Piepkleine octopuslarven, een groot dilemma: pijn of geen pijn?

Jill
Monnissen

Kunnen piepkleine octopuslarven pijn ervaren? Het antwoord onthult evenveel over deze dieren als over ons als mensen. Niet de wetenschappelijke feiten, maar overtuigingen en intuïties geven de doorslag.

Een verhaal over pijn

Bij dieren met een ruggengraat—gewervelden—zoals honden, katten, en vogels zijn we zeker dat ze pijn ervaren. Stap per ongeluk op de poot van je hond en zijn gejank laat geen ruimte voor twijfel. Omdat gewervelden ons vertrouwd zijn, herkennen we hun emoties en voelen we sneller empathie. Voor ongewervelden—dieren zonder ruggengraat, zoals insecten—ligt dat anders. Hun vreemde uiterlijk en gebrek aan herkenbare emoties maken dat we ons minder snel verbonden voelen met hen. Hierdoor denken we minder snel dat ze pijn voelen en krijgen ze in wetenschappelijk onderzoek niet dezelfde bescherming als gewervelden. Toch vormt één groep ongewervelden een uitzondering: de koppotigen (Cephalopoda), waaronder de gewone octopus (Octopus vulgaris; Fig. 1). 

Figuur 1: De gewone octopus (Octopus vulgaris).

Figuur 1: Gewone octopus (Octopus vulgaris)

De gewone octopus in de spotlights

Bekend als één van de slimste ongewervelden, toont de gewone octopus zijn vindingrijkheid door uit aquaria te ontsnappen en voorwerpen als gereedschap te gebruiken. Bovendien groeit ook het wetenschappelijk bewijs dat ze pijn kunnen ervaren. Daarom besloot de Europese Unie in 2013 dat alle levende koppotigen­­, ook de gewone octopus, wettelijke bescherming verdienen tijdens wetenschappelijk onderzoek, net zoals gewervelden. Die bescherming geldt niet alleen voor volwassen octopussen, maar ook voor hun pas uitgekomen larven, de paralarven (Fig. 2). 

Figuur 2: Paralarve van de gewone octopus (Octopus vulgaris).

Figuur 2: Paralarve van de gewone octopus (Octopus vulgaris)

En daar ontstaat een dilemma, want terwijl er bewijs is dat volwassen dieren pijn kunnen ervaren, ontbreekt dit volledig voor de paralarven. Moeten deze larven uit voorzorg dezelfde bescherming krijgen als volwassen octopussen? Of is bescherming pas op zijn plaats als de wetenschap onomstotelijk bewijs levert? En vooral: hoe verschillend kijken wetenschappers en het brede publiek naar die kwestie?

Die vragen vormden het vertrekpunt voor het masteronderzoek van biologe Jill Monnissen (KU Leuven). In haar studie bracht ze twee werelden samen: biologie en filosofie. Enerzijds onderzocht ze of genen die in verband staan met pijnbeleving al aanwezig zijn in de piepkleine paralarven. Anderzijds peilde ze met een enquête naar de meningen van biologen en het brede publiek. Haar conclusie? Hoewel biologische data veel kunnen onthullen, zijn het uiteindelijk overtuigingen en intuïties die de doorslag geven in ethische debatten.

De bouwstenen van pijn

Voor het biologisch luik van haar onderzoek keek biologe Jill Monnissen naar zes genen die mogelijk een rol spelen bij het waarnemen van schadelijke prikkels en dus pijn. Met een geavanceerde techniek bracht ze in beeld waar die genen actief zijn in paralarfjes van vijf en veertig dagen oud. 

De resultaten waren opvallend: al bij jonge octopuslarven blijken bepaalde  pijn-gerelateerde genen actief te zijn in specifieke delen van het lichaam. Bovendien werden sommige genen ook actiever naarmate de larven ouder werden. Samen wijst dit erop dat zelfs heel jonge octopuslarven al de moleculaire basis hebben om pijn en stress waar te nemen. Maar, zo benadrukt Monnissen, voorzichtigheid is geboden: het feit dat de bouwstenen aanwezig zijn, betekent nog niet dat de larven ook écht bewust pijn ervaren.

Van gen naar geweten

Maar wat doen mensen eigenlijk met zulke biologische informatie? Om dat te achterhalen, vertaalde biologe Jill Monnissen haar eigen genetisch experiment naar de filosofische praktijk. Via een online enquête legde ze deze biologische data voor aan drie groepen: biologen die met koppotigen werken, biologen die met andere dieren werken, en een brede groep niet-biologen zonder wetenschappelijke achtergrond. 

Elke deelnemer kreeg een korte tekst te lezen over de expressie van pijn-gerelateerde genen in paralarven. Wat ze niet wisten, is dat er drie verschillende versies van deze tekst circuleerden. In de eerste versie kwamen de genen tot expressie, in de tweede niet, en in de derde was het experiment nog niet uitgevoerd, waardoor de uitkomst onzeker bleef. Vervolgens moesten de deelnemers hun oordeel vellen: hoe ethisch vinden ze onderzoek op octopuslarven en volwassen dieren? Hoe belangrijk vinden ze dit soort onderzoek voor de maatschappij? En geloven ze dat deze dieren pijn kunnen ervaren? De antwoorden leverden een verrassend beeld op.

Niet iedereen denkt hetzelfde

Wat bleek? De meegegeven wetenschappelijke informatie had weinig invloed. Of deelnemers lazen dat genexpressie aanwezig, afwezig of onzeker was, hun oordelen verschilden nauwelijks. Veel bepalender was hun eigen overtuiging: wie geloofde dat paralarven pijn kunnen ervaren, vond onderzoek met deze dieren sneller onethisch en minder belangrijk voor de maatschappij. 

Ook de achtergrond van de deelnemers speelde een rol. Biologen die met koppotigen werken, waren het minst geneigd om het onderzoek onethisch te vinden, waarschijnlijk door hun ervaring met de dieren en vertrouwen in de regelgeving. Het brede publiek daarentegen was het meest geneigd het onderzoek onethisch te vinden. Zij waren voorzichtiger en gaven de octopuslarfjes sneller het voordeel van de twijfel: beter beschermen dan later spijt hebben. Daarnaast viel ook op dat leken vaak erg zelfverzekerd waren in hun oordeel, soms zelfs meer dan biologen met middelmatige ervaring. Mogelijk speelt hier een Dunning–Kruger-effect: wie minder vertrouwd is met de biologische complexiteit, kan zijn eigen begrip overschatten.

Nog opvallend was het verschil tussen mannen en vrouwen. Mannen benadrukten vaker de maatschappelijke relevantie van het onderzoek, ook als dat mogelijk pijn voor de paralarven betekende. Vrouwen kozen daarentegen vaker voor voorzichtigheid en extra bescherming van de paralarven. Dat sluit aan bij bredere studies die aantonen dat vrouwen doorgaans meer empathisch en risicomijdend oordelen in ethische dilemma’s.

Meer dan een octopusverhaal

Door genetische data te koppelen aan filosofische reflectie, maakt deze thesis een brug tussen laboratorium en maatschappij. De thesis van Monnissen levert niet alleen nieuwe biologische kennis op, maar ook een blik op onze eigen manier van redeneren. Haar onderzoek maakt duidelijk hoe lastig het is om wetenschappelijke informatie te vertalen naar beleid en ethiek. Complexe biologische data worden niet altijd correct geïnterpreteerd, en vaak wegen overtuigingen en intuïties zwaarder dan de feiten. Daarom is toegankelijke communicatie cruciaal. Want wanneer wetenschap en beleid samenkomen, zeker in grijze zones vol onzekerheid, moeten we begrijpen dat de keuzes die we maken net zoveel zeggen over onszelf als over de dieren die we willen beschermen. 

Bibliografie

Albertin, C. B., & Katz, P. S. (2023). Evolution of cephalopod nervous systems. Current  Biology, 33(20), R1087–R1091. https://doi.org/10.1016/j.cub.2023.08.092

 

Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edsinger-Gonzales, E.,  Brenner, S., Ragsdale, C. W., & Rokhsar, D. S. (2015). The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 524(7564), 220–   224. https://doi.org/10.1038/nature14668

 

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). From RNA to protein. In Molecular biology of the cell (4th ed.). Garland Science.       https://www.ncbi.nlm.nih.gov/books/NBK26829/

 

Almeida, C., Loubet, P., Laso, J., Nunes, M. L., & Marques, A. (2022). Environmental assessment of common octopus (Octopus vulgaris) from a small-scale fishery in Algarve (Portugal). International Journal of Life Cycle Assessment, 27, 849–867.  https://doi.org/10.1007/s11367-022-02072-7

 

Alvarez de la Rosa, D., Krueger, S. R., Kolar, A., Shao, D., Fitzsimonds, R. M., & Canessa, C.  M. (2003). Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. The Journal of Physiology, 546(Pt 1), 77–87. https://doi.org/10.1113/jphysiol.2002.030692

 

Amor, M., Norman, M., Roura, Á., Leite, T., Gleadall, I., Reid, A., Perales-Raya, C., Lu, C.,   Silvey, C., Vidal, E., et al. (2016). Morphological assessment of the  Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences.  Zoologica Scripta, 46(3), 275–288. https://doi.org/10.1111/zsc.12207

 

Anderson, E. O., Schneider, E. R., & Bagriantsev, S. N. (2017). Piezo2 in cutaneous and proprioceptive mechanotransduction in vertebrates. Current Topics in Membranes, 79,    197–217. https://doi.org/10.1016/bs.ctm.2016.11.002

 

Anderson, J., Rolls, G., & Westra, S. (2025). Immunohistochemistry: An overview + steps to better IHC staining. Leica Biosystems. https://www.leicabiosystems.com/knowledge-pathway/immunohistochemistry-…

 

Andrews, K. (2020). How to study animal minds. Cambridge University Press.

 

Andrews, P. L. R., Darmaillacq, A.-S., Dennison, N., Gleadall, I. G., Hawkins, P., Messenger,    J. B., Osorio, D., Smith, V. J., & Smith, J. A. (2013). The identification and management of pain, suffering and distress in cephalopods, including anaesthesia, analgesia and humane killing. Journal of Experimental Marine Biology and Ecology, 447, 46–64. https://doi.org/10.1016/j.jembe.2013.02.010

 

Auer, F., Franco Taveras, E., Klein, U., Kesenheimer, C., Fleischhauer, D., Möhrlen, F., &  Frings, S. (2021). Anoctamin 2-chloride channels reduce simple spike activity and mediate inhibition at elevated calcium concentration in cerebellar Purkinje cells. PLOS  ONE, 16(3), e0247801. https://doi.org/10.1371/journal.pone.0247801

 

Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. J.,   & Patapoutian, A. (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41(6), 849–857. 

https://doi.org/10.1016/s0896-6273(04)00150-3

 

Barabas, M. E., Kossyreva, E. A., & Stucky, C. L. (2012). TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons. PLOS ONE, 7(10), e47988. https://doi.org/10.1371/journal.pone.0047988

 

Bateson, P. (1991). Assessment of pain in animals. Animal Behaviour, 42(5), 827–839.  https://doi.org/10.1016/S0003-3472(05)80127-7

 

Bautista, D. M., Movahed, P., Hinman, A., Axelsson, H. E., Sterner, O., Högestätt, E. D., Julius, D., Jordt, S. E., & Zygmunt, P. M. (2005). Pungent products from garlic activate the sensory ion channel TRPA1. Proceedings of the National Academy of Sciences of the   United States of America, 102(34), 12248–12252.  https://doi.org/10.1073/pnas.0505356102

 

Ben Soussia, I., El Mouridi, S., Kang, D., Leclercq-Blondel, A., Khoubza, L., Tardy, P., Zariohi,   N., Gendrel, M., Lesage, F., Kim, E.-J., et al. (2019). Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels.    Nature Communications, 10, 787. https://doi.org/10.1038/s41467-019-08710-3

 

Billig, G. M., Pál, B., Fidzinski, P., & Jentsch, T. J. (2011). Ca²⁺-activated Cl⁻ currents are dispensable for olfaction. Nature Neuroscience, 14(6), 763–769.         https://doi.org/10.1038/nn.2821

 

Birch, J. (2017). Animal sentience and the precautionary principle. Animal Sentience, 16(1).    https://doi.org/10.51291/2377-7478.1200

 

Birch, J., Burn, C., Schnell, A., Browning, H., & Crump, A. (2021). Review of the evidence of sentience in cephalopod molluscs and decapod crustaceans. LSE Consulting, LSE   Enterprise Ltd., The London School of Economics and Political Science.  https://www.lse.ac.uk/news/news-assets/pdfs/2021/sentience-in-cephalopo…

 

Block, D. (2023). Are women more empathetic than men? VOA News.     https://www.voanews.com/a/are-women-more-empathetic-than-men-/6924270.h…

 

Broom, D. M. (2001). The evolution of pain. Vlaams Diergeneeskundig Tijdschrift, 70, 17–21.             https://openjournals.ugent.be/vdt/article/89895/galley/207608/view/

 

Broom, D. M. (2007). Cognitive ability and sentience: Which aquatic animals should be protected? Diseases of Aquatic Organisms, 75(2), 99–108.             https://doi.org/10.3354/dao075099

 

Broom, D. M. (2013). The welfare of invertebrate animals such as insects, spiders, snails and worms. In T. A. van der Kemp & M. Lachance (Eds.), Animal suffering: From science to law (pp. 135–152). Editions Yvon Blais.

 

Calcagno, V. (2020). glmulti: Model selection and multimodel inference made easy (R package version 1.0.8). https://CRAN.R-project.org/package=glmulti

 

Cao, B., Xu, Q., Shi, Y., & Zhang, Z. (2024). Pathology of pain and its implications for therapeutic interventions. Signal Transduction and Targeted Therapy, 9, 155.  https://doi.org/10.1038/s41392-024-01845-w

 

Carere, C., Wood, J. B., & Mather, J. (2011). Species differences in captivity: Where are the invertebrates? Trends in Ecology & Evolution, 26(5), 211–213.          https://doi.org/10.1016/j.tree.2011.01.003

 

Cho, H., & Oh, U. (2013). Anoctamin 1 mediates thermal pain as a heat sensor. Current   Neuropharmacology, 11(6), 641–651.  https://doi.org/10.2174/1570159X113119990038

 

Cho, H., Yang, Y. D., Lee, J., Lee, B., Kim, T., Jang, Y., Back, S. K., Na, H. S., Harfe, B. D.,       Wang, F., et al. (2012). The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nature  Neuroscience, 15(7), 1015–1021. https://doi.org/10.1038/nn.3111

 

Choi, H. M. T., Schwarzkopf, M., Fornace, M. E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha, A., & Pierce, N. A. (2018). Third-generation in situ hybridization chain reaction:   Multiplexed, quantitative, sensitive, versatile, robust. Development, 145(12), dev165753. https://doi.org/10.1242/dev.165753

 

Colléony, A., Clayton, S., Couvet, D., Saint Jalme, M., & Prévot, A.-C. (2017). Human preferences for species conservation: Animal charisma trumps endangered status. Biological Conservation, 206, 263–269. https://doi.org/10.1016/j.biocon.2016.11.035

 

Coste, B., Mathur, J., Schmidt, M., Earley, T. J., Ranade, S., Petrus, M. J., Dubin, A. E., & Patapoutian, A. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 330(6000), 55–60.             https://doi.org/10.1126/science.1193270

 

Crook, R. J. (2021). Behavioral and neurophysiological evidence suggests affective pain experience in octopus. iScience, 24(3), 102229.             https://doi.org/10.1016/j.isci.2021.102229

 

della Rocca, G., Di Salvo, A., Giannettoni, G., & Goldberg, M. E. (2015). Pain and suffering in invertebrates: An insight on cephalopods. American Journal of Animal and Veterinary Sciences, 10, 77–84. https://doi.org/10.3844/ajavsp.2015.77.84

 

Dhaliwal, A., & Gupta, M. (2023). Physiology, opioid receptor. In StatPearls. StatPearls  Publishing. https://www.ncbi.nlm.nih.gov/books/NBK546642/

 

DiBattista, M., Pifferi, S., Hernandez-Clavijo, A., & Menini, A. (2024). The physiological roles of anoctamin2/TMEM16B and anoctamin1/TMEM16A in chemical senses. Cell  Calcium, 120, 102889. https://doi.org/10.1016/j.ceca.2024.102889

 

Di Cristina, G. (2017). Nociception in the cephalopod mollusc Octopus vulgaris: A contribution to mapping putative nociceptors in the octopus arm (Doctoral dissertation, Università degli Studi di Napoli “Federico II”).  http://www.fedoa.unina.it/11639/1/Di_Cristina_Giulia_29.pdf

 

Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes (2010) Official Journal L 276, pp. 33–79. https://data.europa.eu/eli/dir/2010/63/oj

 

Dissegna, A., Borrelli, L., Ponte, G., Chiandetti, C., & Fiorito, G. (2023). Octopus vulgaris exhibits interindividual differences in behavioural and problem-solving performance.   Biology, 12(12), 1487. https://doi.org/10.3390/biology12121487

 

Dominguez-Lopez, M., Follana-Berná, G., & Arechavala-Lopez, P. (2021). Behaviour and body patterns of Octopus vulgaris facing a baited trap: First-capture assessment. Scientia   Marina, 85(1), 29–38.             https://scientiamarina.revistas.csic.es/index.php/scientiamarina/articl…

 

Duncan, I. J. H. (2006). The changing concept of animal sentience. Applied Animal Behaviour  Science, 100(1–2), 11–19. https://doi.org/10.1016/j.applanim.2006.04.011

 

Eddy, T. J., Gallup, G. G., Jr., & Povinelli, D. J. (1993). Attribution of cognitive states to animals: Anthropomorphism in comparative perspective. Journal of Social Issues, 49(1), 87–101. https://doi.org/10.1111/j.1540-4560.1993.tb00910.x

 

Elagoz, A. M., Styfhals, R., Maccuro, S., Masin, L., Moons, L., & Seuntjens, E. (2022).   Hybridization Chain Reaction combined with Immunohistochemistry for Whole-Mount Embryos. protocols.io. https://doi.org/10.17504/protocols.io.bxz6pp9e

 

Elliott, A. D. (2020). Confocal microscopy: Principles and modern practices. Current Protocols in Cytometry, 92(1), e68. https://doi.org/10.1002/cpcy.68

 

Elwood, R. W. (2011). Pain and suffering in invertebrates? ILAR Journal, 52(2), 175–184.  https://doi.org/10.1093/ilar.52.2.175

 

Feinberg, T. E., & Mallatt, J. (2020). Phenomenal consciousness and emergence: Eliminating the explanatory gap. Frontiers in Psychology, 11, 1041.  https://doi.org/10.3389/fpsyg.2020.01041

 

Fernandes, M. R., & Pedroso, A. R. (2017). Animal experimentation: a look into ethics, welfare,  and alternative methods. Revista da Associação Médica Brasileira, 63(11), 923-928. https://doi.org/10.1590/1806-9282.63.11.923

 

Fiorito, G., Affuso, A., Anderson, D. B., Basil, J., Bonnaud, L., Botta, G., Cole, A., D'Angelo,      L., De Girolamo, P., Dennison, N., et al. (2014). Cephalopods in neuroscience: Regulations, research and the 3Rs. Invertebrate Neuroscience, 14(1), 13–36.  https://doi.org/10.1007/s10158-013-0165-x

 

Florez-Paz, D., Bali, K., Kuner, R., & Gomis, A. (2016). A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Scientific Reports, 6,  25923. https://doi.org/10.1038/srep25923

 

Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Sage.  https://us.sagepub.com/en-us/n-am/an-r-companion-to-applied-regression/…

 

Franco, N. H. (2013). Animal experiments in biomedical research: A historical perspective. Animals, 3(1), 238–273. https://doi.org/10.3390/ani3010238

 

Fuentes, L., Sánchez, F. J., Otero, J. J., Lago, M. J., & Iglesias, J. (2009). Utilización de zooplancton natural y Artemia en el cultivo de paralarvas de pulpo Octopus vulgaris. In Libro de resúmenes, Congreso Nacional de Acuicultura (pp. 122–123). Madrid. 

 

Godfrey-Smith, P. (2016). Other minds: The octopus, the sea, and the deep origins of consciousness. Farrar, Straus and Giroux.

 

Gruen, L., & Monsó, S. (2024). The moral status of animals. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (2024 ed.). Stanford University. https://plato.stanford.edu/archives/fall2024/entries/moral-animal/

 

Gu, Q., & Lee, L. Y. (2010). Acid-sensing ion channels and pain. Pharmaceuticals (Basel), 3(5), 1411–1425. https://doi.org/10.3390/ph3051411

 

Ha, G. E., Lee, J., Kwak, H., Song, K., Kwon, J., Jung, S. Y., Hong, J., Chang, G. E., Hwang, E. M., Shin, H. S., et al. (2016). The Ca²⁺-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nature Communications, 7, 13791.  https://doi.org/10.1038/ncomms13791

 

Honoré, E. (2007). The neuronal background K2P channels: Focus on TREK1. Nature   Reviews Neuroscience, 8(4), 251–261. https://doi.org/10.1038/nrn2117

 

Horvath, K., Angeletti, D., Nascetti, G., & Carere, C. (2013). Invertebrate welfare: An overlooked issue. Annali dell'Istituto Superiore di Sanità, 49(1), 9–17.    https://doi.org/10.4415/ANN_13_01_04

 

Howard, S. R., & Symonds, M. R. E. (2020). Ethical considerations for invertebrates. Animal  Sentience, 29(21). https://doi.org/10.51291/2377-7478.1608

 

Huang, W. C., Xiao, S., Huang, F., Harfe, B. D., Jan, Y. N., & Jan, L. Y. (2012). Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron, 74(1), 179–192.  https://doi.org/10.1016/j.neuron.2012.01.033

 

Humphrey, N. (2006). Seeing red: A study in consciousness. Harvard University Press.  https://doi.org/10.4159/9780674038905

 

Iglesias, A. V. (2021). The suffering of invertebrates: An approach from animal ethics. Tópicos  (Mexico), (61), 403–420. https://doi.org/10.21555/top.v0i61.1197

 

Iglesias, J., & Fuentes, L. (2014). Octopus vulgaris: Paralarval culture. In J. Iglesias, L.  Fuentes, & R. Villanueva (Eds.), Cephalopod culture (pp. 427–450). Springer.   https://doi.org/10.1007/978-94-017-8648-5_23

 

Iglesias, J., Sánchez, F. J., Bersano, J. G. F., Carrasco, J. F., Dhont, J., Fuentes, L., Linares,    F., Muñoz, J. L., Okumura, S., Roo, J., et al. (2007). Rearing of Octopus vulgaris paralarvae: Present status, bottlenecks and trends. Aquaculture, 266(1–4), 1– 15. https://doi.org/10.1016/j.aquaculture.2007.02.019

 

Iglesias, J., Sánchez, F. J., Otero, J. J., & Moxica, C. (2000). Culture of octopus (Octopus vulgaris Cuvier): Present knowledge, problems and perspectives. Cahiers Options  Méditerranéennes, 47, 313–321. https://digital.csic.es/bitstream/10261/315612/1/Culture%20of%20octopus…

 

International Association for the Study of Pain [IASP]. (2021). IASP terminologyhttps://www.iasp-pain.org/resources/terminology/?navItemNumber=576

 

Jones, R. C. (2013). Science, sentience, and animal welfare. Biology & Philosophy, 28(1), 1–30. https://doi.org/10.1007/s10539-012-9351-1

 

Jozet-Alves, C., Schnell, A. K., & Clayton, N. S. (2023). Cephalopod learning and memory.  Current Biology, 33(20), R1091–R1095. https://doi.org/10.1016/j.cub.2023.08.013

 

Kiani, A. K., Pheby, D., Henehan, G., Brown, R., Sieving, P., Sykora, P., Marks, R., Falsini, B.,  Capodicasa, N., Miertus, S., et al. (2022). Ethical considerations regarding animal experimentation. Journal of Preventive Medicine and Hygiene, 63(Suppl. 3), E255–E266. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2768

 

Kim, S., Coste, B., Chadha, A., Cook, B., & Patapoutian, A. (2012). The role of Drosophila Piezo in mechanical nociception. Nature, 483, 209–212.     https://doi.org/10.1038/nature10801

 

Kooijman, M. (2013). Why animal studies are still being used in drug development. Alternatives to Laboratory Animals: ATLA, 41(6), P79–P81.    https://doi.org/10.1177/026119291304100627

 

Kunzelmann, K., Schreiber, R., Kmit, A., Jantarajit, W., Martins, J. R., Faria, D., Kongsuphol,    P., Ousingsawat, J., & Tian, Y. (2012). Expression and function of epithelial anoctamins. Experimental Physiology, 97(2), 184–192.      https://doi.org/10.1113/expphysiol.2011.058206

 

LaFollette, H. (2025). Ethics in Practice: An Anthology (6th ed.). John Wiley and Sons.

 

Laursen, W. J., Anderson, E. O., Hoffstaetter, L. J., Bagriantsev, S. N., & Gracheva, E. O. (2015). Species-specific temperature sensitivity of TRPA1. Temperature (Austin, Tex.),  2(2), 214–226. https://doi.org/10.1080/23328940.2014.1000702

 

Lee, B., Cho, H., Jung, J., Yang, Y. D., Yang, D. J., & Oh, U. (2014). Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Molecular Pain, 10, Article  5. https://doi.org/10.1186/1744-8069-10-5

 

Lee, J., Jung, J., Tak, M. H., Wee, J., Lee, B., Jang, Y., Chun, H., Yang, D. J., Yang, Y. D.,         Park, S. H., et al. (2015). Two helices in the third intracellular loop determine anoctamin 1 (TMEM16A) activation by calcium. Pflügers Archiv - European Journal of Physiology,  467(8), 1677–1687. https://doi.org/10.1007/s00424-014-1603-2

 

Lee, K. H., Lee, D. W., & Kang, B. C. (2020). The 'R' principles in laboratory animal experiments. Laboratory Animal Research, 36(1), 45.            https://doi.org/10.1186/s42826-020-00078-6

 

Lenth, R. (2023). emmeans: Estimated marginal means, aka least-squares means (R package version 1.9.0). https://CRAN.R-project.org/package=emmeans

 

Lesage, F., & Lazdunski, M. (2000). Molecular and functional properties of two-pore-domain potassium channels. American Journal of Physiology-Renal Physiology, 279(5),  F793–F801. https://doi.org/10.1152/ajprenal.2000.279.5.F793

 

Liguori, G. R., Jeronimus, B. F., de Aquinas Liguori, T. T., Moreira, L. F. P., & Harmsen, M. C.    (2017). Ethical issues in the use of animal models for tissue engineering: Reflections on legal aspects, moral theory, Three Rs strategies, and harm-benefit analysis. Tissue  Engineering Part C: Methods, 23(12), 850–862.   https://doi.org/10.1089/ten.TEC.2017.0189

 

Li, K. X., He, M., Ye, W., Simms, J., Gill, M., Xiang, X., Jan, Y. N., & Jan, L. Y. (2019).     TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala. eLife, 8, e47106. https://doi.org/10.7554/eLife.47106

 

LimeSurvey GmbH. (n.d.). LimeSurvey: An open source survey tool. LimeSurvey GmbH. https://www.limesurvey.org

 

Lockwood, J. (2013). Jeffrey Lockwood on insect suffering: An interview by Max Maxwell Brian Carpendale. Essays on Reducing Suffering. https://reducing-suffering.org/wp-content/uploads/2014/10/lockwood-inse…

 

Loeser, J. D., & Treede, R. D. (2008). The Kyoto protocol of IASP basic pain terminology. Pain, 137(3), 473–477. https://doi.org/10.1016/j.pain.2008.04.025

 

Luo, Y., Huang, L., Liao, P., & Jiang, R. (2021). Contribution of neuronal and glial two-pore-domain potassium channels in health and neurological disorders. Neural Plasticity, 2021, Article 8643129. https://doi.org/10.1155/2021/8643129

 

Mano, I., & Driscoll, M. (1999). DEG/ENaC channels: A touchy superfamily that watches its salt. BioEssays, 21(7), 568–578.  https://doi.org/10.1002/(SICI)1521-1878(199907)21:7<568::AID-BIES5>3.0…

 

Manolache, A., Babes, A., & Babes, R. M. (2021). Mini-review: The nociceptive sensory functions of the polymodal receptor Transient Receptor Potential Ankyrin Type 1    (TRPA1). Neuroscience Letters, 764, 136286.         https://doi.org/10.1016/j.neulet.2021.136286

 

MarineBio Conservation Society. (n.d.). Common octopuses: Octopus vulgaris. Retrieved June&11, 2025, from https://www.marinebio.org/species/common-octopuses/octopus-vulgaris/

 

Mather, J. A. (2019). Ethics and care: For animals, not just mammals. Animals, 9(12), 1018.     https://doi.org/10.3390/ani9121018

 

Mather, J. A., & Dickel, L. (2017). Cephalopod complex cognition. Current Opinion in   Behavioral Sciences, 16, 131–137. https://doi.org/10.1016/j.cobeha.2017.06.008

 

Mather, J., & Scheel, D. (2014). Behaviour. In J. Iglesias, L. Fuentes, & R. Villanueva (Eds.),    Cephalopod culture (pp. 17–39). Springer.  https://doi.org/10.1007/978-94-017-8648-5_2

 

Mathie, A., & Veale, E. L. (2015). Two-pore domain potassium channels: Potential therapeutic targets for the treatment of pain. Pflügers Archiv - European Journal of Physiology, 467(5), 931–943. https://doi.org/10.1007/s00424-014-1655-3

 

Mikhalevich, I., & Powell, R. (2020). Minds without spines: Evolutionarily inclusive animal ethics. Animal Sentience, 29(1). https://doi.org/10.51291/2377-7478.1527

 

Milenkovic, V. M., Brockmann, M., Stöhr, H., Weber, B. H., & Strauss, O. (2010). Evolution and functional divergence of the anoctamin family of membrane proteins. BMC Evolutionary     Biology, 10, Article 319. https://doi.org/10.1186/1471-2148-10-319

 

Monnissen, J., & de Block, A. (2025). Exploring Perceptions and Reasoning in Scientific and    Non-Scientific Communities on Ethical Treatment of Animals in Octopus Research. https://doi.org/10.17605/OSF.IO/VZP82

 

Mukherjee, P., Roy, S., Ghosh, D., & Nandi, S. K. (2022). Role of animal models in biomedical research: A review. Laboratory Animal Research, 38(1), 18.        https://doi.org/10.1186/s42826-022-00128-1

 

Nabhitabhata, J., & Segawa, S. (2014). Aquaculture to restocking. In J. Iglesias, L. Fuentes, &  R. Villanueva (Eds.), Cephalopod culture (pp. 113–130). Springer. https://doi.org/10.1007/978-94-017-8648-5_7

 

Nagata, K., Duggan, A., Kumar, G., & García-Añoveros, J. (2005). Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. The Journal of   Neuroscience, 25(16), 4052–4061. https://doi.org/10.1523/JNEUROSCI.0013-05.2005

 

Navarro, J. C., Monroig, Ó., & Sykes, A. V. (2014). Nutrition as a key factor for cephalopod aquaculture. In J. Iglesias, L. Fuentes, & R. Villanueva (Eds.), Cephalopod culture (pp.  77–95). Springer. https://doi.org/10.1007/978-94-017-8648-5_5

 

Navarro, J. C., & Villanueva, R. (2000). Lipid and fatty acid composition of early stages of cephalopods: An approach to their lipid requirements. Aquaculture, 183(1–2), 161–177.  https://doi.org/10.1016/S0044-8486(99)00290-2

 

Navarro, J. C., & Villanueva, R. (2003). The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: Deviation from their natural fatty acid profile. Aquaculture, 219(1–4), 613–631. https://doi.org/10.1016/S0044-8486(02)00311-3

 

Omerbašić, D., Schuhmacher, L.-N., Bernal Sierra, Y.-A., Smith, E. S. J., & Lewin, G. R. (2015). ASICs and mammalian mechanoreceptor function. Neuropharmacology, 94, 80–86. https://doi.org/10.1016/j.neuropharm.2014.12.007

 

Ossipov, M. H., Dussor, G. O., & Porreca, F. (2010). Central modulation of pain. The Journal of Clinical Investigation, 120(11), 3779–3787. https://doi.org/10.1172/JCI43766

 

Paixão, R. L., & Schramm, F. R. (1999). Ethics and animal experimentation: What is debated?  Cadernos de Saúde Pública, 15(Suppl 1), S99–S110.                                       https://doi.org/10.1590/s0102-311x1999000500011

 

Papadopoulo, K., Hillinger, A., Mucientes, G., & others. (2024). First insights into the spatial behaviour of Octopus vulgaris in the wild using acoustic telemetry. Animal Biotelemetry, 12, 16. https://doi.org/10.1186/s40317-024-00361-6

 

Parra, G., Villanueva, R., & Yúfera, M. (2000). Respiration rates in late eggs and early hatchlings of the common octopus, Octopus vulgaris. Journal of the Marine Biological  Association of the United Kingdom, 80(3), 557–558.          https://doi.org/10.1017/S0025315400002319

 

Paukert, M., Sidi, S., Russell, C., Siba, M., Wilson, S. W., Nicolson, T., & Gründer, S. (2004).    A family of acid-sensing ion channels from the zebrafish: Widespread expression in the central nervous system suggests a conserved role in neuronal communication. The Journal of Biological Chemistry, 279(18), 18783–18791.   https://doi.org/10.1074/jbc.M401477200

 

Pawley, J. B. (2006). Fundamental limits in confocal microscopy. In J. B. Pawley (Ed.),  Handbook of biological confocal microscopy (3rd ed., pp. 20–42). Springer. https://doi.org/10.1007/978-0-387-45524-2_2

 

Petrosino, G. (2015). The transcriptional landscape of the nervous system of Octopus vulgaris  (Doctoral dissertation, Università degli Studi di Napoli “Federico II”).  http://www.fedoa.unina.it/10212/1/petrosino_giuseppe_27.pdf

 

Pietra, G., Dibattista, M., Menini, A., Reisert, J., & Boccaccio, A. (2016). The Ca²⁺-activated      Cl⁻ channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons. The Journal of General Physiology, 148(4), 293–311. https://doi.org/10.1085/jgp.201611622

 

Ponte, G., Chiandetti, C., Edelman, D. B., Imperadore, P., Pieroni, E. M., & Fiorito, G. (2022).   Cephalopod behavior: From neural plasticity to consciousness. Frontiers in Systems Neuroscience, 15, 787139. https://doi.org/10.3389/fnsys.2021.787139

 

Ponte, G., Taite, M., Borrelli, L., Tarallo, A., Allcock, A. L., & Fiorito, G. (2021). Cerebrotypes in cephalopods: Brain diversity and its correlation with species habits, life history, and physiological adaptations. Frontiers in Neuroanatomy, 14, 565109. https://doi.org/10.3389/fnana.2020.565109

 

Price, M. P., McIlwrath, S. L., Xie, J., Cheng, C., Qiao, J., Tarr, D. E., Sluka, K. A., Brennan,   T. J., Lewin, G. R., & Welsh, M. J. (2001). The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron, 32(6), 1071–1083. https://doi.org/10.1016/s0896-6273(01)00547-5

 

Proctor, H. (2012). Animal sentience: Where are we and where are we heading? Animals, 2(4), 628–639. https://doi.org/10.3390/ani2040628

 

Psychological Consultancy Ltd. (2016). Women more than twice as likely to be cautious about  risk than men.                                                                                    https://www.psychological-consultancy.com/women-twice-likely-cautious-r…

 

Ranade, S. S., Woo, S. H., Dubin, A. E., Moshourab, R. A., Wetzel, C., Petrus, M., Mathur, J.,  Bégay, V., Coste, B., Mainquist, J., et al. (2014). Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature, 516(7529), 121–125.             https://doi.org/10.1038/nature13980

 

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

 

Roura, A., Castro-Bugallo, A., & Martínez-Pérez, M. (2023). The settlement stage in the common octopus Octopus vulgaris Cuvier, 1797: A complex transition between planktonic and benthic lifestyles. Marine Biology, 170, 53.  https://doi.org/10.1007/s00227-023-04188-2

 

Sánchez-Carranza, O., Chakrabarti, S., Kühnemund, J., Schwaller, F., Bégay, V., García-Contreras, J. A., Wang, L., & Lewin, G. R. (2024). Piezo2 voltage-block regulates mechanical pain sensitivity. Brain: A Journal of Neurology, 147(10), 3487–3500. https://doi.org/10.1093/brain/awae227

 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,   S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682.            https://doi.org/10.1038/nmeth.2019

 

Schnell, A. K., Amodio, P., Boeckle, M., & Clayton, N. S. (2021). How intelligent is a cephalopod? Lessons from comparative cognition. Biological Reviews, 96(1), 162–178.  https://doi.org/10.1111/brv.12651

 

Schreiber, R., Uliyakina, I., Kongsuphol, P., Warth, R., Mirza, M., Martins, J. R., & Kunzelmann, K. (2010). Expression and function of epithelial anoctamins. Journal of Biological  Chemistry, 285(10), 7838–7845. https://doi.org/10.1074/jbc.M109.065367

 

Schroeder, B. C., Cheng, T., Jan, Y. N., & Jan, L. Y. (2008). Expression cloning of TMEM16A  as a calcium-activated chloride channel subunit. Cell, 134(6), 1019–1029. https://doi.org/10.1016/j.cell.2008.09.003

 

Schwarzkopf, M., Liu, M. C., Schulte, S. J., Ives, R., Husain, N., Choi, H. M. T., & Pierce, N. A. (2021). Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization. Development, 148(22), dev199847. https://doi.org/10.1242/dev.199847

 

Seddon, P. J., Soorae, P. S., & Launay, F. (2005). Taxonomic bias in reintroduction projects. Animal Conservation, 8(1), 51 58. https://doi.org/10.1017/S1367943004001799

 

Sergio, F., Caro, T., Brown, D., Clucas, B., Hunter, J., Ketchum, J., McHugh, K., & Hiraldo, F.    (2008). Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annual Review of Ecology, Evolution, and Systematics, 39(1), 1–19. https://doi.org/10.1146/annurev.ecolsys.39.110707.173545

 

Seuntjens Lab. (2021). Easy_HCR: Automated probe design for HCR v3.0. GitHub.  https://github.com/SeuntjensLab/Easy_HCR

 

Shonk, K. (2025). Moral leadership: Do women negotiate more ethically than men? Daily Blog,   Program on Negotiation, Harvard Law School. https://www.pon.harvard.edu/daily/leadership-skills-daily/moral-leaders…

 

Shook, E. N., Barlow, G. T., Garcia-Rosales, D., Gibbons, C. J., & Montague, T. G. (2024). Dynamic skin behaviors in cephalopods. Current Opinion in Neurobiology, 86, 102876. https://doi.org/10.1016/j.conb.2024.102876

 

Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. (2023). afex: Analysis of factorial experiments (R package version 1.3-0).                                         https://CRAN.R-project.org/package=afex

 

Smith, J. A., Andrews, P. L. R., Hawkins, P., Louhimies, S., Ponte, G., & Dickel, L. (2013).  Cephalopod research and EU Directive 2010/63/EU: Requirements, impacts and ethical review. Journal of Experimental Marine Biology and Ecology, 447, 31–45.  https://doi.org/10.1016/j.jembe.2013.02.009

 

Stern-Mentch, N., Bostwick, G. W., Belenky, M., Moroz, L., & Hochner, B. (2022).           Neurotransmission and neuromodulation systems in the learning and memory network of Octopus vulgaris. Journal of Morphology, 283(5), 557–584.       https://doi.org/10.1002/jmor.21459

 

Styfhals, R., Zolotarov, G., Hulselmans, G., Spanier, K. I., Poovathingal, S., Elagoz, A. M., De   Winter, S., Deryckere, A., Rajewsky, N., Ponte, G., et al. (2022). Cell type diversity in a developing octopus brain. Nature Communications, 13, 7392.         https://doi.org/10.1038/s41467-022-35198-1

 

Tai, C., Zhu, S., & Zhou, N. (2008). TRPA1: The central molecule for chemical sensing in the pain pathway? The Journal of Neuroscience, 28(5), 1019–1021.    https://doi.org/10.1523/JNEUROSCI.5237-07.2008

 

Tannenbaum, J., & Bennett, B. T. (2015). Russell and Burch's 3Rs then and now: The need for clarity in definition and purpose. Journal of the American Association for Laboratory Animal Science (JAALAS), 54(2), 120–132.

 

The Editors of Encyclopaedia Britannica. (2025). Octopus. Encyclopedia Britannica. https://www.britannica.com/animal/octopus-mollusk

 

Thermo Fisher Scientific. (n.d.). Introduction to quantitative PCR (qPCR) gene expression analysis. Retrieved June 11, 2025, from https://www.thermofisher.com/be/en/home/life-science/pcr/real-time-pcr/…;

 

Toubia, T., & Khalife, T. (2019). The endogenous opioid system: Role and dysfunction caused by opioid therapy. Clinical Obstetrics and Gynecology, 62(1), 3–10. https://doi.org/10.1097/GRF.0000000000000409

 

Tracey, W. D., Jr, Wilson, R. I., Laurent, G., & Benzer, S. (2003). painless, a Drosophila gene essential for nociception. Cell, 113(2), 261–273.                 https://doi.org/10.1016/s0092-8674(03)00272-1

 

Vandewoude, S., & Rollin, B. E. (2009). Practical considerations in regenerative medicine research: IACUCs, ethics, and the use of animals in stem cell studies. ILAR Journal, 51(1), 82–84. https://doi.org/10.1093/ilar.51.1.82

 

Vaz-Pires, P., Seixas, P., & Barbosa, A. (2004). Aquaculture potential of the common octopus   (Octopus vulgaris Cuvier, 1797): A review. Aquaculture, 238(1–4), 221–238. https://doi.org/10.1016/j.aquaculture.2004.05.018

 

Villanueva, R. (1995). Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Canadian Journal of Fisheries and Aquatic Sciences, 52(12),      2639–2650. https://doi.org/10.1139/f95-853

 

Villanueva, R., Nozais, C., & Boletzky, S. (1995). The planktonic life of octopuses. Nature, 377(6546), 107. https://doi.org/10.1038/377107a0

 

Villanueva, R., Nozais, C., & Boletzky, S. v. (1997). Swimming behaviour and food searching in planktonic Octopus vulgaris Cuvier from hatching to settlement. Journal of        Experimental Marine Biology and Ecology, 208(1–2), 169–184.        https://doi.org/10.1016/S0022-0981(96)02670-6

 

Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C., & Lazdunski, M. (1997). A proton-gated cation channel involved in acid-sensing. Nature, 386(6621), 173–177.            https://doi.org/10.1038/386173a0

 

Wang, L., Simms, J., Peters, C. J., Tynan-La Fontaine, M., Li, K., Gill, T. M., Jan, Y. N., & Jan,  L. Y. (2019). TMEM16B calcium-activated chloride channels regulate action potential firing in lateral septum and aggression in male mice. The Journal of Neuroscience,        39(36), 7102–7117. https://doi.org/10.1523/JNEUROSCI.3137-18.2019

 

Wemmie, J. A., Taugher, R. J., & Kreple, C. J. (2013). Acid-sensing ion channels in pain and disease. Nature Reviews Neuroscience, 14(7), 461–471.        https://doi.org/10.1038/nrn3529

 

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer.

 

Woo, S. H., Ranade, S., Weyer, A. D., Dubin, A. E., Baba, Y., Qiu, Z., Petrus, M., Miyamoto,     T., Reddy, K., Lumpkin, E. A., et al. (2014). Piezo2 is required for Merkel-cell mechanotransduction. Nature, 509(7502), 622–626.          https://doi.org/10.1038/nature13251

 

Yang, Y. D., Cho, H., Koo, J. Y., Tak, M. H., Cho, Y., Shim, W.-S., Park, S. P., Lee, J., Lee,         B., Kim, B.-M., et al. (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature, 455(7217), 1210–1215.       https://doi.org/10.1038/nature07313

 

Young, J. Z. (1965). The diameters of the fibres of the peripheral nerves of Octopus.      Proceedings of the Royal Society B: Biological Sciences, 162, 47–79.    https://doi.org/10.1098/rspb.1965.0025

 

Young, R. E., & Harman, R. F. (1988). “Larva,” “paralarva,” and “subadult” in cephalopod terminology. Malacologia, 29(1), 201–207.

 

Zhang, W., Schmelzeisen, S., Parthier, D., Frings, S., & Möhrlen, F. (2015). Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex. PLOS ONE, 10(11), e0142160.                                                              https://doi.org/10.1371/journal.pone.0142160

 

Zhang, Y., Zhang, Z., Xiao, S., Tien, J., Le, S., Le, T., Jan, L. Y., & Yang, H. (2017). Inferior olivary TMEM16B mediates cerebellar motor learning. Neuron, 95(5), 1103–1111.e4.        https://doi.org/10.1016/j.neuron.2017.08.010

Download scriptie (36.75 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2025
Promotor(en)
Andreas De Block, Eve Seuntjens