Kunnen we door bomen te kappen bossen redden? Hoewel bossen een belangrijke tool zijn om klimaatverandering te beperken, worden ze zelf ook blootgesteld aan klimaatverandering. De hogere temperaturen en meer frequente en intense droogtes zorgen voor stress in onze bossen. Hierdoor verliezen bomen sneller hun blad, worden ze makkelijker aangetast door insecten en schimmels en kunnen individuele bomen zelfs helemaal afsterven. Klimaatverandering maakt de bomen met andere woorden wat grieperig.
De vraag is nu of wij als bosbeheerders onze bossen kunnen helpen om stabieler met klimaatverandering om te gaan. Wij onderzochten dit in één van de grootste boscomplexen in Vlaanderen, het Meerdaalwoud en Heverleebos, ten zuiden van Leuven.
Foto: Een beheerd bestand in Heverleebos.
Bosbeheer in actie
Bossen kunnen we op verschillende manieren beheren. Eén veel voorkomende lokale beheeringreep is dunning. Hierbij kapt de bosbeheerder enkele bomen in een bestand weg, wat ertoe leidt dat de overgebleven bomen meer ruimte krijgen. Bijgevolg daalt de competitie tussen de bomen voor water, voedingsstoffen en licht. Als er minder mensen komen opdagen op je feestje, zal elke persoon bijgevolg een groter stuk taart kunnen eten. Dit is net zo voor bomen; indien er minder bomen staan, heeft elke individuele boom meer water en voedingsstoffen voor zichzelf.
In het licht van de klimaatverandering, waarbij droogtes, hittegolven en andere verstoringen vaak frequenter worden, biedt het verdelen van de beschikbare hoeveelheid water onder minder bomen duidelijk voordelen voor de overgebleven bomen. Daarom vermoedden we dat een hogere dunningsintensiteit, wat betekent dat een groter aandeel van de bomen wordt weggehaald bij elke dunning, onze bossen stabieler zou maken tegen de klimaatverandering.
Een blik in de toekomst?
Het toekomstige klimaat is onzeker; meerdere klimaatveranderingsscenario’s zijn mogelijk afhankelijk van onze inspanningen als mens om onze eigen impact op het klimaat in te perken. Bovendien kunnen bomen enkele honderden jaren oud worden en zijn veranderingen in het bos niet op een jaar zichtbaar. Om deze redenen gebruikten we het wiskundig model iLand om verschillende dunningsintensiteiten te simuleren onder verschillende klimaatscenario’s, en dit specifiek voor het Meerdaalwoud en Heverleebos.
Het huidige bosbeheer van Meerdaalwoud en Heverleebos werd geprogrammeerd in het model zodat een scenario zonder beheer en met beheer getest kon worden. Binnen het beheerde scenario werden drie dunningsintensiteiten geëvalueerd: de gewoonlijke, alsook een lagere en een hogere.
Wat betreft de klimaatscenario’s werd een historisch klimaat en een toekomstig veranderend klimaat getest. Het toekomstige klimaat werd nog eens in een gemiddeld klimaat, een warm klimaat en een warm en droog klimaat gesplitst. Simulaties liepen telkens van 2020 tot 2100.
De invloed van dunningsintensiteit op het bos
Beuk is een droogtegevoelige soort, en de meest voorkomende soort in het Meerdaalwoud en Heverleebos. In lijn met onze hypothese zouden we verwachten dat deze soort beter in staat zou zijn om zijn plaats in het landschap te behouden indien de dunningsintensiteit stijgt, aangezien er dan meer water in de bodem beschikbaar is voor elke individuele boom.
Verrassend genoeg zagen we de soortensamenstelling sterker veranderen bij een hogere dunningsintensiteit, waarbij de meer lichtminnende en droogteresistentere inheemse eiken en douglasspar uitbreidden ten koste van de beuk. In het warme en droge klimaat werd hiernaast ook een felle stijging van Corsicaanse den, een heel droogteresistente soort, waargenomen. Het klimaat zelf beïnvloedde dus, samen met de dunningsintensiteit, sterk de soortensamenstelling.
Een hogere dunningsintensiteit deed het herstelvermogen van het bos – zijn vermogen om snel te herstellen na een verstoring - dalen, en dit in elk klimaat behalve in het meest extreme klimaat, namelijk het warm en droog klimaat. Bij deze laatste was het herstelvermogen heel laag voor elke dunningsintensiteit en weinig verschillend van elkaar. Dit kan erop wijzen dat er in een extreem klimaatscenario mogelijks een meer innovatief bosbeheer of een combinatie van meerdere bosbeheertechnieken nodig is om de stabiliteit te bewaren.
Een genuanceerd beeld
De vooropgestelde hypothese was dus fout; toenemende dunningsintensiteit doet de stabiliteit van het bos dalen, aangezien de soortensamenstelling sterker veranderde en het herstelvermogen daalde bij toenemende dunningsintensiteit. Wat betreft het herstelvermogen is dit natuurlijk geen goede zaak. Liefst hebben we een bos dat weer snel kan herstellen na een verstoring. Echter zal meer onderzoek nodig zijn naar wat de achterliggende oorzaken zijn van deze relatie en of dit kan veranderen indien andere parameters van de dunning aangepast worden (zoals bijvoorbeeld de frequentie van de dunning).
Echter, als het de verandering van de soortensamenstelling aangaat, dan zouden we kunnen zeggen dat een sterker veranderende soortensamenstelling met toenemende dunningsintensiteit niet per se slecht is! Droogteresistentere soorten kunnen beter omgaan met de hitte en droogtes, dewelke vandaag door de klimaatverandering geschieden. Bij een hogere dunningsintensiteit kunnen droogteresistentere soorten makkelijker droogtegevoelige soorten vervangen doordat er meer ruimte in het bos komt. De soortensamenstelling kan zich bijgevolg sneller aanpassen aan het heersende klimaat, wat voordelig is voor het behoud van het bos en zijn functies. Het aanpassen van de soortensamenstelling is waarschijnlijk zelfs een noodzakelijke voorwaarde voor het voortbestaan van het bos als het klimaat sterk wijzigt.
Managing is caring: Wat kan de bosbeheerder nu doen?
Wat betekenen onze resultaten nu concreet voor de bosbeheerder? Hoewel de dunningen zorgen voor een minder stabiel bos, laten ze ook toe een meer aangepast bos te maken. Lokaal kunnen er sterkere dunningen gebruikt worden om de soortensamenstelling natuurlijk te doen veranderen en in overeenstemming te brengen met het heersende klimaat. Op deze manier krijgen droogteresistente soorten meer kansen om droogtegevoelige soorten te vervangen. Niettemin doen we dit best op een kleine schaal om het herstelvermogen van het bos niet in het gedrang te brengen.
Aertsen, W., Janssen, E., Kint, V., Bontemps, J. D., Van Orshoven, J., & Muys, B. (2014). Long- term growth changes of common beech (Fagus sylvatica L.) are less pronounced on highly productive sites. Forest Ecology and Management, 312, 252–259. https://doi.org/10.1016/j.foreco.2013.09.034
Agentschap voor Natuur en Bos Houtvesterij Leuven. (2006). Bosbeheerplan: Meerdaalwoud - Heverleebos - Egenhovenbos. https://www.natuurenbos.be/sites/default/files/beheerplan_heverleebos_m… oud.pdf
Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
Albrich, K., Rammer, W., & Seidl, R. (2020). Climate change causes critical transitions and irreversible alterations of mountain forests. Global Change Biology, 26(7), 4013–4027. https://doi.org/10.1111/gcb.15118
Albrich, K., Rammer, W., Thom, D., & Seidl, R. (2018). Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecological Applications, 28(7), 1884–1896. https://doi.org/10.1002/eap.1785
Albrich, K., Rammer, W., Turner, M. G., Ratajczak, Z., Braziunas, K. H., Hansen, W. D., & Seidl, R. (2020). Simulating forest resilience: A review. Global Ecology and Biogeography, 29(12), 2082–2096. https://doi.org/10.1111/geb.13197
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC Press. https://www.routledge.com/Spatial- Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak- Turner/p/book/9781482210200/
Baguis, P., Roulin, E., Willems, P., & Ntegeka, V. (2010). Climate change scenarios for precipitation and potential evapotranspiration over central Belgium. Theoretical and Applied Climatology, 99(3–4), 273–286. https://doi.org/10.1007/s00704-009-0146-5
Bengtsson, H. (2023). matrixStats: Functions that Apply to Rows and Columns of Matrices (and to Vectors) (R package version 1.0.0). https://CRAN.R- project.org/package=matrixStats
Birami, B., Nägele, T., Gattmann, M., Preisler, Y., Gast, A., Arneth, A., & Ruehr, N. K. (2020). Hot drought reduces the effects of elevated CO2 on tree water-use efficiency and carbon metabolism. New Phytologist, 226(6), 1607–1621. https://doi.org/10.1111/nph.16471
Bivand, R. S., Pebesma, E. J., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). Springer. https://asdar-book.org/
Bossel, H. (1996). TREEDYN3 forest simulation model. Ecological Modelling, 90(3), 187–227. https://doi.org/10.1016/0304-3800(95)00139-5
Bowditch, E., Santopuoli, G., Binder, F., del Río, M., La Porta, N., Kluvankova, T., Lesinski, J., Motta, R., Pach, M., Panzacchi, P., Pretzsch, H., Temperli, C., Tonon, G., Smith, M., Velikova, V., Weatherall, A., & Tognetti, R. (2020). What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosystem Services, 43, 1–13. https://doi.org/10.1016/j.ecoser.2020.101113
Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325–349. https://doi.org/10.2307/1942268
Bréda, N., Granier, A., & Aussenac, G. (1995). Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiology, 15(5), 295–306. https://doi.org/10.1093/treephys/15.5.295
Buma, B., Brown, C. D., Donato, D. C., Fontaine, J. B., & Johnstone, J. F. (2013). The impacts of changing disturbance regimes on serotinous plant populations and communities. BioScience, 63(11), 866–876. https://doi.org/10.1525/bio.2013.63.11.5
Buma, B., & Wessman, C. A. (2013). Forest resilience, climate change, and opportunities for adaptation: A specific case of a general problem. Forest Ecology and Management, 306, 216–225. https://doi.org/10.1016/j.foreco.2013.06.044
Campioli, M., Vincke, C., Jonard, M., Kint, V., Demarée, G., & Ponette, Q. (2012). Current status and predicted impact of climate change on forest production and biogeochemistry in the temperate oceanic European zone: Review and prospects for Belgium as a case study. Journal of Forest Research, 17(1), 1–18. https://doi.org/10.1007/s10310-011-0255-8
Cannon, A. J. (2018). Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Climate Dynamics, 50(1–2), 31–49. https://doi.org/10.1007/s00382-017- 3580-6
Cantarello, E., Newton, A. C., Martin, P. A., Evans, P. M., Gosal, A., & Lucash, M. S. (2017). Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape. Ecology and Evolution, 7(22), 9661–9675. https://doi.org/10.1002/ece3.3491
Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From Metaphor to Measurement: Resilience of What to What? Ecosystems, 4(8), 765–781. https://doi.org/10.1007/s10021-001-0045-9
Chase, C. W., Kimsey, M. J., Shaw, T. M., & Coleman, M. D. (2016). The response of light, water, and nutrient availability to pre-commercial thinning in dry inland Douglas-fir forests. Forest Ecology and Management, 363, 98–109. https://doi.org/10.1016/j.foreco.2015.12.014
Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., & Medlyn, B. E. (2018). Triggers of tree mortality under drought. Nature, 558(7711), 531–539. https://doi.org/10.1038/s41586-018-0240-x
Crosetto, M., & Tarantola, S. (2001). Uncertainty and sensitivity analysis: Tools for GIS-based model implementation. International Journal of Geographical Information Science, 15(5), 415–437. https://doi.org/10.1080/13658810110053125
Dalelane, C., Früh, B., Steger, C., & Walter, A. (2018). A pragmatic approach to build a reduced regional climate projection ensemble for Germany using the EURO-CORDEX 8.5 ensemble. Journal of Applied Meteorology and Climatology, 57(3), 477–491. https://doi.org/10.1175/JAMC-D-17-0141.1
De Groote, S. R. E., Vanhellemont, M., Baeten, L., Van den Bulcke, J., Martel, A., Bonte, D., Lens, L., & Verheyen, K. (2018). Competition, tree age and size drive the productivity of mixed forests of pedunculate oak, beech and red oak. Forest Ecology and Management, 430, 609–617. https://doi.org/10.1016/j.foreco.2018.08.050
De Vos, B. (2009). Uncertainties of forest soil carbon stock assessment in Flanders (Unpublished doctoral thesis). KU Leuven.
del Río, M., Bravo-Oviedo, A., Ruiz-Peinado, R., & Condés, S. (2019). Tree allometry variation in response to intra- and inter-specific competitions. Trees, 33(1), 121–138. https://doi.org/10.1007/s00468-018-1763-3
Diaconu, D., Kahle, H. P., & Spiecker, H. (2017). Thinning increases drought tolerance of European beech: a case study on two forested slopes on opposite sides of a valley. European Journal of Forest Research, 136(2), 319–328. https://doi.org/10.1007/s10342-017-1033-8
Dobor, L., Hlásny, T., & Zimová, S. (2020). Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management. Ecology and Evolution, 10(21), 12233–12245. https://doi.org/10.1002/ece3.6854
Dollinger, C., Rammer, W., & Seidl, R. (2023). Climate change accelerates ecosystem restoration in the mountain forests of Central Europe. Journal of Applied Ecology, 60(12), 2665–2675. https://doi.org/10.1111/1365-2664.14520
Donohue, I., Hillebrand, H., Montoya, J. M., Petchey, O. L., Pimm, S. L., Fowler, M. S., Healy, K., Jackson, A. L., Lurgi, M., McClean, D., O’Connor, N. E., O’Gorman, E. J., & Yang, Q. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19(9), 1172– 1185. https://doi.org/10.1111/ele.12648
Drake, B. G., Gonzàlez-Meler, M. A., & Long, S. P. (1997). MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2? Annual Review of Plant Biology, 48, 609–648. https://doi.org/10.1146/annurev.arplant.48.1.609
Ducousso, A., & Bordacs, S. (2004). EUFORGEN Technical guidelines for genetic conservation and use for Pedunculate and sessile oaks (Quercus robur and Q. petraea). International Plant Genetic Resources Institute. https://www.euforgen.org/fileadmin//templates/euforgen.org/upload/Publi… chnical_guidelines/Technical_guidelines_Quercus_robur-petraea.pdf
Duveneck, M. J., & Scheller, R. M. (2016). Measuring and managing resistance and resilience under climate change in northern Great Lake forests (USA). Landscape Ecology, 31(3), 669–686. https://doi.org/10.1007/s10980-015-0273-6
Dyderski, M. K., Chmura, D., Dylewski, Ł., Horodecki, P., Jagodziński, A. M., Pietras, M., Robakowski, P., & Woziwoda, B. (2020). Biological Flora of the British Isles: Quercus rubra. Journal of Ecology, 108(3), 1199–1225. https://doi.org/10.1111/1365- 2745.13375
Eilmann, B., & Rigling, A. (2012). Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiology, 32(2), 178–187. https://doi.org/10.1093/treephys/tps004
Enescu, C. M., De Rigo, D., Caudullo, G., Mauri, A., & Houston Durrant, T. (2016). Pinus nigra in Europe: distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, & A. Mauri (Eds.), European Atlas of Forest Tree Species (pp. 126–127). Publ. Off. www.euforgen.org.
European Environment Agency. (2016). European forest ecosystems: State and trends (Report No. 5/2016). Publications Office of the European Union. https://doi.org/10.2800/964893
Fady, B., Aravanopoulos, F. A., Alizoti, P., Mátyás, C., von Wühlisch, G., Westergren, M., Belletti, P., Cvjetkovic, B., Ducci, F., Huber, G., Kelleher, C. T., Khaldi, A., Kharrat, M. B. D., Kraigher, H., Kramer, K., Mühlethaler, U., Peric, S., Perry, A., Rousi, M., ... Zlatanov, T. (2016). Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. Forest Ecology and Management, 375, 66–75. https://doi.org/10.1016/j.foreco.2016.05.015
FAO. (2020a). Global Forest Resources Assessment 2020 - Key findings. https://doi.org/10.4060/ca8753en
FAO. (2020b). Global Forest Resources Assessment 2020: Main report. https://doi.org/10.4060/ca9825en
FAO. (2023). Forestry Production and Trade. https://www.fao.org/faostat/en/#data/FO/visualize
Forest Europe. (2020). State of Europe’s Forests 2020. www.foresteurope.org
Fortin, M., Van Couwenberghe, R., Perez, V., & Piedallu, C. (2019). Evidence of climate effects on the height-diameter relationships of tree species. Annals of Forest Science, 76(1), 1–20. https://doi.org/10.1007/s13595-018-0784-9
Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A., & Cescatti, A. (2022). Emerging signals of declining forest resilience under climate change. Nature, 608(7923), 534–539. https://doi.org/10.1038/s41586-022-04959-9
Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E. B., Cheripka, A., Rigor, I., Caballero, A., Chiba, S., Báez, J. C., Zielinski, T., & Abraham, J. P. (2021). An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers in Marine Science, 8, 1–24. https://doi.org/10.3389/fmars.2021.642372
García-Valdés, R., Vayreda, J., Retana, J., & Martínez-Vilalta, J. (2021). Low forest productivity associated with increasing drought-tolerant species is compensated by an increase in drought-tolerance richness. Global Change Biology, 27(10), 2113–2127. https://doi.org/10.1111/gcb.15529
Giraud, T., & Commenges, H. (2022). potential: Implementation of the Potential Model (R package version 0.2.0). https://CRAN.R-project.org/package=potential
Gonçalves, A. C. (2021). Thinning: An Overview. In A. C. Gonçalves (Ed.), Silviculture (pp. 41– 58). IntechOpen. https://doi.org/10.5772/intechopen.93436
Govaere, L. (2020). Een blik op de kenmerken van bos in Vlaanderen – eerste resultaten van twee opeenvolgende Vlaamse bosinventarisaties. Bosrevue, 83a, 1–14. https://bosplus.be/wp- content/uploads/2022/02/bosrevue83aVlaamse_Bosinventarisaties_3.pdf
Gradel, A., Ammer, C., Ganbaatar, B., Nadaldorj, O., Dovdondemberel, B., & Wagner, S. (2017). On the effect of thinning on tree growth and stand structure of white birch (betula platyphylla sukaczev) and siberian larch (larix sibirica ledeb.) in Mongolia. Forests, 8(4), 1–23. https://doi.org/10.3390/f8040105
Gravel, D., Canham, C. D., Beaudet, M., & Messier, C. (2010). Shade tolerance, canopy gaps and mechanisms of coexistence of forest trees. Oikos, 119(3), 475–484. https://doi.org/10.1111/j.1600-0706.2009.17441.x
Guillemot, J., Klein, E. K., Davi, H., & Courbet, F. (2015). The effects of thinning intensity and tree size on the growth response to annual climate in Cedrus atlantica: a linear mixed modeling approach. Annals of Forest Science, 72(5), 651–663. https://doi.org/10.1007/s13595-015-0464-y
Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman- Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., & Tyukavina, A. (2021). Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 11(3), 234–240. https://doi.org/10.1038/s41558-020-00976-6
He, H. S., Yang, J., Shifley, S. R., & Thompson, F. R. (2011). Challenges of forest landscape modeling-Simulating large landscapes and validating results. Landscape and Urban Planning, 100(4), 400–402. https://doi.org/10.1016/j.landurbplan.2011.02.019
Hernández-Morcillo, M., Torralba, M., Baiges, T., Bernasconi, A., Bottaro, G., Brogaard, S., Bussola, F., Díaz-Varela, E., Geneletti, D., Grossmann, C. M., Kister, J., Klingler, M., Loft, L., Lovric, M., Mann, C., Pipart, N., Roces-Díaz, J. V., Sorge, S., Tiebel, M., ... Plieninger, T. (2022). Scanning the solutions for the sustainable supply of forest ecosystem services in Europe. Sustainability Science, 17(5), 2013–2029. https://doi.org/10.1007/s11625- 022-01111-4
Hijmans, R. J. (2023a). raster: Geographic Data Analysis and Modeling (R package version 3.6-14). https://CRAN.R-project.org/package=raster
Hijmans, R. J. (2023b). terra: Spatial Data Analysis (R package version 1.7-3). https://CRAN.R-project.org/package=terra
Hulshof, C. M., Swenson, N. G., & Weiser, M. D. (2015). Tree height-diameter allometry across the United States. Ecology and Evolution, 5(6), 1193–1204. https://doi.org/10.1002/ece3.1328
IMBIE. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558(7709), 219–222. https://doi.org/10.1038/s41586-018-0179-y
INBO. (2023). Oppervlakte met effectief natuurbeheer. https://www.vlaanderen.be/inbo/indicatoren/oppervlakte-met-effectief-na…
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, R. K. Pachauri, & L. A. Meyer, Eds.). IPCC.
IPCC. (2023a). Section 2: Current Status and Trends. In Core Writing Team, H. Lee, & J. Romero (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 35–115). https://doi.org/10.59327/IPCC/AR6-9789291691647
IPCC. (2023b). Section 3: Long-Term Climate and Development Futures. In Core Writing Team, H. Lee, & J. Romero (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 35–115). IPCC. https://doi.org/10.59327/IPCC/AR6- 9789291691647
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., ... Yiou, P. (2014). EURO-CORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563–578. https://doi.org/10.1007/s10113-013-0499-2
Jeong, S.-J., Ho, C.-H., Gim, H.-J., & Brown, M. E. (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 17(7), 2385–2399. https://doi.org/10.1111/j.1365- 2486.2011.02397.x
Jiao-Jun, Z., Feng-Qin, L. I., Yutaka, G., Matsuzaki, T., & Yamamoto, M. (2003). Effects of thinning on wind damage in Pinus thunbergii plantation-Based on theoretical derivation of risk-ratios for assessing wind damage. Journal of Forestry Research, 14(1), 1–8. https://doi.org/10.1007/BF02856755
Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., & Turner, M. G. (2016). Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 14(7), 369–378. https://doi.org/10.1002/fee.1311
Justus, J. (2007). Complexity, diversity, and stability. In S. Sahotra & A. Plutynski (Eds.), A Companion to the Philosophy of Biology (pp. 321–350). Blackwell Publishing. https://doi.org/10.1002/9780470696590.ch18
Keane, R. E., Loehman, R. A., Holsinger, L. M., Falk, D. A., Higuera, P., Hood, S. M., & Hessburg, P. F. (2018). Use of landscape simulation modeling to quantify resilience for ecological applications. Ecosphere, 9(9), 1–19. https://doi.org/10.1002/ecs2.2414
Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352, 9–20. https://doi.org/10.1016/j.foreco.2015.06.014
Keskitalo, H., & Carina, E. (2011). How can forest management adapt to climate change? Possibilities in different forestry systems. Forests, 2(1), 415–430. https://doi.org/10.3390/f2010415
Khan, S. A., Aschwanden, A., BjØrk, A. A., Wahr, J., Kjeldsen, K. K., & Kjaær, K. H. (2015). Greenland ice sheet mass balance: A review. Reports on Progress in Physics, 78(4), 1– 26. https://doi.org/10.1088/0034-4885/78/4/046801
Kimmins, J. P., Mailly, D., & Seely, B. (1999). Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecological Modelling, 122(3), 195–224. https://doi.org/10.1016/S0304-3800(99)00138-6
Kint, V., Aertsen, W., Campioli, M., Vansteenkiste, D., Delcloo, A., & Muys, B. (2012). Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901-2008. Climatic Change, 115(2), 343–363. https://doi.org/10.1007/s10584-012-0465-x
Klingen, S., Mohren, F., Geudens, G., & Den Ouden, J. (2010). Dunning. In J. den Ouden, B. Muys, F. Mohren, & K. Verheyen (Eds.), Bosecologie en bosbeheer (pp. 375–387). Acco.
Kohler, M., Sohn, J., Nägele, G., & Bauhus, J. (2010). Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? European Journal of Forest Research, 129(6), 1109–1118. https://doi.org/10.1007/s10342-010-0397-9
Lamont, B. B., & Enright, N. J. (2000). Adaptive advantages of aerial seed banks. Plant Species Biology, 15(2), 157–166. https://doi.org/10.1046/j.1442-1984.2000.00036.x
Lamont, B. B., He, T., & Yan, Z. (2019). Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biological Reviews, 94(3), 903–928. https://doi.org/10.1111/brv.12483
Landsberg, J. (2003). Physiology in forest models: History and the future. FBMIS, 1, 49–63. http://www.fbmis.info/A/3_1_LandsbergJ_1
Landsberg, J., & Sands, P. (2011a). Introduction. In Physiological ecology of forest production: principles, processes and models (1st ed., pp. 2–12). Elsevier. https://doi.org/10.1016/S1936-7961(11)04001-2
Landsberg, J., & Sands, P. (2011b). Modelling Tree Growth: Concepts and Review. In Physiological ecology of forest production: principles, processes and models (1st ed., pp. 222–239). Elsevier. https://doi.org/10.1016/S1936-7961(11)04008-5
Landsberg, J., & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3), 209–228. https://doi.org/10.1016/S0378- 1127(97)00026-1
Langenbruch, C., Helfrich, M., & Flessa, H. (2012). Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil, 352(1–2), 389–403. https://doi.org/10.1007/s11104- 011-1004-7
Latte, N., Perin, J., Kint, V., Lebourgeois, F., & Claessens, H. (2016). Major changes in growth rate and growth variability of beech (Fagus sylvatica L.) related to soil alteration and climate change in Belgium. Forests, 7(8), 1–15. https://doi.org/10.3390/f7080174
Leuschner, C. (2020). Drought response of European beech (Fagus sylvatica L.)—A review. Perspectives in Plant Ecology, Evolution and Systematics, 47, 1–22. https://doi.org/10.1016/j.ppees.2020.125576
Lévesque, M., Rigling, A., Bugmann, H., Weber, P., & Brang, P. (2014). Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agricultural and Forest Meteorology, 197, 1–12. https://doi.org/10.1016/j.agrformet.2014.06.001
Lévy, G., Becker, M., & Duhamel, D. (1992). A comparison of the ecology of pedunculate and sessile oaks: radial growth in the centre and northwest of France. Forest Ecology and Management, 55(1), 51–63. https://doi.org/10.1016/0378-1127(92)90091-M
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. https://doi.org/10.1016/j.foreco.2009.09.023
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052–1055. https://doi.org/10.1038/nature08649
Lucash, M. S., Scheller, R. M., J. Gustafson, E., & R. Sturtevant, B. (2017). Spatial resilience of forested landscapes under climate change and management. Landscape Ecology, 32(5), 953–969. https://doi.org/10.1007/s10980-017-0501-3
Ma, S., Concilio, A., Oakley, B., North, M., & Chen, J. (2010). Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. Forest Ecology and Management, 259(5), 904–915. https://doi.org/10.1016/j.foreco.2009.11.030
Mäkelä, A., Pulkkinen, M., Kolari, P., Lagergren, F., Berbigier, P., Lindroth, A., Loustau, D., Nikinmaa, E., Vesala, T., & Hari, P. (2008). Developing an empirical model of stand GPP with the LUE approach: Analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology, 14(1), 92–108. https://doi.org/10.1111/j.1365- 2486.2007.01463.x
Manrique-Alba, À., Beguería, S., & Camarero, J. J. (2022). Long-term effects of forest management on post-drought growth resilience: An analytical framework. Science of the Total Environment, 810, 1–13. https://doi.org/10.1016/j.scitotenv.2021.152374
Mátyás, C., Ackzell, L., & Samuel, C. J. A. (2004). EUFORGEN Technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). International Plant Genetic Resources Institute. https://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Public… hnical_guidelines/Technical_guidelines_Pinus_sylvestris.pdf
McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R., ... Xu, C. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368(6494), 1–10. https://doi.org/10.1126/science.aaz9463
McLachlan, J. S., Clark, J. S., & Manos, P. S. (2005). Molecular indicators of tree migration capacity under rapid climate change. Ecology, 86(8), 2088–2098. https://doi.org/10.1890/04-1036
Messier, C., Bauhus, J., Sousa-Silva, R., Auge, H., Baeten, L., Barsoum, N., Bruelheide, H., Caldwell, B., Cavender-Bares, J., Dhiedt, E., Eisenhauer, N., Ganade, G., Gravel, D., Guillemot, J., Hall, J. S., Hector, A., Hérault, B., Jactel, H., Koricheva, J., ... Zemp, D. C. (2022). For the sake of resilience and multifunctionality, let’s diversify planted forests!Conservation Letters, 15(1), 1–8. https://doi.org/10.1111/conl.12829
Mina, M., Messier, C., Duveneck, M. J., Fortin, M. J., & Aquilué, N. (2022). Managing for the unexpected: Building resilient forest landscapes to cope with global change. Global Change Biology, 28(14), 4323–4341. https://doi.org/10.1111/gcb.16197
Misson, L., Vincke, C., & Devillez, F. (2003). Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management, 177(1), 51–63. https://doi.org/10.1016/S0378- 1127(02)00324-9
Müller, K., Wickham, H., James, D., & Falcon, S. (2023). RSQLite: SQLite Interface for R (R package version 2.3.1). https://CRAN.R-project.org/package=RSQLite
Nabuurs, G. J., Delacote, P., Ellison, D., Hanewinkel, M., Hetemäki, L., Lindner, M., & Ollikainen, M. (2017). By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests, 8(12), 1–14. https://doi.org/10.3390/f8120484
Niinemets, Ü., & Valladares, F. (2006). Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs, 76(4), 521– 547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
Nikinmaa, L., Lindner, M., Cantarello, E., Jump, A. S., Seidl, R., Winkel, G., & Muys, B. (2020). Reviewing the Use of Resilience Concepts in Forest Sciences. Current Forestry Reports, 6(2), 61–80. https://doi.org/10.1007/s40725-020-00110-x
Niklas, K. J. (1995). Size-dependent Allometry of Tree Height, Diameter and Trunk-taper. Annals of Botany, 75(3), 217–227. https://doi.org/10.1006/anbo.1995.1015
Nolan, C., Overpeck, J. T., Allen, J. R. M., Anderson, P. M., Betancourt, J. L., Binney, H. A., Brewer, S., Bush, M. B., Chase, B. M., Cheddadi, R., Djamali, M., Dodson, J., Edwards, M. E., Gosling, W. D., Haberle, S., Hotchkiss, S. C., Huntley, B., Ivory, S. J., Kershaw, A. P., ... Jackson, S. T. (2018). Past and future global transformation of terrestrial ecosystems under climate change. Science, 361(6405), 920–923. https://doi.org/10.1126/science.aan5360
Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19368–19373. https://doi.org/10.1073/pnas.1006463107
Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., & Ceulemans, R. (1999). Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant, Cell and Environment, 22(6), 683–714. https://doi.org/10.1046/j.1365- 3040.1999.00391.x
Obermeier, W. A., Lehnert, L. W., Kammann, C. I., Müller, C., Grünhage, L., Luterbacher, J., Erbs, M., Moser, G., Seibert, R., Yuan, N., & Bendix, J. (2017). Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nature Climate Change, 7(2), 137–141. https://doi.org/10.1038/nclimate3191
Ogle, D. H., Doll, J. C., Wheeler, A. P., & Dinno, A. (2023). FSA: Simple Fisheries Stock Assessment Methods (R package version 0.9.4). https://CRAN.R- project.org/package=FSA
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., ... Weedon, J. (2022). vegan: Community Ecology Package (R package version 2.6-4). https://CRAN.R- project.org/package=vegan
Packham, J. R., Thomas, P. A., Atkinson, M. D., & Degen, T. (2012). Biological Flora of the British Isles: Fagus sylvatica. Journal of Ecology, 100(6), 1557–1608. https://doi.org/10.1111/j.1365-2745.2012.02017.x
Patacca, M., Lindner, M., Lucas-Borja, M. E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., Milanovic, S., Nabuurs, G. J., Nagel, T. A., Nikinmaa, L., Panyatov, M., Bercak, R., Seidl, R., Ostrogović Sever, M. Z., ... Schelhaas, M. J. (2023). Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology, 29(5), 1359–1376. https://doi.org/10.1111/gcb.16531
Pebesma, E. J. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. https://doi.org/10.32614/RJ-2018-009
Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5(2). https://cran.r-project.org/doc/Rnews/
Peñuelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R., & Sardans, J. (2017). Shifting from a fertilization- dominated to a warming-dominated period. Nature Ecology and Evolution, 1(10), 1438–1445. https://doi.org/10.1038/s41559-017-0274-8
Perry, G. L. W., & Millington, J. D. A. (2008). Spatial modelling of succession-disturbance dynamics in forest ecosystems: Concepts and examples. Perspectives in Plant Ecology, Evolution and Systematics, 9(3–4), 191–210. https://doi.org/10.1016/j.ppees.2007.07.001
Picchio, R., Tavankar, F., Latterini, F., Jourgholami, M., Marian, B. K., & Venanzi, R. (2020). Influence of different thinning treatments on stand resistance to snow and wind in loblolly pine (Pinus taeda l.) coastal plantations of northern iran. Forests, 11(10), 1–14. https://doi.org/10.3390/f11101034
Powers, R. F. (1990). Nitrogen Mineralization Along an Altitudinal Gradient: Interactions of Soil Temperature, Moisture, and Substrate Quality. Forest Ecology and Management, 30(1), 19–29. https://doi.org/10.1016/0378-1127(90)90123-S
Puettmann, K. J. (2011). Silvicultural Challenges and Options in the Context of Global Change: “Simple” Fixes and Opportunities for New Management Approaches. Journal of Forestry, 109(6), 321–331. https://doi.org/10.1093/jof/109.6.321
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
R Special Interest Group on Databases (R-SIG-DB), Wickham, H., & Müller, K. (2022). DBI: R Database Interface (R package version 1.1.3). https://CRAN.R-project.org/package=DBI
Rambo, T. R., & North, M. P. (2009). Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. Forest Ecology and Management, 257(2), 435– 442. https://doi.org/10.1016/j.foreco.2008.09.029
Rammer, W., & Seidl, R. (2015). Coupling human and natural systems: Simulating adaptive management agents in dynamically changing forest landscapes. Global Environmental Change, 35, 475–485. https://doi.org/10.1016/j.gloenvcha.2015.10.003
Reich, P. B., & Hobbie, S. E. (2013). Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nature Climate Change, 3(3), 278–282. https://doi.org/10.1038/nclimate1694
Reyer, C. P. O., Bathgate, S., Blennow, K., Borges, J. G., Bugmann, H., Delzon, S., Faias, S. P., Garcia-Gonzalo, J., Gardiner, B., Gonzalez-Olabarria, J. R., Gracia, C., Hernández, J. G., Kellomäki, S., Kramer, K., Lexer, M. J., Lindner, M., Van Der Maaten, E., Maroschek, M., Muys, B., ... Hanewinkel, M. (2017). Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environmental Research Letters, 12(3), 1–12. https://doi.org/10.1088/1748-9326/aa5ef1
Richter, S., Kipfer, T., Wohlgemuth, T., Guerrero, C. C., Ghazoul, J., & Moser, B. (2012). Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia, 169(1), 269–279. https://doi.org/10.1007/s00442-011-2191-x
Rummukainen, M. (2012). Changes in climate and weather extremes in the 21st century. Wiley Interdisciplinary Reviews: Climate Change, 3(2), 115–129. https://doi.org/10.1002/wcc.160
Salvatore, S. M. (2024). rcompanion: Functions to Support Extension Education Program Evaluation (version 2.4.35). Rutgers Cooperative Extension. https://CRAN.R- project.org/package=rcompanion
Sands, P. J., & Landsberg, J. J. (2002). Parameterisation of 3-PG for plantation grown Eucalyptus globulus. Forest Ecology and Management, 163(1), 273–292. https://doi.org/10.1016/S0378-1127(01)00586-2
Scharnweber, T., Manthey, M., Criegee, C., Bauwe, A., Schröder, C., & Wilmking, M. (2011). Drought matters - Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management, 262(6), 947–961. https://doi.org/10.1016/j.foreco.2011.05.026
Scheirer, C. J., Ray, W. S., & Hare, N. (1976). The Analysis of Ranked Data Derived from Completely Randomized Factorial Designs. Biometrics, 32(2), 429–434. https://doi.org/10.2307/2529511
Schmitt, A., Trouvé, R., Seynave, I., & Lebourgeois, F. (2020). Decreasing stand density favors resistance, resilience, and recovery of Quercus petraea trees to a severe drought, particularly on dry sites. Annals of Forest Science, 77(2), 1–21. https://doi.org/10.1007/s13595-020-00959-9
Seidl, R. (2014). The shape of ecosystem management to come: Anticipating risks and fostering resilience. BioScience, 64(12), 1159–1169. https://doi.org/10.1093/biosci/biu172
Seidl, R., & Rammer, W. (2017). Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecology, 32(7), 1485– 1498. https://doi.org/10.1007/s10980-016-0396-4
Seidl, R., Rammer, W., & Blennow, K. (2014). Simulating wind disturbance impacts on forest landscapes: Tree-level heterogeneity matters. Environmental Modelling and Software, 51, 1–11. https://doi.org/10.1016/j.envsoft.2013.09.018
Seidl, R., Rammer, W., Scheller, R. M., & Spies, T. A. (2012). An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling, 231, 87–100. https://doi.org/10.1016/j.ecolmodel.2012.02.015
Seidl, R., Rammer, W., & Spies, T. A. (2014). Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecological Applications, 24(8), 2063–2077. https://doi.org/10.1890/14-0255.1
Seidl, R., Schelhaas, M. J., & Lexer, M. J. (2011). Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17(9), 2842–2852. https://doi.org/10.1111/j.1365-2486.2011.02452.x
Seidl, R., Spies, T. A., Rammer, W., Steel, E. A., Pabst, R. J., & Olsen, K. (2012). Multi-scale Drivers of Spatial Variation in Old-Growth Forest Carbon Density Disentangled with Lidar and an Individual-Based Landscape Model. Ecosystems, 15(8), 1321–1335. https://doi.org/10.1007/s10021-012-9587-2
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395–402. https://doi.org/10.1038/nclimate3303
Seidl, R., Vigl, F., Rössler, G., Neumann, M., & Rammer, W. (2017). Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials. Forest Ecology and Management, 388, 3–12. https://doi.org/10.1016/j.foreco.2016.11.030
Sergent, A. S., Rozenberg, P., & Bréda, N. (2014). Douglas-fir is vulnerable to exceptional and recurrent drought episodes and recovers less well on less fertile sites. Annals of Forest Science, 71(6), 697–708. https://doi.org/10.1007/s13595-012-0220-5
Shifley, S. R., He, H. S., Lischke, H., Wang, W. J., Jin, W., Gustafson, E. J., Thompson, J. R., Thompson, F. R., Dijak, W. D., & Yang, J. (2017). The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models. Landscape Ecology, 32(7), 1307–1325. https://doi.org/10.1007/s10980-017-0540-9
Shifley, S. R., Thompson, F. R., Dijak, W. D., Larson, M. A., & Millspaugh, J. J. (2006). Simulated effects of forest management alternatives on landscape structure and habitat suitability in the Midwestern United States. Forest Ecology and Management, 229(1–3), 361–377. https://doi.org/10.1016/j.foreco.2006.04.030
Skovsgaard, J. P., & Vanclay, J. K. (2008). Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry, 81(1), 13–31. https://doi.org/10.1093/forestry/cpm041
Sohn, J. A., Hartig, F., Kohler, M., Huss, J., & Bauhus, J. (2016). Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecological Applications, 26(7), 2190–2205. https://doi.org/10.1002/eap.1373
Sohn, J. A., Saha, S., & Bauhus, J. (2016). Potential of forest thinning to mitigate drought stress: A meta-analysis. Forest Ecology and Management, 380, 261–273. https://doi.org/10.1016/j.foreco.2016.07.046
Sousa-Silva, R., Ponette, Q., Verheyen, K., Van Herzele, A., & Muys, B. (2016). Adaptation of forest management to climate change as perceived by forest owners and managers in Belgium. Forest Ecosystems, 3(1), 1–11. https://doi.org/10.1186/s40663-016-0082-7
Sousa-Silva, R., Verbist, B., Lomba, Â., Valent, P., Suškevičs, M., Picard, O., Hoogstra-Klein, M. A., Cosofret, V. C., Bouriaud, L., Ponette, Q., Verheyen, K., & Muys, B. (2018). Adapting forest management to climate change in Europe: Linking perceptions to adaptive responses. Forest Policy and Economics, 90, 22–30. https://doi.org/10.1016/j.forpol.2018.01.004
Statistiek Vlaanderen. (2020, June 25). Oppervlakte bos: 140.000 hectare bos in Vlaanderen. https://www.vlaanderen.be/statistiek-vlaanderen/milieu-en-natuur/opperv…
Storms, I., Thom, D., Verbist, B., Van Meerbeek, K., Gobin, A., Van Orshoven, J., & Muys, B. (2023). Vegetation dynamics under climate change. In Managing forest ecosystem services under climate change (pp. 21–44). Ilié Storms.
Tabari, H., Taye, M. T., & Willems, P. (2015). Water availability change in central Belgium for the late 21st century. Global and Planetary Change, 131, 115–123. https://doi.org/10.1016/j.gloplacha.2015.05.012
Taccoen, A., Piedallu, C., Seynave, I., Perez, V., Gégout-Petit, A., Nageleisen, L. M., Bontemps, J. D., & Gégout, J. C. (2019). Background mortality drivers of European tree species: Climate change matters. Proceedings of the Royal Society B: Biological Sciences, 286(1900), 1–10. https://doi.org/10.1098/rspb.2019.0386
Temperli, C., Bugmann, H., & Elkin, C. (2012). Adaptive management for competing forest goods and services under climate change. Ecological Applications, 22(8), 2065–2077. https://doi.org/10.1890/12-0210.1
Temperli, C., Bugmann, H., & Elkin, C. (2013). Cross-scale interactions among bark beetles, climate change, and wind disturbances: A landscape modeling approach. Ecological Monographs, 83(3), 383–402. https://doi.org/10.1890/12-1503.1
Thom, D., Rammer, W., Garstenauer, R., & Seidl, R. (2018). Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences, 15(18), 5699–5713. https://doi.org/10.5194/bg-15- 5699-2018
Thom, D., Rammer, W., Laux, P., Smiatek, G., Kunstmann, H., Seibold, S., & Seidl, R. (2022). Will forest dynamics continue to accelerate throughout the 21st century in the Northern Alps? Global Change Biology, 28(10), 3260–3274. https://doi.org/10.1111/gcb.16133
Thom, D., Rammer, W., & Seidl, R. (2017). Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Global Change Biology, 23(1), 269–282. https://doi.org/10.1111/gcb.13506
Thomas, F. M., Rzepecki, A., & Werner, W. (2022). Non-native Douglas fir (Pseudotsuga menziesii) in Central Europe: Ecology, performance and nature conservation. Forest Ecology and Management, 506, 1–17. https://doi.org/10.1016/j.foreco.2021.119956
Thomassen, E., Buysse, W., Wijdeven, S., Winnock, M., Seynaeve, J., Sauren, P., Van Lommel, H., Schmitz, P., & Nyssen, B. (2020). Boomgericht bosbeheer in de praktijk. Eco2eco. https://bosgroepen.be/wp-content/uploads/2020/10/Boomgericht- bosbeheer-in-de-praktijk.pdf
Thrippleton, T., Bugmann, H., Kramer-Priewasser, K., & Snell, R. S. (2016). Herbaceous Understorey: An Overlooked Player in Forest Landscape Dynamics? Ecosystems, 19(7), 1240–1254. https://doi.org/10.1007/s10021-016-9999-5
Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349(6250), 814–818. https://doi.org/10.1126/science.aac6759
Twery, M. J., & Weiskittel, A. R. (2013). Forest-Management Modelling. In J. Wainwright & M. Mulligan (Eds.), Environmental Modelling: Finding Simplicity in Complexity (2nd ed., pp. 379–398). John Wiley and Sons. https://doi.org/10.1002/9781118351475.ch23
Vacek, Z., Cukor, J., Vacek, S., Gallo, J., Bažant, V., & Zeidler, A. (2023). Role of black pine (Pinus nigra J. F. Arnold) in European forests modified by climate change. European Journal of Forest Research, 142(6), 1239–1258. https://doi.org/10.1007/s10342-023- 01605-5
Van Meerbeek, K., Jucker, T., & Svenning, J. C. (2021). Unifying the concepts of stability and resilience in ecology. Journal of Ecology, 109(9), 3114–3132. https://doi.org/10.1111/1365-2745.13651
Van Orshoven, J., Maes, J., Vereecken, H., Feyen, J., & Dudal, R. (1988). A structured database of Belgian soil profile data. Pedologie, 38(2), 191–206.
Vannoppen, A., Kint, V., Ponette, Q., Verheyen, K., & Muys, B. (2019). Tree species diversity impacts average radial growth of beech and oak trees in Belgium, not their long-term growth trend. Forest Ecosystems, 6(1), 1–12. https://doi.org/10.1186/s40663-019- 0169-z
Verkerk, P. J., Costanza, R., Hetemäki, L., Kubiszewski, I., Leskinen, P., Nabuurs, G. J., Potočnik, J., & Palahí, M. (2020). Climate-Smart Forestry: the missing link. Forest Policy and Economics, 115, 1–4. https://doi.org/10.1016/j.forpol.2020.102164
VMM. (2018). Milieuverkenning 2018. Oplossingen voor een duurzame toekomst. Milieurapport Vlaanderen. Vlaamse Milieumaatschappij. www.vmm.be
Walker, J., Sharpe, P. J. H., Penridge, L. K., & Wu, H. (1989). Ecological field theory: the concept and field tests. Vegetatio, 83, 81–95. https://doi.org/10.1007/BF00031682
Weiskittel, A. R., Maguire, D. A., Monserud, R. A., & Johnson, G. P. (2010). A hybrid model for intensively managed Douglas-fir plantations in the Pacific Northwest, USA. European Journal of Forest Research, 129(3), 325–338. https://doi.org/10.1007/s10342-009-0339-6
Wessely, J., Essl, F., Fiedler, K., Gattringer, A., Hülber, B., Ignateva, O., Moser, D., Rammer, W., Dullinger, S., & Seidl, R. (2024). A climate-induced tree species bottleneck for forest management in Europe. Nature Ecology & Evolution. https://doi.org/10.1038/s41559- 024-02406-8
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: A Grammar of Data Manipulation (R package version 1.1.0). https://dplyr.tidyverse.org
Wigley, T. M. L. (2001). The Science of Climate Change. In E. Claussen (Ed.), Climate Change: Science, Strategies, & Solutions (pp. 6–24). BRILL. https://doi.org/10.1163/9789004475748_005
Winkel, G., Lovrić, M., Muys, B., Katila, P., Lundhede, T., Pecurul, M., Pettenella, D., Pipart, N., Plieninger, T., Prokofieva, I., Parra, C., Pülzl, H., Roitsch, D., Roux, J. L., Thorsen, B. J., Tyrväinen, L., Torralba, M., Vacik, H., Weiss, G., & Wunder, S. (2022). Governing Europe’s forests for multiple ecosystem services: Opportunities, challenges, and policy options. Forest Policy and Economics, 145, 1–15. https://doi.org/10.1016/j.forpol.2022.102849
Wu, H., Sharpe, P. J. H., Walker, J., & Penridge, L. K. (1985). Ecological field theory: a spatial analysis of resource interference among plants. Ecological Modelling, 29, 215–243. https://doi.org/10.1016/0304-3800(85)90054-7
Xi, W., Coulson, R. N., Birt, A. G., Shang, Z.-B., Waldron, J. D., Lafon, C. W., Cairns, D. M., Tchakerian, M. D., & Klepzig, K. D. (2009). Review of forest landscape models: Types, methods, development and applications. Acta Ecologica Sinica, 29(1), 69–78. https://doi.org/10.1016/j.chnaes.2009.01.001
Xiangrong, C., Mukui, Y., & Zhengcai, L. (2018). Short term effects of thinning on soil organic carbon fractions, soil properties, and forest floor in Cunninghamia lanceolata plantations. Journal of Soil Science and Environmental Management, 9(2), 21–29. https://doi.org/10.5897/jssem2017.0661
Xiao, J.-L., Zeng, F., He, Q.-L., Yao, Y.-X., Han, X., & Shi, W.-Y. (2021). Responses of forest carbon cycle to drought and elevated CO2. Atmosphere, 12(2), 1–13. https://doi.org/10.3390/atmos12020212
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., & Cogley, J. G. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), 382–386. https://doi.org/10.1038/s41586- 019-1071-0