Kunnen piepkleine octopuslarven pijn ervaren? Het antwoord onthult evenveel over deze dieren als over ons als mensen. Niet de wetenschappelijke feiten, maar overtuigingen en intuïties geven de doorslag.
Bij dieren met een ruggengraat—gewervelden—zoals honden, katten, en vogels zijn we zeker dat ze pijn ervaren. Stap per ongeluk op de poot van je hond en zijn gejank laat geen ruimte voor twijfel. Omdat gewervelden ons vertrouwd zijn, herkennen we hun emoties en voelen we sneller empathie. Voor ongewervelden—dieren zonder ruggengraat, zoals insecten—ligt dat anders. Hun vreemde uiterlijk en gebrek aan herkenbare emoties maken dat we ons minder snel verbonden voelen met hen. Hierdoor denken we minder snel dat ze pijn voelen en krijgen ze in wetenschappelijk onderzoek niet dezelfde bescherming als gewervelden. Toch vormt één groep ongewervelden een uitzondering: de koppotigen (Cephalopoda), waaronder de gewone octopus (Octopus vulgaris; Fig. 1).
Figuur 1: Gewone octopus (Octopus vulgaris)
Bekend als één van de slimste ongewervelden, toont de gewone octopus zijn vindingrijkheid door uit aquaria te ontsnappen en voorwerpen als gereedschap te gebruiken. Bovendien groeit ook het wetenschappelijk bewijs dat ze pijn kunnen ervaren. Daarom besloot de Europese Unie in 2013 dat alle levende koppotigen, ook de gewone octopus, wettelijke bescherming verdienen tijdens wetenschappelijk onderzoek, net zoals gewervelden. Die bescherming geldt niet alleen voor volwassen octopussen, maar ook voor hun pas uitgekomen larven, de paralarven (Fig. 2).
Figuur 2: Paralarve van de gewone octopus (Octopus vulgaris)
En daar ontstaat een dilemma, want terwijl er bewijs is dat volwassen dieren pijn kunnen ervaren, ontbreekt dit volledig voor de paralarven. Moeten deze larven uit voorzorg dezelfde bescherming krijgen als volwassen octopussen? Of is bescherming pas op zijn plaats als de wetenschap onomstotelijk bewijs levert? En vooral: hoe verschillend kijken wetenschappers en het brede publiek naar die kwestie?
Die vragen vormden het vertrekpunt voor het masteronderzoek van biologe Jill Monnissen (KU Leuven). In haar studie bracht ze twee werelden samen: biologie en filosofie. Enerzijds onderzocht ze of genen die in verband staan met pijnbeleving al aanwezig zijn in de piepkleine paralarven. Anderzijds peilde ze met een enquête naar de meningen van biologen en het brede publiek. Haar conclusie? Hoewel biologische data veel kunnen onthullen, zijn het uiteindelijk overtuigingen en intuïties die de doorslag geven in ethische debatten.
Voor het biologisch luik van haar onderzoek keek biologe Jill Monnissen naar zes genen die mogelijk een rol spelen bij het waarnemen van schadelijke prikkels en dus pijn. Met een geavanceerde techniek bracht ze in beeld waar die genen actief zijn in paralarfjes van vijf en veertig dagen oud.
De resultaten waren opvallend: al bij jonge octopuslarven blijken bepaalde pijn-gerelateerde genen actief te zijn in specifieke delen van het lichaam. Bovendien werden sommige genen ook actiever naarmate de larven ouder werden. Samen wijst dit erop dat zelfs heel jonge octopuslarven al de moleculaire basis hebben om pijn en stress waar te nemen. Maar, zo benadrukt Monnissen, voorzichtigheid is geboden: het feit dat de bouwstenen aanwezig zijn, betekent nog niet dat de larven ook écht bewust pijn ervaren.
Maar wat doen mensen eigenlijk met zulke biologische informatie? Om dat te achterhalen, vertaalde biologe Jill Monnissen haar eigen genetisch experiment naar de filosofische praktijk. Via een online enquête legde ze deze biologische data voor aan drie groepen: biologen die met koppotigen werken, biologen die met andere dieren werken, en een brede groep niet-biologen zonder wetenschappelijke achtergrond.
Elke deelnemer kreeg een korte tekst te lezen over de expressie van pijn-gerelateerde genen in paralarven. Wat ze niet wisten, is dat er drie verschillende versies van deze tekst circuleerden. In de eerste versie kwamen de genen tot expressie, in de tweede niet, en in de derde was het experiment nog niet uitgevoerd, waardoor de uitkomst onzeker bleef. Vervolgens moesten de deelnemers hun oordeel vellen: hoe ethisch vinden ze onderzoek op octopuslarven en volwassen dieren? Hoe belangrijk vinden ze dit soort onderzoek voor de maatschappij? En geloven ze dat deze dieren pijn kunnen ervaren? De antwoorden leverden een verrassend beeld op.
Wat bleek? De meegegeven wetenschappelijke informatie had weinig invloed. Of deelnemers lazen dat genexpressie aanwezig, afwezig of onzeker was, hun oordelen verschilden nauwelijks. Veel bepalender was hun eigen overtuiging: wie geloofde dat paralarven pijn kunnen ervaren, vond onderzoek met deze dieren sneller onethisch en minder belangrijk voor de maatschappij.
Ook de achtergrond van de deelnemers speelde een rol. Biologen die met koppotigen werken, waren het minst geneigd om het onderzoek onethisch te vinden, waarschijnlijk door hun ervaring met de dieren en vertrouwen in de regelgeving. Het brede publiek daarentegen was het meest geneigd het onderzoek onethisch te vinden. Zij waren voorzichtiger en gaven de octopuslarfjes sneller het voordeel van de twijfel: beter beschermen dan later spijt hebben. Daarnaast viel ook op dat leken vaak erg zelfverzekerd waren in hun oordeel, soms zelfs meer dan biologen met middelmatige ervaring. Mogelijk speelt hier een Dunning–Kruger-effect: wie minder vertrouwd is met de biologische complexiteit, kan zijn eigen begrip overschatten.
Nog opvallend was het verschil tussen mannen en vrouwen. Mannen benadrukten vaker de maatschappelijke relevantie van het onderzoek, ook als dat mogelijk pijn voor de paralarven betekende. Vrouwen kozen daarentegen vaker voor voorzichtigheid en extra bescherming van de paralarven. Dat sluit aan bij bredere studies die aantonen dat vrouwen doorgaans meer empathisch en risicomijdend oordelen in ethische dilemma’s.
Door genetische data te koppelen aan filosofische reflectie, maakt deze thesis een brug tussen laboratorium en maatschappij. De thesis van Monnissen levert niet alleen nieuwe biologische kennis op, maar ook een blik op onze eigen manier van redeneren. Haar onderzoek maakt duidelijk hoe lastig het is om wetenschappelijke informatie te vertalen naar beleid en ethiek. Complexe biologische data worden niet altijd correct geïnterpreteerd, en vaak wegen overtuigingen en intuïties zwaarder dan de feiten. Daarom is toegankelijke communicatie cruciaal. Want wanneer wetenschap en beleid samenkomen, zeker in grijze zones vol onzekerheid, moeten we begrijpen dat de keuzes die we maken net zoveel zeggen over onszelf als over de dieren die we willen beschermen.
Albertin, C. B., & Katz, P. S. (2023). Evolution of cephalopod nervous systems. Current Biology, 33(20), R1087–R1091. https://doi.org/10.1016/j.cub.2023.08.092
Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edsinger-Gonzales, E., Brenner, S., Ragsdale, C. W., & Rokhsar, D. S. (2015). The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 524(7564), 220– 224. https://doi.org/10.1038/nature14668
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). From RNA to protein. In Molecular biology of the cell (4th ed.). Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK26829/
Almeida, C., Loubet, P., Laso, J., Nunes, M. L., & Marques, A. (2022). Environmental assessment of common octopus (Octopus vulgaris) from a small-scale fishery in Algarve (Portugal). International Journal of Life Cycle Assessment, 27, 849–867. https://doi.org/10.1007/s11367-022-02072-7
Alvarez de la Rosa, D., Krueger, S. R., Kolar, A., Shao, D., Fitzsimonds, R. M., & Canessa, C. M. (2003). Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. The Journal of Physiology, 546(Pt 1), 77–87. https://doi.org/10.1113/jphysiol.2002.030692
Amor, M., Norman, M., Roura, Á., Leite, T., Gleadall, I., Reid, A., Perales-Raya, C., Lu, C., Silvey, C., Vidal, E., et al. (2016). Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zoologica Scripta, 46(3), 275–288. https://doi.org/10.1111/zsc.12207
Anderson, E. O., Schneider, E. R., & Bagriantsev, S. N. (2017). Piezo2 in cutaneous and proprioceptive mechanotransduction in vertebrates. Current Topics in Membranes, 79, 197–217. https://doi.org/10.1016/bs.ctm.2016.11.002
Anderson, J., Rolls, G., & Westra, S. (2025). Immunohistochemistry: An overview + steps to better IHC staining. Leica Biosystems. https://www.leicabiosystems.com/knowledge-pathway/immunohistochemistry-…
Andrews, K. (2020). How to study animal minds. Cambridge University Press.
Andrews, P. L. R., Darmaillacq, A.-S., Dennison, N., Gleadall, I. G., Hawkins, P., Messenger, J. B., Osorio, D., Smith, V. J., & Smith, J. A. (2013). The identification and management of pain, suffering and distress in cephalopods, including anaesthesia, analgesia and humane killing. Journal of Experimental Marine Biology and Ecology, 447, 46–64. https://doi.org/10.1016/j.jembe.2013.02.010
Auer, F., Franco Taveras, E., Klein, U., Kesenheimer, C., Fleischhauer, D., Möhrlen, F., & Frings, S. (2021). Anoctamin 2-chloride channels reduce simple spike activity and mediate inhibition at elevated calcium concentration in cerebellar Purkinje cells. PLOS ONE, 16(3), e0247801. https://doi.org/10.1371/journal.pone.0247801
Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., Earley, T. J., & Patapoutian, A. (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41(6), 849–857.
https://doi.org/10.1016/s0896-6273(04)00150-3
Barabas, M. E., Kossyreva, E. A., & Stucky, C. L. (2012). TRPA1 is functionally expressed primarily by IB4-binding, non-peptidergic mouse and rat sensory neurons. PLOS ONE, 7(10), e47988. https://doi.org/10.1371/journal.pone.0047988
Bateson, P. (1991). Assessment of pain in animals. Animal Behaviour, 42(5), 827–839. https://doi.org/10.1016/S0003-3472(05)80127-7
Bautista, D. M., Movahed, P., Hinman, A., Axelsson, H. E., Sterner, O., Högestätt, E. D., Julius, D., Jordt, S. E., & Zygmunt, P. M. (2005). Pungent products from garlic activate the sensory ion channel TRPA1. Proceedings of the National Academy of Sciences of the United States of America, 102(34), 12248–12252. https://doi.org/10.1073/pnas.0505356102
Ben Soussia, I., El Mouridi, S., Kang, D., Leclercq-Blondel, A., Khoubza, L., Tardy, P., Zariohi, N., Gendrel, M., Lesage, F., Kim, E.-J., et al. (2019). Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Nature Communications, 10, 787. https://doi.org/10.1038/s41467-019-08710-3
Billig, G. M., Pál, B., Fidzinski, P., & Jentsch, T. J. (2011). Ca²⁺-activated Cl⁻ currents are dispensable for olfaction. Nature Neuroscience, 14(6), 763–769. https://doi.org/10.1038/nn.2821
Birch, J. (2017). Animal sentience and the precautionary principle. Animal Sentience, 16(1). https://doi.org/10.51291/2377-7478.1200
Birch, J., Burn, C., Schnell, A., Browning, H., & Crump, A. (2021). Review of the evidence of sentience in cephalopod molluscs and decapod crustaceans. LSE Consulting, LSE Enterprise Ltd., The London School of Economics and Political Science. https://www.lse.ac.uk/news/news-assets/pdfs/2021/sentience-in-cephalopo…
Block, D. (2023). Are women more empathetic than men? VOA News. https://www.voanews.com/a/are-women-more-empathetic-than-men-/6924270.h…
Broom, D. M. (2001). The evolution of pain. Vlaams Diergeneeskundig Tijdschrift, 70, 17–21. https://openjournals.ugent.be/vdt/article/89895/galley/207608/view/
Broom, D. M. (2007). Cognitive ability and sentience: Which aquatic animals should be protected? Diseases of Aquatic Organisms, 75(2), 99–108. https://doi.org/10.3354/dao075099
Broom, D. M. (2013). The welfare of invertebrate animals such as insects, spiders, snails and worms. In T. A. van der Kemp & M. Lachance (Eds.), Animal suffering: From science to law (pp. 135–152). Editions Yvon Blais.
Calcagno, V. (2020). glmulti: Model selection and multimodel inference made easy (R package version 1.0.8). https://CRAN.R-project.org/package=glmulti
Cao, B., Xu, Q., Shi, Y., & Zhang, Z. (2024). Pathology of pain and its implications for therapeutic interventions. Signal Transduction and Targeted Therapy, 9, 155. https://doi.org/10.1038/s41392-024-01845-w
Carere, C., Wood, J. B., & Mather, J. (2011). Species differences in captivity: Where are the invertebrates? Trends in Ecology & Evolution, 26(5), 211–213. https://doi.org/10.1016/j.tree.2011.01.003
Cho, H., & Oh, U. (2013). Anoctamin 1 mediates thermal pain as a heat sensor. Current Neuropharmacology, 11(6), 641–651. https://doi.org/10.2174/1570159X113119990038
Cho, H., Yang, Y. D., Lee, J., Lee, B., Kim, T., Jang, Y., Back, S. K., Na, H. S., Harfe, B. D., Wang, F., et al. (2012). The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nature Neuroscience, 15(7), 1015–1021. https://doi.org/10.1038/nn.3111
Choi, H. M. T., Schwarzkopf, M., Fornace, M. E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha, A., & Pierce, N. A. (2018). Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive, versatile, robust. Development, 145(12), dev165753. https://doi.org/10.1242/dev.165753
Colléony, A., Clayton, S., Couvet, D., Saint Jalme, M., & Prévot, A.-C. (2017). Human preferences for species conservation: Animal charisma trumps endangered status. Biological Conservation, 206, 263–269. https://doi.org/10.1016/j.biocon.2016.11.035
Coste, B., Mathur, J., Schmidt, M., Earley, T. J., Ranade, S., Petrus, M. J., Dubin, A. E., & Patapoutian, A. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 330(6000), 55–60. https://doi.org/10.1126/science.1193270
Crook, R. J. (2021). Behavioral and neurophysiological evidence suggests affective pain experience in octopus. iScience, 24(3), 102229. https://doi.org/10.1016/j.isci.2021.102229
della Rocca, G., Di Salvo, A., Giannettoni, G., & Goldberg, M. E. (2015). Pain and suffering in invertebrates: An insight on cephalopods. American Journal of Animal and Veterinary Sciences, 10, 77–84. https://doi.org/10.3844/ajavsp.2015.77.84
Dhaliwal, A., & Gupta, M. (2023). Physiology, opioid receptor. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK546642/
DiBattista, M., Pifferi, S., Hernandez-Clavijo, A., & Menini, A. (2024). The physiological roles of anoctamin2/TMEM16B and anoctamin1/TMEM16A in chemical senses. Cell Calcium, 120, 102889. https://doi.org/10.1016/j.ceca.2024.102889
Di Cristina, G. (2017). Nociception in the cephalopod mollusc Octopus vulgaris: A contribution to mapping putative nociceptors in the octopus arm (Doctoral dissertation, Università degli Studi di Napoli “Federico II”). http://www.fedoa.unina.it/11639/1/Di_Cristina_Giulia_29.pdf
Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes (2010) Official Journal L 276, pp. 33–79. https://data.europa.eu/eli/dir/2010/63/oj
Dissegna, A., Borrelli, L., Ponte, G., Chiandetti, C., & Fiorito, G. (2023). Octopus vulgaris exhibits interindividual differences in behavioural and problem-solving performance. Biology, 12(12), 1487. https://doi.org/10.3390/biology12121487
Dominguez-Lopez, M., Follana-Berná, G., & Arechavala-Lopez, P. (2021). Behaviour and body patterns of Octopus vulgaris facing a baited trap: First-capture assessment. Scientia Marina, 85(1), 29–38. https://scientiamarina.revistas.csic.es/index.php/scientiamarina/articl…
Duncan, I. J. H. (2006). The changing concept of animal sentience. Applied Animal Behaviour Science, 100(1–2), 11–19. https://doi.org/10.1016/j.applanim.2006.04.011
Eddy, T. J., Gallup, G. G., Jr., & Povinelli, D. J. (1993). Attribution of cognitive states to animals: Anthropomorphism in comparative perspective. Journal of Social Issues, 49(1), 87–101. https://doi.org/10.1111/j.1540-4560.1993.tb00910.x
Elagoz, A. M., Styfhals, R., Maccuro, S., Masin, L., Moons, L., & Seuntjens, E. (2022). Hybridization Chain Reaction combined with Immunohistochemistry for Whole-Mount Embryos. protocols.io. https://doi.org/10.17504/protocols.io.bxz6pp9e
Elliott, A. D. (2020). Confocal microscopy: Principles and modern practices. Current Protocols in Cytometry, 92(1), e68. https://doi.org/10.1002/cpcy.68
Elwood, R. W. (2011). Pain and suffering in invertebrates? ILAR Journal, 52(2), 175–184. https://doi.org/10.1093/ilar.52.2.175
Feinberg, T. E., & Mallatt, J. (2020). Phenomenal consciousness and emergence: Eliminating the explanatory gap. Frontiers in Psychology, 11, 1041. https://doi.org/10.3389/fpsyg.2020.01041
Fernandes, M. R., & Pedroso, A. R. (2017). Animal experimentation: a look into ethics, welfare, and alternative methods. Revista da Associação Médica Brasileira, 63(11), 923-928. https://doi.org/10.1590/1806-9282.63.11.923
Fiorito, G., Affuso, A., Anderson, D. B., Basil, J., Bonnaud, L., Botta, G., Cole, A., D'Angelo, L., De Girolamo, P., Dennison, N., et al. (2014). Cephalopods in neuroscience: Regulations, research and the 3Rs. Invertebrate Neuroscience, 14(1), 13–36. https://doi.org/10.1007/s10158-013-0165-x
Florez-Paz, D., Bali, K., Kuner, R., & Gomis, A. (2016). A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Scientific Reports, 6, 25923. https://doi.org/10.1038/srep25923
Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Sage. https://us.sagepub.com/en-us/n-am/an-r-companion-to-applied-regression/…
Franco, N. H. (2013). Animal experiments in biomedical research: A historical perspective. Animals, 3(1), 238–273. https://doi.org/10.3390/ani3010238
Fuentes, L., Sánchez, F. J., Otero, J. J., Lago, M. J., & Iglesias, J. (2009). Utilización de zooplancton natural y Artemia en el cultivo de paralarvas de pulpo Octopus vulgaris. In Libro de resúmenes, Congreso Nacional de Acuicultura (pp. 122–123). Madrid.
Godfrey-Smith, P. (2016). Other minds: The octopus, the sea, and the deep origins of consciousness. Farrar, Straus and Giroux.
Gruen, L., & Monsó, S. (2024). The moral status of animals. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (2024 ed.). Stanford University. https://plato.stanford.edu/archives/fall2024/entries/moral-animal/
Gu, Q., & Lee, L. Y. (2010). Acid-sensing ion channels and pain. Pharmaceuticals (Basel), 3(5), 1411–1425. https://doi.org/10.3390/ph3051411
Ha, G. E., Lee, J., Kwak, H., Song, K., Kwon, J., Jung, S. Y., Hong, J., Chang, G. E., Hwang, E. M., Shin, H. S., et al. (2016). The Ca²⁺-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nature Communications, 7, 13791. https://doi.org/10.1038/ncomms13791
Honoré, E. (2007). The neuronal background K2P channels: Focus on TREK1. Nature Reviews Neuroscience, 8(4), 251–261. https://doi.org/10.1038/nrn2117
Horvath, K., Angeletti, D., Nascetti, G., & Carere, C. (2013). Invertebrate welfare: An overlooked issue. Annali dell'Istituto Superiore di Sanità, 49(1), 9–17. https://doi.org/10.4415/ANN_13_01_04
Howard, S. R., & Symonds, M. R. E. (2020). Ethical considerations for invertebrates. Animal Sentience, 29(21). https://doi.org/10.51291/2377-7478.1608
Huang, W. C., Xiao, S., Huang, F., Harfe, B. D., Jan, Y. N., & Jan, L. Y. (2012). Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron, 74(1), 179–192. https://doi.org/10.1016/j.neuron.2012.01.033
Humphrey, N. (2006). Seeing red: A study in consciousness. Harvard University Press. https://doi.org/10.4159/9780674038905
Iglesias, A. V. (2021). The suffering of invertebrates: An approach from animal ethics. Tópicos (Mexico), (61), 403–420. https://doi.org/10.21555/top.v0i61.1197
Iglesias, J., & Fuentes, L. (2014). Octopus vulgaris: Paralarval culture. In J. Iglesias, L. Fuentes, & R. Villanueva (Eds.), Cephalopod culture (pp. 427–450). Springer. https://doi.org/10.1007/978-94-017-8648-5_23
Iglesias, J., Sánchez, F. J., Bersano, J. G. F., Carrasco, J. F., Dhont, J., Fuentes, L., Linares, F., Muñoz, J. L., Okumura, S., Roo, J., et al. (2007). Rearing of Octopus vulgaris paralarvae: Present status, bottlenecks and trends. Aquaculture, 266(1–4), 1– 15. https://doi.org/10.1016/j.aquaculture.2007.02.019
Iglesias, J., Sánchez, F. J., Otero, J. J., & Moxica, C. (2000). Culture of octopus (Octopus vulgaris Cuvier): Present knowledge, problems and perspectives. Cahiers Options Méditerranéennes, 47, 313–321. https://digital.csic.es/bitstream/10261/315612/1/Culture%20of%20octopus…
International Association for the Study of Pain [IASP]. (2021). IASP terminology. https://www.iasp-pain.org/resources/terminology/?navItemNumber=576
Jones, R. C. (2013). Science, sentience, and animal welfare. Biology & Philosophy, 28(1), 1–30. https://doi.org/10.1007/s10539-012-9351-1
Jozet-Alves, C., Schnell, A. K., & Clayton, N. S. (2023). Cephalopod learning and memory. Current Biology, 33(20), R1091–R1095. https://doi.org/10.1016/j.cub.2023.08.013
Kiani, A. K., Pheby, D., Henehan, G., Brown, R., Sieving, P., Sykora, P., Marks, R., Falsini, B., Capodicasa, N., Miertus, S., et al. (2022). Ethical considerations regarding animal experimentation. Journal of Preventive Medicine and Hygiene, 63(Suppl. 3), E255–E266. https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2768
Kim, S., Coste, B., Chadha, A., Cook, B., & Patapoutian, A. (2012). The role of Drosophila Piezo in mechanical nociception. Nature, 483, 209–212. https://doi.org/10.1038/nature10801
Kooijman, M. (2013). Why animal studies are still being used in drug development. Alternatives to Laboratory Animals: ATLA, 41(6), P79–P81. https://doi.org/10.1177/026119291304100627
Kunzelmann, K., Schreiber, R., Kmit, A., Jantarajit, W., Martins, J. R., Faria, D., Kongsuphol, P., Ousingsawat, J., & Tian, Y. (2012). Expression and function of epithelial anoctamins. Experimental Physiology, 97(2), 184–192. https://doi.org/10.1113/expphysiol.2011.058206
LaFollette, H. (2025). Ethics in Practice: An Anthology (6th ed.). John Wiley and Sons.
Laursen, W. J., Anderson, E. O., Hoffstaetter, L. J., Bagriantsev, S. N., & Gracheva, E. O. (2015). Species-specific temperature sensitivity of TRPA1. Temperature (Austin, Tex.), 2(2), 214–226. https://doi.org/10.1080/23328940.2014.1000702
Lee, B., Cho, H., Jung, J., Yang, Y. D., Yang, D. J., & Oh, U. (2014). Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity. Molecular Pain, 10, Article 5. https://doi.org/10.1186/1744-8069-10-5
Lee, J., Jung, J., Tak, M. H., Wee, J., Lee, B., Jang, Y., Chun, H., Yang, D. J., Yang, Y. D., Park, S. H., et al. (2015). Two helices in the third intracellular loop determine anoctamin 1 (TMEM16A) activation by calcium. Pflügers Archiv - European Journal of Physiology, 467(8), 1677–1687. https://doi.org/10.1007/s00424-014-1603-2
Lee, K. H., Lee, D. W., & Kang, B. C. (2020). The 'R' principles in laboratory animal experiments. Laboratory Animal Research, 36(1), 45. https://doi.org/10.1186/s42826-020-00078-6
Lenth, R. (2023). emmeans: Estimated marginal means, aka least-squares means (R package version 1.9.0). https://CRAN.R-project.org/package=emmeans
Lesage, F., & Lazdunski, M. (2000). Molecular and functional properties of two-pore-domain potassium channels. American Journal of Physiology-Renal Physiology, 279(5), F793–F801. https://doi.org/10.1152/ajprenal.2000.279.5.F793
Liguori, G. R., Jeronimus, B. F., de Aquinas Liguori, T. T., Moreira, L. F. P., & Harmsen, M. C. (2017). Ethical issues in the use of animal models for tissue engineering: Reflections on legal aspects, moral theory, Three Rs strategies, and harm-benefit analysis. Tissue Engineering Part C: Methods, 23(12), 850–862. https://doi.org/10.1089/ten.TEC.2017.0189
Li, K. X., He, M., Ye, W., Simms, J., Gill, M., Xiang, X., Jan, Y. N., & Jan, L. Y. (2019). TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala. eLife, 8, e47106. https://doi.org/10.7554/eLife.47106
LimeSurvey GmbH. (n.d.). LimeSurvey: An open source survey tool. LimeSurvey GmbH. https://www.limesurvey.org
Lockwood, J. (2013). Jeffrey Lockwood on insect suffering: An interview by Max Maxwell Brian Carpendale. Essays on Reducing Suffering. https://reducing-suffering.org/wp-content/uploads/2014/10/lockwood-inse…
Loeser, J. D., & Treede, R. D. (2008). The Kyoto protocol of IASP basic pain terminology. Pain, 137(3), 473–477. https://doi.org/10.1016/j.pain.2008.04.025
Luo, Y., Huang, L., Liao, P., & Jiang, R. (2021). Contribution of neuronal and glial two-pore-domain potassium channels in health and neurological disorders. Neural Plasticity, 2021, Article 8643129. https://doi.org/10.1155/2021/8643129
Mano, I., & Driscoll, M. (1999). DEG/ENaC channels: A touchy superfamily that watches its salt. BioEssays, 21(7), 568–578. https://doi.org/10.1002/(SICI)1521-1878(199907)21:7<568::AID-BIES5>3.0…
Manolache, A., Babes, A., & Babes, R. M. (2021). Mini-review: The nociceptive sensory functions of the polymodal receptor Transient Receptor Potential Ankyrin Type 1 (TRPA1). Neuroscience Letters, 764, 136286. https://doi.org/10.1016/j.neulet.2021.136286
MarineBio Conservation Society. (n.d.). Common octopuses: Octopus vulgaris. Retrieved June&11, 2025, from https://www.marinebio.org/species/common-octopuses/octopus-vulgaris/
Mather, J. A. (2019). Ethics and care: For animals, not just mammals. Animals, 9(12), 1018. https://doi.org/10.3390/ani9121018
Mather, J. A., & Dickel, L. (2017). Cephalopod complex cognition. Current Opinion in Behavioral Sciences, 16, 131–137. https://doi.org/10.1016/j.cobeha.2017.06.008
Mather, J., & Scheel, D. (2014). Behaviour. In J. Iglesias, L. Fuentes, & R. Villanueva (Eds.), Cephalopod culture (pp. 17–39). Springer. https://doi.org/10.1007/978-94-017-8648-5_2
Mathie, A., & Veale, E. L. (2015). Two-pore domain potassium channels: Potential therapeutic targets for the treatment of pain. Pflügers Archiv - European Journal of Physiology, 467(5), 931–943. https://doi.org/10.1007/s00424-014-1655-3
Mikhalevich, I., & Powell, R. (2020). Minds without spines: Evolutionarily inclusive animal ethics. Animal Sentience, 29(1). https://doi.org/10.51291/2377-7478.1527
Milenkovic, V. M., Brockmann, M., Stöhr, H., Weber, B. H., & Strauss, O. (2010). Evolution and functional divergence of the anoctamin family of membrane proteins. BMC Evolutionary Biology, 10, Article 319. https://doi.org/10.1186/1471-2148-10-319
Monnissen, J., & de Block, A. (2025). Exploring Perceptions and Reasoning in Scientific and Non-Scientific Communities on Ethical Treatment of Animals in Octopus Research. https://doi.org/10.17605/OSF.IO/VZP82
Mukherjee, P., Roy, S., Ghosh, D., & Nandi, S. K. (2022). Role of animal models in biomedical research: A review. Laboratory Animal Research, 38(1), 18. https://doi.org/10.1186/s42826-022-00128-1
Nabhitabhata, J., & Segawa, S. (2014). Aquaculture to restocking. In J. Iglesias, L. Fuentes, & R. Villanueva (Eds.), Cephalopod culture (pp. 113–130). Springer. https://doi.org/10.1007/978-94-017-8648-5_7
Nagata, K., Duggan, A., Kumar, G., & García-Añoveros, J. (2005). Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. The Journal of Neuroscience, 25(16), 4052–4061. https://doi.org/10.1523/JNEUROSCI.0013-05.2005
Navarro, J. C., Monroig, Ó., & Sykes, A. V. (2014). Nutrition as a key factor for cephalopod aquaculture. In J. Iglesias, L. Fuentes, & R. Villanueva (Eds.), Cephalopod culture (pp. 77–95). Springer. https://doi.org/10.1007/978-94-017-8648-5_5
Navarro, J. C., & Villanueva, R. (2000). Lipid and fatty acid composition of early stages of cephalopods: An approach to their lipid requirements. Aquaculture, 183(1–2), 161–177. https://doi.org/10.1016/S0044-8486(99)00290-2
Navarro, J. C., & Villanueva, R. (2003). The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: Deviation from their natural fatty acid profile. Aquaculture, 219(1–4), 613–631. https://doi.org/10.1016/S0044-8486(02)00311-3
Omerbašić, D., Schuhmacher, L.-N., Bernal Sierra, Y.-A., Smith, E. S. J., & Lewin, G. R. (2015). ASICs and mammalian mechanoreceptor function. Neuropharmacology, 94, 80–86. https://doi.org/10.1016/j.neuropharm.2014.12.007
Ossipov, M. H., Dussor, G. O., & Porreca, F. (2010). Central modulation of pain. The Journal of Clinical Investigation, 120(11), 3779–3787. https://doi.org/10.1172/JCI43766
Paixão, R. L., & Schramm, F. R. (1999). Ethics and animal experimentation: What is debated? Cadernos de Saúde Pública, 15(Suppl 1), S99–S110. https://doi.org/10.1590/s0102-311x1999000500011
Papadopoulo, K., Hillinger, A., Mucientes, G., & others. (2024). First insights into the spatial behaviour of Octopus vulgaris in the wild using acoustic telemetry. Animal Biotelemetry, 12, 16. https://doi.org/10.1186/s40317-024-00361-6
Parra, G., Villanueva, R., & Yúfera, M. (2000). Respiration rates in late eggs and early hatchlings of the common octopus, Octopus vulgaris. Journal of the Marine Biological Association of the United Kingdom, 80(3), 557–558. https://doi.org/10.1017/S0025315400002319
Paukert, M., Sidi, S., Russell, C., Siba, M., Wilson, S. W., Nicolson, T., & Gründer, S. (2004). A family of acid-sensing ion channels from the zebrafish: Widespread expression in the central nervous system suggests a conserved role in neuronal communication. The Journal of Biological Chemistry, 279(18), 18783–18791. https://doi.org/10.1074/jbc.M401477200
Pawley, J. B. (2006). Fundamental limits in confocal microscopy. In J. B. Pawley (Ed.), Handbook of biological confocal microscopy (3rd ed., pp. 20–42). Springer. https://doi.org/10.1007/978-0-387-45524-2_2
Petrosino, G. (2015). The transcriptional landscape of the nervous system of Octopus vulgaris (Doctoral dissertation, Università degli Studi di Napoli “Federico II”). http://www.fedoa.unina.it/10212/1/petrosino_giuseppe_27.pdf
Pietra, G., Dibattista, M., Menini, A., Reisert, J., & Boccaccio, A. (2016). The Ca²⁺-activated Cl⁻ channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons. The Journal of General Physiology, 148(4), 293–311. https://doi.org/10.1085/jgp.201611622
Ponte, G., Chiandetti, C., Edelman, D. B., Imperadore, P., Pieroni, E. M., & Fiorito, G. (2022). Cephalopod behavior: From neural plasticity to consciousness. Frontiers in Systems Neuroscience, 15, 787139. https://doi.org/10.3389/fnsys.2021.787139
Ponte, G., Taite, M., Borrelli, L., Tarallo, A., Allcock, A. L., & Fiorito, G. (2021). Cerebrotypes in cephalopods: Brain diversity and its correlation with species habits, life history, and physiological adaptations. Frontiers in Neuroanatomy, 14, 565109. https://doi.org/10.3389/fnana.2020.565109
Price, M. P., McIlwrath, S. L., Xie, J., Cheng, C., Qiao, J., Tarr, D. E., Sluka, K. A., Brennan, T. J., Lewin, G. R., & Welsh, M. J. (2001). The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron, 32(6), 1071–1083. https://doi.org/10.1016/s0896-6273(01)00547-5
Proctor, H. (2012). Animal sentience: Where are we and where are we heading? Animals, 2(4), 628–639. https://doi.org/10.3390/ani2040628
Psychological Consultancy Ltd. (2016). Women more than twice as likely to be cautious about risk than men. https://www.psychological-consultancy.com/women-twice-likely-cautious-r…
Ranade, S. S., Woo, S. H., Dubin, A. E., Moshourab, R. A., Wetzel, C., Petrus, M., Mathur, J., Bégay, V., Coste, B., Mainquist, J., et al. (2014). Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature, 516(7529), 121–125. https://doi.org/10.1038/nature13980
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Roura, A., Castro-Bugallo, A., & Martínez-Pérez, M. (2023). The settlement stage in the common octopus Octopus vulgaris Cuvier, 1797: A complex transition between planktonic and benthic lifestyles. Marine Biology, 170, 53. https://doi.org/10.1007/s00227-023-04188-2
Sánchez-Carranza, O., Chakrabarti, S., Kühnemund, J., Schwaller, F., Bégay, V., García-Contreras, J. A., Wang, L., & Lewin, G. R. (2024). Piezo2 voltage-block regulates mechanical pain sensitivity. Brain: A Journal of Neurology, 147(10), 3487–3500. https://doi.org/10.1093/brain/awae227
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
Schnell, A. K., Amodio, P., Boeckle, M., & Clayton, N. S. (2021). How intelligent is a cephalopod? Lessons from comparative cognition. Biological Reviews, 96(1), 162–178. https://doi.org/10.1111/brv.12651
Schreiber, R., Uliyakina, I., Kongsuphol, P., Warth, R., Mirza, M., Martins, J. R., & Kunzelmann, K. (2010). Expression and function of epithelial anoctamins. Journal of Biological Chemistry, 285(10), 7838–7845. https://doi.org/10.1074/jbc.M109.065367
Schroeder, B. C., Cheng, T., Jan, Y. N., & Jan, L. Y. (2008). Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell, 134(6), 1019–1029. https://doi.org/10.1016/j.cell.2008.09.003
Schwarzkopf, M., Liu, M. C., Schulte, S. J., Ives, R., Husain, N., Choi, H. M. T., & Pierce, N. A. (2021). Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization. Development, 148(22), dev199847. https://doi.org/10.1242/dev.199847
Seddon, P. J., Soorae, P. S., & Launay, F. (2005). Taxonomic bias in reintroduction projects. Animal Conservation, 8(1), 51 58. https://doi.org/10.1017/S1367943004001799
Sergio, F., Caro, T., Brown, D., Clucas, B., Hunter, J., Ketchum, J., McHugh, K., & Hiraldo, F. (2008). Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annual Review of Ecology, Evolution, and Systematics, 39(1), 1–19. https://doi.org/10.1146/annurev.ecolsys.39.110707.173545
Seuntjens Lab. (2021). Easy_HCR: Automated probe design for HCR v3.0. GitHub. https://github.com/SeuntjensLab/Easy_HCR
Shonk, K. (2025). Moral leadership: Do women negotiate more ethically than men? Daily Blog, Program on Negotiation, Harvard Law School. https://www.pon.harvard.edu/daily/leadership-skills-daily/moral-leaders…
Shook, E. N., Barlow, G. T., Garcia-Rosales, D., Gibbons, C. J., & Montague, T. G. (2024). Dynamic skin behaviors in cephalopods. Current Opinion in Neurobiology, 86, 102876. https://doi.org/10.1016/j.conb.2024.102876
Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. (2023). afex: Analysis of factorial experiments (R package version 1.3-0). https://CRAN.R-project.org/package=afex
Smith, J. A., Andrews, P. L. R., Hawkins, P., Louhimies, S., Ponte, G., & Dickel, L. (2013). Cephalopod research and EU Directive 2010/63/EU: Requirements, impacts and ethical review. Journal of Experimental Marine Biology and Ecology, 447, 31–45. https://doi.org/10.1016/j.jembe.2013.02.009
Stern-Mentch, N., Bostwick, G. W., Belenky, M., Moroz, L., & Hochner, B. (2022). Neurotransmission and neuromodulation systems in the learning and memory network of Octopus vulgaris. Journal of Morphology, 283(5), 557–584. https://doi.org/10.1002/jmor.21459
Styfhals, R., Zolotarov, G., Hulselmans, G., Spanier, K. I., Poovathingal, S., Elagoz, A. M., De Winter, S., Deryckere, A., Rajewsky, N., Ponte, G., et al. (2022). Cell type diversity in a developing octopus brain. Nature Communications, 13, 7392. https://doi.org/10.1038/s41467-022-35198-1
Tai, C., Zhu, S., & Zhou, N. (2008). TRPA1: The central molecule for chemical sensing in the pain pathway? The Journal of Neuroscience, 28(5), 1019–1021. https://doi.org/10.1523/JNEUROSCI.5237-07.2008
Tannenbaum, J., & Bennett, B. T. (2015). Russell and Burch's 3Rs then and now: The need for clarity in definition and purpose. Journal of the American Association for Laboratory Animal Science (JAALAS), 54(2), 120–132.
The Editors of Encyclopaedia Britannica. (2025). Octopus. Encyclopedia Britannica. https://www.britannica.com/animal/octopus-mollusk
Thermo Fisher Scientific. (n.d.). Introduction to quantitative PCR (qPCR) gene expression analysis. Retrieved June 11, 2025, from https://www.thermofisher.com/be/en/home/life-science/pcr/real-time-pcr/…;
Toubia, T., & Khalife, T. (2019). The endogenous opioid system: Role and dysfunction caused by opioid therapy. Clinical Obstetrics and Gynecology, 62(1), 3–10. https://doi.org/10.1097/GRF.0000000000000409
Tracey, W. D., Jr, Wilson, R. I., Laurent, G., & Benzer, S. (2003). painless, a Drosophila gene essential for nociception. Cell, 113(2), 261–273. https://doi.org/10.1016/s0092-8674(03)00272-1
Vandewoude, S., & Rollin, B. E. (2009). Practical considerations in regenerative medicine research: IACUCs, ethics, and the use of animals in stem cell studies. ILAR Journal, 51(1), 82–84. https://doi.org/10.1093/ilar.51.1.82
Vaz-Pires, P., Seixas, P., & Barbosa, A. (2004). Aquaculture potential of the common octopus (Octopus vulgaris Cuvier, 1797): A review. Aquaculture, 238(1–4), 221–238. https://doi.org/10.1016/j.aquaculture.2004.05.018
Villanueva, R. (1995). Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Canadian Journal of Fisheries and Aquatic Sciences, 52(12), 2639–2650. https://doi.org/10.1139/f95-853
Villanueva, R., Nozais, C., & Boletzky, S. (1995). The planktonic life of octopuses. Nature, 377(6546), 107. https://doi.org/10.1038/377107a0
Villanueva, R., Nozais, C., & Boletzky, S. v. (1997). Swimming behaviour and food searching in planktonic Octopus vulgaris Cuvier from hatching to settlement. Journal of Experimental Marine Biology and Ecology, 208(1–2), 169–184. https://doi.org/10.1016/S0022-0981(96)02670-6
Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C., & Lazdunski, M. (1997). A proton-gated cation channel involved in acid-sensing. Nature, 386(6621), 173–177. https://doi.org/10.1038/386173a0
Wang, L., Simms, J., Peters, C. J., Tynan-La Fontaine, M., Li, K., Gill, T. M., Jan, Y. N., & Jan, L. Y. (2019). TMEM16B calcium-activated chloride channels regulate action potential firing in lateral septum and aggression in male mice. The Journal of Neuroscience, 39(36), 7102–7117. https://doi.org/10.1523/JNEUROSCI.3137-18.2019
Wemmie, J. A., Taugher, R. J., & Kreple, C. J. (2013). Acid-sensing ion channels in pain and disease. Nature Reviews Neuroscience, 14(7), 461–471. https://doi.org/10.1038/nrn3529
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer.
Woo, S. H., Ranade, S., Weyer, A. D., Dubin, A. E., Baba, Y., Qiu, Z., Petrus, M., Miyamoto, T., Reddy, K., Lumpkin, E. A., et al. (2014). Piezo2 is required for Merkel-cell mechanotransduction. Nature, 509(7502), 622–626. https://doi.org/10.1038/nature13251
Yang, Y. D., Cho, H., Koo, J. Y., Tak, M. H., Cho, Y., Shim, W.-S., Park, S. P., Lee, J., Lee, B., Kim, B.-M., et al. (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature, 455(7217), 1210–1215. https://doi.org/10.1038/nature07313
Young, J. Z. (1965). The diameters of the fibres of the peripheral nerves of Octopus. Proceedings of the Royal Society B: Biological Sciences, 162, 47–79. https://doi.org/10.1098/rspb.1965.0025
Young, R. E., & Harman, R. F. (1988). “Larva,” “paralarva,” and “subadult” in cephalopod terminology. Malacologia, 29(1), 201–207.
Zhang, W., Schmelzeisen, S., Parthier, D., Frings, S., & Möhrlen, F. (2015). Anoctamin calcium-activated chloride channels may modulate inhibitory transmission in the cerebellar cortex. PLOS ONE, 10(11), e0142160. https://doi.org/10.1371/journal.pone.0142160
Zhang, Y., Zhang, Z., Xiao, S., Tien, J., Le, S., Le, T., Jan, L. Y., & Yang, H. (2017). Inferior olivary TMEM16B mediates cerebellar motor learning. Neuron, 95(5), 1103–1111.e4. https://doi.org/10.1016/j.neuron.2017.08.010