karjalainen, H., Fritze, H. & Romantschuk, M. Activity of nematodes and enchytraeids, bacterial community composition, and functional redundancy in coniferous forest soil. Biol Fertil Soils 46, 113–126 (2010). 61. Brussaard, L., Kools, J. P., Bouwman, L. A. & De Ruiter, P. C. 6.7. POPULATION DYNAMICS AND NITROGEN MINERALIZATION RATES IN SOIL AS INFLUENCED BY BACTERIAL GRAZING NEMATODES AND MITES 1. 62. Zhou, J. et al. Dynamic changes of bacterial community under the influence of bacterialfeeding nematodes grazing in prometryne contaminated soil. Applied Soil Ecology 64, 70–76 (2013). 63. Coulibaly, S. F. M. et al. Functional assemblages of Collembola determine soil microbial communities and associated functions. Front Environ Sci 7, (2019). 64. Siepel, H. & Maaskamp, F. Mites of different feeding guilds affect decomposition of organic matter. Soil Biol Biochem 26, 1389–1394 (1994). 65. Beretta, G. M., Deere, J. A., Messelink, G. J., Muñoz-Cárdenas, K. & Janssen, A. Review: predatory soil mites as biocontrol agents of above- and below-ground plant pests. 72 Experimental and Applied Acarology vol. 87 143–162 Preprint at https://doi.org/10.1007/s10493-022-00723-w (2022). 66. Endlweber, K. & Scheu, S. Effects of Collembola on root properties of two competing ruderal plant species. Soil Biol Biochem 38, 2025–2031 (2006). 67. Endlweber, K. & Scheu, S. Interactions between mycorrhizal fungi and Collembola: Effects on root structure of competing plant species. Biol Fertil Soils 43, 741–749 (2007). 68. Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009). 69. De Boer, W., Folman, L. B., Summerbell, R. C. & Boddy, L. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews vol. 29 795–811 Preprint at https://doi.org/10.1016/j.femsre.2004.11.005 (2005). 70. Zheng, W., Zhao, Z., Gong, Q., Zhai, B. & Li, Z. Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol Biochem 125, 54–63 (2018). 71. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. 72. Meidute, S., Demoling, F. & Bååth, E. Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biol Biochem 40, 2334–2343 (2008). 73. Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: The role of smallscale heterogeneity. PLoS One 5, (2010). 74. Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology vol. 15 579–590 Preprint at https://doi.org/10.1038/nrmicro.2017.87 (2017). 75. Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology vol. 15 579–590 Preprint at https://doi.org/10.1038/nrmicro.2017.87 (2017). 76. Geisen, S. The Future of (Soil) Microbiome Studies: Current Limitations, Integration, and Perspectives. (2021) doi:10.1128/mSystems. 77. European Commission. Joint Research Centre. & Global Soil Biodiversity Initiative. Global Soil Biodiversity Atlas. 78. Baldrian, P. The known and the unknown in soil microbial ecology. FEMS Microbiology Ecology vol. 95 Preprint at https://doi.org/10.1093/femsec/fiz005 (2019). 79. Hoorman, J. J. The Role of Soil Bacteria [Fact Sheet]. (2011). 80. Hayat, R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology vol. 60 579–598 Preprint at https://doi.org/10.1007/s13213-010-0117-1 (2010). 73 81. Dellagi, A., Quillere, I. & Hirel, B. Beneficial soil-borne bacteria and fungi: A promising way to improve plant nitrogen acquisition. Journal of Experimental Botany vol. 71 4469–4479 Preprint at https://doi.org/10.1093/jxb/eraa112 (2020). 82. Osburn, E. D., Yang, G., Rillig, M. C. & Strickland, M. S. Evaluating the role of bacterial diversity in supporting soil ecosystem functions under anthropogenic stress. ISME Communications 3, (2023). 83. Gessner, M. O. et al. Diversity meets decomposition. Trends in Ecology and Evolution vol. 25 372–380 Preprint at https://doi.org/10.1016/j.tree.2010.01.010 (2010). 84. Mysen, B. Nitrogen in the Earth: abundance and transport. Progress in Earth and Planetary Science vol. 6 Preprint at https://doi.org/10.1186/s40645-019-0286-x (2019). 85. Smith, P. et al. Global change pressures on soils from land use and management. Glob Chang Biol 22, 1008–1028 (2016). 86. Finzi, A. C. et al. Increases in Nitrogen Uptake Rather than Nitrogen-Use Efficiency Support Higher Rates of Temperate Forest Productivity under Elevated CO 2. www.pnas.org/cgi/content/full/ (2007). 87. Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14, 349–357 (2011). 88. Jetten, M. S. M. The microbial nitrogen cycle. Environmental Microbiology vol. 10 2903–2909 Preprint at https://doi.org/10.1111/j.1462-2920.2008.01786.x (2008). 89. Philippot, L. & Germon, J. C. Contribution of Bacteria to Initial Input and Cycling of Nitrogen in Soils. in Microorganisms in Soils: Roles in Genesis and Functions (eds. Varma, A. & Buscot, F.) 159–176 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005). doi:10.1007/3-540-26609-7_8. 90. Prosser, J. I. Autotrophic Nitrification in Bacteria. in Advances in Microbial Physiology (eds. Rose, A. H. & Tempest, D. W.) vol. 30 125–181 (Academic Press, 1990). 91. Pan, W. L., Madsen, I. J., Bolton, R. P., Graves, L. & Sistrunk, T. Ammonia/ammonium toxicity root symptoms induced by inorganic and organic fertilizers and placement. Agron J 108, 2485– 2492 (2016). 92. Francis, C. A., Beman, J. M. & Kuypers, M. M. M. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaeal ammonia oxidation. ISME Journal vol. 1 19–27 Preprint at https://doi.org/10.1038/ismej.2007.8 (2007). 93. Cabello, P., Roldán, M. D. & Moreno-Vivián, C. Nitrate reduction and the nitrogen cycle in archaea. Microbiology vol. 150 3527–3546 Preprint at https://doi.org/10.1099/mic.0.27303-0 (2004). 94. Firestone, M. K. Biological Denitrification. in Nitrogen in Agricultural Soils 289–326 (1982). doi:https://doi.org/10.2134/agronmonogr22.c8. 95. Tiedje, J. M. Denitrification. in Methods of Soil Analysis 1011–1026 (1982). doi:https://doi.org/10.2134/agronmonogr9.2.2ed.c47. 96. Stewart, W. D. P. Biological and Ecological Aspects of Nitrogen Fixation by Free-Living m IcroOrganism s. Proc. Roy. Soc. B vol. 172 https://royalsocietypublishing.org/ (1969). 74 97. Franche, C., Lindström, K. & Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil vol. 321 35–59 Preprint at https://doi.org/10.1007/s11104-008-9833-8 (2009). 98. Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ 32, 666–681 (2009). 99. Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports vol. 39 3–17 Preprint at https://doi.org/10.1007/s00299-019-02447-5 (2020). 100. Raynaud, X., Lata, J. C. & Leadley, P. W. Soil microbial loop and nutrient uptake by plants: A test using a coupled C:N model of plant-microbial interactions. Plant Soil 287, 95–116 (2006). 101. Harley, J. L. The significance of mycorrhiza. Mycol Res 92, 129–139 (1989). 102. Franco, J. A., Bañón, S., Vicente, M. J., Miralles, J. & Martínez-Sánchez, J. J. Review Article:Root development in horticultural plants grown under abiotic stress conditions – a review. J Hortic Sci Biotechnol 86, 543–556 (2011). 103. Suttie, J. M., Reynolds, S. G. & Batello, C. Grasslands of the World. (FAO, Rome, Italy, 2005). 104. Tilman, D. Diversity and Production in European Grasslands. Science (1979) 286, 1099–1100 (1999). 105. Huyghe, C., De Vliegher, A. & Golinski, P. European grasslands overview: temperate region. Grassland Science in Europe 19, 29–40 (2014). 106. Lemaire, G., Hodgson, J. & Chabbi, A. Grassland Productivity and Ecosystem Services. (2011). doi:10.1079/9781845938093.A. 107. Bengtsson, J. et al. Grasslands—more important for ecosystem services than you might think. Ecosphere 10, (2019). 108. Peeters, A. Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassland Science vol. 55 113–125 Preprint at https://doi.org/10.1111/j.1744-697X.2009.00154.x (2009). 109. Hector, A. et al. Plant Diversity and Productivity Experiments in European Grasslands. https://www.science.org (1999). 110. Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat Commun 11, (2020). 111. Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc Natl Acad Sci U S A 111, 14478–14483 (2014). 112. Wagg, C., Bender, S. F., Widmer, F. & Van Der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111, 5266–5270 (2014). 113. Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res 41, (2013). 75 114. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science (1979) 353, 1272–1277 (2016). 115. Sansupa, C. et al. Can we use functional annotation of prokaryotic taxa (Faprotax) to assign the ecological functions of soil bacteria? Applied Sciences (Switzerland) 11, 1–17 (2021). 116. Brüssow, H. Bacteria between protists and phages: From antipredation strategies to the evolution of pathogenicity. Molecular Microbiology vol. 65 583–589 Preprint at https://doi.org/10.1111/j.1365-2958.2007.05826.x (2007). 117. Scheu, S. & Schaefer, M. Bottom-up control of the soil macrofauna community in a beechwood on limestone: Manipulation of food resources. Ecology 79, 1573–1585 (1998). 118. Pace, M. L. & Cole, J. J. Comparative and experimental approaches to top-down and bottomup regulation of bacteria. Microb Ecol 28, 181–193 (1994). 119. Romdhane, S. et al. Unraveling negative biotic interactions determining soil microbial community assembly and functioning. ISME Journal 16, 296–306 (2022). 120. Zhang, Y. et al. Fungi–nematode interactions: Diversity, ecology, and biocontrol prospects in agriculture. Journal of Fungi vol. 6 1–24 Preprint at https://doi.org/10.3390/jof6040206 (2020). 121. Goberna, M., García, C. & Verdú, M. A role for biotic filtering in driving phylogenetic clustering in soil bacterial communities. Global Ecology and Biogeography 23, 1346–1355 (2014). 122. de Souza Sant’Ana, A., Alvarenga, V. O., Oteiza, J. M. & Peña, W. E. L. Alicyclobacillus. in Encyclopedia of Food Microbiology (Second Edition) (eds. Batt, C. A. & Tortorello, M. Lou) 42– 53 (Academic Press, Oxford, 2014). doi:https://doi.org/10.1016/B978-0-12-384730-0.00380-3. 123. Yu, F. M. et al. Morel Production Associated with Soil Nitrogen-Fixing and Nitrifying Microorganisms. Journal of Fungi 8, (2022). 124. Grady, E. N., MacDonald, J., Liu, L., Richman, A. & Yuan, Z. C. Current knowledge and perspectives of Paenibacillus: A review. Microbial Cell Factories vol. 15 Preprint at https://doi.org/10.1186/s12934-016-0603-7 (2016). 125. Asaf, S., Numan, M., Khan, A. L. & Al-Harrasi, A. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 40, 138– 152 (2020). 126. Hirsch, A. M. & Valdés, M. Micromonospora: An important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biology and Biochemistry vol. 42 536–542 Preprint at https://doi.org/10.1016/j.soilbio.2009.11.023 (2010). 127. Wei, C. et al. Comparative analysis of the structure and function of rhizosphere microbiome of the Chinese medicinal herb Alisma in different regions. Arch Microbiol 204, (2022). 128. Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N. & Bagyaraj, D. J. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology vol. 128 1583– 1594 Preprint at https://doi.org/10.1111/jam.14506 (2020). 129. Radujković, D. et al. Consistent predictors of microbial community composition across spatial scales in grasslands reveal low context-dependency. Mol Ecol 32, 6924–6938 (2023). 76 130. Smercina, D. N., Evans, S. E., Friesen, M. L. & Tiemann, L. K. To fix or not to fix: Controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology vol. 85 Preprint at https://doi.org/10.1128/AEM.02546-18 (2019). 131. Menge, D. N. L., Levin, S. A. & Hedin, L. O. Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. American Naturalist 174, 465–477 (2009). 132. Yu, L., Peng, D. & Ren, Y. Protozoan predation on nitrification performance and microbial community during bioaugmentation. Bioresour Technol 102, 10855–10860 (2011). 133. Pogue, A. J. & Gilbride, K. A. Impact of protozoan grazing on nitrification and the ammoniaand nitrite-oxidizing bacterial communities in activated sludge. Can J Microbiol 53, 559–571 (2007). 134. Kim, B. & Nerenberg, R. Effects of eukaryotic predation on nitrifying MABR biofilms. Water Res 209, (2022). 135. Gubry-Rangin, C., Nicol, G. W. & Prosser, J. I. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74, 566–574 (2010). 136. Fukushima, T. et al. Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions. Appl Microbiol Biotechnol 97, 6513–6523 (2013). 137. Elizabeth, F., A, K. J. & Annette, B. Competition between Ammonia-Oxidizing Archaea and Bacteria from Freshwater Environments. Appl Environ Microbiol 87, e01038-21 (2021). 138. W, H. L. et al. DegePrime, a Program for Degenerate Primer Design for Broad-Taxonomic-Range PCR in Microbial Ecology Studies. Appl Environ Microbiol 80, 5116–5123 (2014). 139. Martínez-Espinosa, C. et al. Denitrification in wetlands: A review towards a quantification at global scale. Science of The Total Environment 754, 142398 (2021). 140. Sarris, T. S. et al. The effects of denitrification parameterization and potential benefits of spatially targeted regulation for the reduction of N-discharges from agriculture. J Environ Manage 247, 299–312 (2019). 141. Wagg, C., Bender, S. F., Widmer, F. & Van Der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111, 5266–5270 (2014). 142. Wagg, C., Bender, S. F., Widmer, F. & Van Der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111, 5266–5270 (2014). 143. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. 144. Pellkofer, S., Van Der Heijden, M. G. A., Schmid, B. & Wagg, C. Soil communities promote temporal stability and species asynchrony in experimental grassland communities. PLoS One 11, (2016). 145. Kulmatiski, A. et al. Most soil trophic guilds increase plant growth: a meta-analytical review. Oikos 123, 1409–1419 (2014). 77 146. Martínez-García, L. B., De Deyn, G. B., Pugnaire, F. I., Kothamasi, D. & van der Heijden, M. G. A. Symbiotic soil fungi enhance ecosystem resilience to climate change. Glob Chang Biol 23, 5228–5236 (2017). 147. Wang, M., De Deyn, G. B. & Bezemer, T. M. Separating effects of soil microorganisms and nematodes on plant community dynamics. Plant Soil 441, 455–467 (2019). 148. Eisenhauer, N. et al. Nematicide impacts on nematodes and feedbacks on plant productivity in a plant diversity gradient. Acta Oecologica 36, 477–483 (2010). 149. Duell, E. B., O’Hare, A. & Wilson, G. W. T. Inoculation with native soil improves seedling survival and reduces non-native reinvasion in a grassland restoration. Restor Ecol 31, (2023). 150. Small, C. C., Degenhardt, D. & McDonald, T. Plant growth regulators for enhancing Alberta native grass and forb seed germination. Ecol Eng 142, 100003 (2019). 151. Li, J. H. et al. Plant functional groups, grasses versus forbs, differ in their impact on soil carbon dynamics with nitrogen fertilization. Eur J Soil Biol 75, 79–87 (2016). 152. Eldridge, D. J. et al. Experimental evidence of strong relationships between soil microbial communities and plant germination. Journal of Ecology 109, 2488–2498 (2021). 153. Hassan, N. et al. Effects and mechanism of plant litter on grassland ecosystem: A review. Acta Ecologica Sinica vol. 41 341–345 Preprint at https://doi.org/10.1016/J.CHNAES.2021.02.006 (2021). 154. Miransari, M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology vol. 12 563–569 Preprint at https://doi.org/10.1111/j.1438-8677.2009.00308.x (2010). 155. Verschoor, B. C. Carbon and nitrogen budgets of plant-feeding nematodes in grasslands of different productivity. Applied Soil Ecology 20, 15–25 (2002). 156. Thomson, B. C., Ostle, N. J., McNamara, N. P., Whiteley, A. S. & Griffiths, R. I. Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates. J Microbiol Methods 83, 69–73 (2010). 157. Blaud, A., Menon, M., van der Zaan, B., Lair, G. J. & Banwart, S. A. Chapter Five - Effects of Dry and Wet Sieving of Soil on Identification and Interpretation of Microbial Community Composition. in Advances in Agronomy (eds. Banwart, S. A. & Sparks, D. L.) vol. 142 119–142 (Academic Press, 2017). 158. Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007). 159. Bach, E. M. & Hofmockel, K. S. A time for every season: Soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy. GCB Bioenergy 8, 588–599 (2016). 160. Klotz, F. et al. Quantification of archaea-driven freshwater nitrification from single cell to ecosystem levels. ISME Journal 16, 1647–1656 (2022).

Download scriptie (3.92 MB)
Universiteit of Hogeschool
Universiteit Antwerpen
Thesis jaar
2024
Promotor(en)
Erik Verbruggen, Dajana Radujković