Zeewieren zien er misschien onschuldig uit, maar achter hun golvende bladen schuilt een stille strijd. Roodwieren trachten hun microscopische buren van zich af te houden en gaan zo ver als hen vergiftigen! Mijn masteronderzoek aan de UGent bracht aan het licht welke stoffen daarbij een rol spelen – en waarom dat zowel voor onze zeeën als voor toekomstige biotechnologie belangrijk is.

Wie aan zuurstof denkt, denkt vaak aan bomen. Toch produceren algen – van microscopische eencelligen tot meterslange kelpwouden – het grootste deel van onze zuurstof. Tot wel 80% van alle zuurstof in de atmosfeer komt van fotosynthese in de zee. Algen zijn dus onmisbaar voor het leven op aarde én spelen een belangrijke rol in het vastleggen van CO₂, cruciaal in de strijd tegen klimaatverandering.
Binnen die brede groep onderscheiden we microalgen (eencellige organismen, niet veel groter dan bacteriën) en macroalgen (de zeewieren). In de Noordzee wemelt het van beide. Microalgen vormen de basis van de voedselketen en voeden vissen en schaaldieren, waaronder onze heerlijke Zeeuwse mosselen. Echter lopen ze soms uit de hand: massale “algenbloeien” kunnen zorgen voor lokale zuurstoftekorten en zelfs giftige stoffen verspreiden, net zoals de ons welbekende blauwalg dat doet. Verder groeien deze microalgen (vaak ongewenst) overal; van het raam van je aquarium, tot de hele onderkant van schepen. Dit is buiten roodwieren gerekend, aangezien deze zichzelf vrij weten houden van deze algjes. En dat roept een intrigerende vraag op: hoe houden algen elkaar in toom?
In de natuur woedt er een voortdurende concurrentiestrijd om licht en voedingsstoffen. Veel planten en algen hebben daar een bijzondere strategie voor: allelopathie. Daarbij scheiden ze stoffen uit die de groei van buren remmen of zelfs doden. Het is een vorm van chemische oorlogsvoering die tot nu toe vooral bekend was bij landplanten. Maar ook in zee speelt dit fenomeen. Roodwieren, een diverse groep macroalgen, staan erom bekend een rijk arsenaal aan bioactieve stoffen te produceren. Toch bleef het onduidelijk welke daarvan precies de groei van microalgen beïnvloeden, en via welke mechanismen. 
Om dat te ontrafelen, onderzocht ik drie soorten roodwieren die ook in onze contreien voorkomen:
• Acrochaetium secundatum
• Gracilaria gracilis
• Palmaria palmata (beter bekend als dulse, een eetbaar zeewier).
Die wieren werden in het labo verwerkt tot verschillende soorten extracten: een polair extract (oplosbaar in waterachtige vloeistoffen) en twee apolaire (niet-wateroplosbare) extracten (één van het wier-oppervlak en één van het volledige wierweefsel). Daarmee testte ik hun effect op twee soorten microalgen die vaak voorkomen:
• De goudbruine alg Tisochrysis lutea en het kiezelwier Phaeodactylum tricornutum.
Door de microalgen bloot te stellen aan concentratiereeksen van elk extract, kon ik zien hoe hun groei beïnvloed werd.
De effecten waren duidelijk én verrassend. De roodwierextracten veroorzaakten soort- en extract-specifieke groeiremming. Deze groeiremming wordt afgebeeld in onderstaande figuur, waar de groeisnelheid zichtbaar daalt bij hogere concentraties van de extracten (behalve bij deze van Acrochaetium secundatum).

• Tisochrysis lutea (bovenaan) bleek een stuk gevoeliger dan Phaeodactylum tricornutum (onderaan).
• Het sterkste effect trad op bij het apolaire totaalextract van Palmaria palmata (afgebeeld in het paars). Daar zagen we een uitgesproken daling in microalgengroei, met zelfs een volledige stop van groei bij T. lutea bij de hoogste concentratie!
De logische vervolgvraag: welke stoffen zitten achter die effecten? Om dat te achterhalen, koppelde ik de biologische testen aan chemische analyses.
1. Pigmenten in polaire extracten
• Bij Acrochaetium secundatum remden de polaire extracten de groei opvallend sterk.
• Analyse wees op een hoge aanwezigheid van fycoërythrine en fycocyanine, twee pigmenten die roodwieren helpen om licht diep onder water op te vangen.
• Die pigmenten zouden zelf toxisch kunnen werken, of indirect door licht te absorberen en de fotosynthese van microalgen te verstoren.
2. Vetzuren in apolaire extracten
• Met gaschromatografie-massaspectrometrie (GC-MS) identificeerde ik vetzuren in de apolaire extracten.
• De meest opvallende was eicosapentaeenzuur (EPA), een bekend omega-3- vetzuur dat zeer belangrijk is in het menselijk dieet.
• Extra testen toonden dat EPA de microalgen wel kon afremmen, maar nooit volledig het sterke effect van de extracten verklaarde. Er moeten dus ook andere, nog onbekende stoffen in het spel zijn.
Deze resultaten tonen dat roodwieren geen passieve organismen zijn, maar actieve spelers in een chemisch wapenwedloop. Hun stoffen kunnen bepalen welke microalgen groeien en welke niet. Dat heeft minstens drie belangrijke implicaties:
1. Ecologisch inzicht
• In zeeën zoals de Noordzee helpen zulke mechanismen mogelijk om schadelijke algenbloei te voorkomen.
• Zeewieren vormen niet enkel een leefgebied en een voedingsbron, maar reguleren ook actief de samenstelling van de microalgenpopulatie.
2. Biotechnologische toepassingen
• Bioactieve stoffen uit roodwieren hebben potentieel in aquacultuur en in scheepsvaart, bijvoorbeeld om de groei van ongewenste algen in kweekbassins en op schepen af te remmen.
• Ook in de farmaceutische en cosmetische sector kunnen zulke moleculen interessant zijn. Pigmenten zoals fycoërythrine zijn nu al in gebruik als natuurlijke kleurstoffen en antioxidanten.
3. Toekomstig onderzoek
• Omdat EPA niet de volledige remming verklaart, liggen er nog onbekende bioactieve stoffen te wachten op ontdekking.
• Een volgende stap is om deze stoffen te isoleren en hun werkingsmechanisme verder te ontrafelen.
De studie van zulke interacties leert ons dat zelfs op zeer kleine schaal een ecologische strijd wordt uitgevochten. Roodwieren bewapenen zich met chemische stoffen om concurrenten klein te houden. Microalgen passen zich daarop weer aan. Het is een dynamisch spel dat al miljoenen jaren meegaat – en waarvan wij nu de eerste regels beginnen te begrijpen.
Wat begon als een reeks potjes met zeewier en microalgen in een Gents laboratorium, eindigt met inzichten die reiken van de ecologie van onze Noordzee tot de biotechnologie van de toekomst. Roodwieren blijken geen simpele algjes, maar slimme chemici die hun omgeving vormgeven. En wie weet ligt de sleutel tot nieuwe geneesmiddelen of duurzame aquacultuur al eeuwen te wachten… tussen de rood getinte wieren die langs onze kusten deinen.
Abdul Malik, S. A., Bedoux, G., Robledo, D., García-Maldonado, J. Q., Freile-Pelegrín, Y., & Bourgougnon, N. (2020). Chemical defense against microfouling by allelopathic active metabolites of Halymenia floresii (Rhodophyta). https://doi.org/10.1007/s10811-020-02094-4/Published
Aldona, N., Ewelina, R., Wiesława, B., Bartłomiej, B., Iwona, W., Wanda, P., & Jan, K. (2012). P R A C E O R Y G I N A L N E Markery aktywacji limfocytów u pacjentek z rakiem jajnika Lymphocyte activation markers in patients with ovarian cancer. In Ginekol Pol (Vol. 83).
Alkhamis, Y., & Qin, J. G. (2016). Comparison of pigment and proximate compositions of Tisochrysis lutea in phototrophic and mixotrophic cultures. Journal of Applied Phycology, 28(1), 35–42. https://doi.org/10.1007/s10811-015-0599-0
ALLEN Career Institute. (n.d.). Mechanism of Photosynthesis. Retrieved March 13, 2025, from https://allen.in/science/mechanism-of-photosynthesis
Alvarenga, N. B., Cebola Lidon, F., Belga, E., Motrena, P., Guerreiro, S., Carvalho, M. J., & Canada, J. (2011). Characterization of Gluten-free Bread Prepared From Maize, Rice and Tapioca Flours using the Hydrocolloid Seaweed Agar-Agar. Recent Research in Science and Technology.
An, Z., Wang, Z., Li, F., Tian, Z., & Hu, H. (2008). Allelopathic inhibition on red tide microalgae Skeletonema costatum by five macroalgal extracts. Frontiers of Environmental Science and Engineering in China, 2(3), 297–305. https://doi.org/10.1007/s11783-008-0055-3
Andras, T. D., Alexander, T. S., Gahlena, A., Parry, R. M., Fernandez, F. M., Kubanek, J., Wang, M. D., & Hay, M. E. (2012). Seaweed Allelopathy Against Coral: Surface Distribution of a Seaweed Secondary Metabolite by Imaging Mass Spectrometry. Journal of Chemical Ecology, 38(10), 1203–1214. https://doi.org/10.1007/s10886-012-0204-9
Arad, S., Cohen, E., & Yaron, A. (1996). Non-soluble colouring material used in cosmetics and food preparations.
Archibald, J. M. (2015). Endosymbiosis and eukaryotic cell evolution. In Current Biology (Vol. 25, Issue 19, pp. R911–R921). Cell Press. https://doi.org/10.1016/j.cub.2015.07.055
Arokiarajan, M. S., Thirunavukkarasu, R., Joseph, J., Ekaterina, O., & Aruni, W. (2022). Advance research in biomedical applications on marine sulfated polysaccharide. In International Journal of Biological Macromolecules (Vol. 194, pp. 870–881). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2021.11.142
Aryee, A. N., Agyei, D., & Akanbi, T. O. (2018). Recovery and utilization of seaweed pigments in food processing. In Current Opinion in Food Science (Vol. 19, pp. 113–119). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2018.03.013
Aziz, E., Batool, R., Khan, M. U., Rauf, A., Akhtar, W., Heydari, M., Rehman, S., Shahzad, T., Malik, A., Mosavat, S. H., Plygun, S., & Shariati, M. A. (2021). An overview on red algae bioactive compounds and their pharmaceutical applications. In Journal of Complementary and Integrative Medicine (Vol. 17, Issue 4). De Gruyter Open Ltd. https://doi.org/10.1515/jcim-2019-0203
Balboa, E. M., Conde, E., Soto, M. L., Pérez-Armada, L., & Domínguez, H. (2015). Cosmetics from Marine Sources. In K. Se-Kwon (Ed.), Handbook of Marine Biotechnology (pp. 1015–1033).
Barceló-Villalobos, M., Figueroa, F. L., Korbee, N., Álvarez-Gómez, F., & Abreu, M. H. (2017). Production of Mycosporine-Like Amino Acids from Gracilaria vermiculophylla (Rhodophyta) Cultured Through One Year in an Integrated Multi-trophic Aquaculture (IMTA) System. Marine Biotechnology, 19(3), 246–254. https://doi.org/10.1007/s10126-017-9746-8
Beach, K. S., Borgeas, H. B., Nishimura, N. J., & Smith, C. M. (1997). In vivo absorbance spectra and the ecophysiology of reef macroalgae. In Coral Reefs (Vol. 16).
Belghit, I., Rasinger, J. D., Heesch, S., Biancarosa, I., Liland, N., Torstensen, B., Waagbø, R., Lock, E. J., & Bruckner, C. G. (2017). In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae. Algal Research, 26, 240–249. https://doi.org/10.1016/j.algal.2017.08.001
Beltrán-Rocha, J. C., Guajardo-Barbosa, C., Rodríguez-Fuentes, H., Reyna-Martínez, G. R., Osornio-Berthet, L., García-Martínez, M., Dagmar-Barceló Quintal, I., & López-Chuken, U. J. (2021). Some implications of natural increase of pH in microalgae cultivation and harvest by autoflocculation. Latin American Journal of Aquatic Research, 49(5), 836–842. https://doi.org/10.3856/vol49-issue5-fulltext-2691
Bendif, E. M., Probert, I., Schroeder, D. C., & de Vargas, C. (2013). On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). Journal of Applied Phycology, 25(6), 1763–1776. https://doi.org/10.1007/s10811-013-0037-0
Bermejo, P., Piñero, E., & Villar, Á. M. (2008). Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chemistry, 110(2), 436–445. https://doi.org/10.1016/j.foodchem.2008.02.021
Berry, S. (2003). Endosymbiosis and the design of eukaryotic electron transport. Biochimica et Biophysica Acta - Bioenergetics, 1606(1–3), 57–72. https://doi.org/10.1016/S0005-2728(03)00084-7
Bertalanič, L., Košmerl, T., Poklar Ulrih, N., & Cigicí, B. (2012). Influence of solvent composition on antioxidant potential of model polyphenols and red wines determined with 2,2-diphenyl-1-picrylhydrazyl. Journal of Agricultural and Food Chemistry, 60(50), 12282–12288. https://doi.org/10.1021/jf3041512
Biris-Dorhoi, E. S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., Socaci, S. A., & Farcas, A. C. (2020). Macroalgae—A sustainable source of chemical compounds with biological activities. In Nutrients (Vol. 12, Issue 10, pp. 1–23). MDPI AG. https://doi.org/10.3390/nu12103085
Bonfim, M., Bunson, S. L., Sellers, A. J., Torchin, M. E., Ruiz, G. M., & Freestone, A. L. (2024). Biogeographic variation in environmental and biotic resistance modifies predicted risk of marine invasions by ships. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1374887
Borowitzka, M. A. (2013). High-value products from microalgae-their development and commercialisation. In Journal of Applied Phycology (Vol. 25, Issue 3, pp. 743–756). https://doi.org/10.1007/s10811-013-9983-9
Bouhlal, R., Haslin, C., Chermann, J. C., Colliec-Jouault, S., Sinquin, C., Simon, G., Cerantola, S., Riadi, H., & Bourgougnon, N. (2011). Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Marine Drugs, 9(7), 1187–1209. https://doi.org/10.3390/md9071187
Bryant, D. A. (1982). Phycoerythrocyanin and Phycoerythrin: Properties and Occurrence in Cyanobacteria. In Journal of General Microbiology (Vol. 128).
Budzałek, G., Śliwińska‐wilczewska, S., Wiśniewska, K., Wochna, A., Bubak, I., Latała, A., & Wiktor, J. M. (2021). Macroalgal defense against competitors and herbivores. In International Journal of Molecular Sciences (Vol. 22, Issue 15). MDPI AG. https://doi.org/10.3390/ijms22157865
Bykova, N., LoDuca, S. T., Ye, Q., Marusin, V., Grazhdankin, D., & Xiao, S. (2020). Seaweeds through time: Morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Research, 350. https://doi.org/10.1016/j.precamres.2020.105875
Calder, P. C. (2010). Omega-3 fatty acids and inflammatory processes. In Nutrients (Vol. 2, Issue 3, pp. 355–374). MDPI AG. https://doi.org/10.3390/nu2030355
Calder, P. C. (2021). Health benefits of omega-3 fatty acids. In Omega-3 Delivery Systems (pp. 25–53). Elsevier. https://doi.org/10.1016/b978-0-12-821391-9.00006-5
Campos, A., Souza, C. B., Lhullier, C., Falkenberg, M., Schenkel, E. P., Ribeiro-Do-Valle, R. M., & Siqueira, J. M. (2012). Anti-tumour effects of elatol, a marine derivative compound obtained from red algae Laurencia microcladia. Journal of Pharmacy and Pharmacology, 64(8), 1146–1154. https://doi.org/10.1111/j.2042-7158.2012.01493.x
Campos Assumpção de Amarante, M., Cavalcante Braga, A. R., Sala, L., & Juliano Kalil, S. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137. https://doi.org/10.1016/j.foodres.2020.109602
Carpena, M., Garcia-Perez, P., Garcia-Oliveira, P., Chamorro, F., Otero, P., Lourenço-Lopes, C., Cao, H., Simal-Gandara, J., & Prieto, M. A. (2023). Biological properties and potential of compounds extracted from red seaweeds. In Phytochemistry Reviews (Vol. 22, Issue 6, pp. 1509–1540). Springer Science and Business Media B.V. https://doi.org/10.1007/s11101-022-09826-z
Chakraborty, K., Joseph, D., & Praveen, N. K. (2015). Antioxidant activities and phenolic contents of three red seaweeds (Division: Rhodophyta) harvested from the Gulf of Mannar of Peninsular India. Journal of Food Science and Technology, 52(4), 1924–1935. https://doi.org/10.1007/s13197-013-1189-2
Cheema, Z. A., Farooq, M., & Khaliq, A. (2013). Application of allelopathy in crop production: Success story from Pakistan. In Allelopathy: Current Trends and Future Applications (pp. 113–143). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_6
Cheema, Z. A., Farooq, M., & Wahid, A. (2013). Allelopathy: Current trends and future applications. In Allelopathy: Current Trends and Future Applications. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30595-5
Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. In Frontiers in Plant Science (Vol. 6, Issue NOVEMBER). Frontiers Media S.A. https://doi.org/10.3389/fpls.2015.01020
Chukwuma, O. C., Tan, S. P., Hughes, H., McLoughlin, P., O’Toole, N., & McCarthy, N. (2024). Evaluating the phytotoxicities of two Irish red seaweeds against common weed species. Journal of Applied Phycology, 36(2), 727–743. https://doi.org/10.1007/s10811-023-02992-3
Cian, R. E., Drago, S. R., De Medina, F. S., & Martínez-Augustin, O. (2015). Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. In Marine Drugs (Vol. 13, Issue 8, pp. 5358–5383). MDPI AG. https://doi.org/10.3390/md13085358
Cikoš, A. M., Šubarić, D., Roje, M., Babić, J., Jerković, I., & Jokić, S. (2022). Recent advances on macroalgal pigments and their biological activities (2016–2021). In Algal Research (Vol. 65). Elsevier B.V. https://doi.org/10.1016/j.algal.2022.102748
Corey, P., Kim, J. K., Duston, J., & Garbary, D. J. (2014). Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae, 29(1), 35–45. https://doi.org/10.4490/algae.2014.29.1.035
Cornish, M. L., & Garbary, D. J. (2010). Antioxidants from macroalgae: potential applications in human health and nutrition. ALGAE, 25(4), 155–171. https://doi.org/10.4490/algae.2010.25.4.155
Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L., & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine and Pharmacotherapy, 64(1), 21–28. https://doi.org/10.1016/j.biopha.2009.03.005
Cotas, J., Leandro, A., Monteiro, P., Pacheco, D., Figueirinha, A., Goncąlves, A. M. M., Da Silva, G. J., & Pereira, L. (2020). Seaweed phenolics: From extraction to applications. In Marine Drugs (Vol. 18, Issue 8). MDPI AG. https://doi.org/10.3390/MD18080384
Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A. M. M., & Pereira, L. (2020). A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). In Life (Vol. 10, Issue 3). MDPI AG. https://doi.org/10.3390/life10030019
da Costa, E., Melo, T., Reis, M., Domingues, P., Calado, R., Abreu, M. H., & Domingues, M. R. (2021). Polar lipids composition, antioxidant and anti-inflammatory activities of the atlantic red seaweed grateloupia turuturu. Marine Drugs, 19(8). https://doi.org/10.3390/md19080414
da Gama, B. A. P., Carvalho, A. G. V., Weidner, K., Soares, A. R., Coutinho, R., Fleury, B. G., Teixeira, V. L., & Pereira, R. C. (2008). Antifouling activity of natural products from Brazilian seaweeds. Botm, 51(3), 191–201. https://doi.org/10.1515/bot.2008.027
Dakshini, K., & Inderjit. (1994). Algal Allelopathy. In THE BOTANICAL REVIEW (Vol. 60, Issue 2).
Daniel C. O. Thornton. (2012). ADVANCES IN PHOTOSYNTHESIS – FUNDAMENTAL ASPECTS (Mohammad Mahdi Najafpour, Ed.). InTech.
de Almeida, C. L. F., Falcão, H. de S., Lima, G. R. de M., Montenegro, C. de A., Lira, N. S., de Athayde-Filho, P. F., Rodrigues, L. C., de Souza, M. F. V., Barbosa-Filho, J. M., & Batista, L. M. (2011). Bioactivities from marine algae of the genus Gracilaria. In International Journal of Molecular Sciences (Vol. 12, Issue 7, pp. 4550–4573). https://doi.org/10.3390/ijms12074550
De Nys, R., Dworjanyn, S. A., & Steinberg, P. D. (1998). A new method for determining surface concentrations of marine natural products on seaweeds.
Del Prado-Audelo, M. L., Cortés, H., Caballero-Florán, I. H., González-Torres, M., Escutia-Guadarrama, L., Bernal-Chávez, S. A., Giraldo-Gomez, D. M., Magaña, J. J., & Leyva-Gómez, G. (2021). Therapeutic Applications of Terpenes on Inflammatory Diseases. In Frontiers in Pharmacology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fphar.2021.704197
Dondald A. Bryant. (1982). Phycoerythrocyanin and Phycoerythrin: Properties and Occurrence in Cyanobacteria. In Journal of General Microbiology (Vol. 128).
Dos Santos, A. O., Veiga-Santos, P., Ueda-Nakamura, T., Dias Filho, B. P., Sudatti, D. B., Bianco, É. M., Pereira, R. C., & Nakamura, C. V. (2010). Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Marine Drugs, 8(11), 2733–2743. https://doi.org/10.3390/md8112733
Dougherty, R. C., Strain, H. H., Svec, W. A., Uphaus, R. A., & Katz, J. J. (1970). The Structure, Properties, and Distribution of Chlorophyll c.
Douglas, A. E. (2003). Coral bleaching - How and why? In Marine Pollution Bulletin (Vol. 46, Issue 4, pp. 385–392). Elsevier Ltd. https://doi.org/10.1016/S0025-326X(03)00037-7
Drews, G. (2011). The Evolution of Cyanobacteria and Photosynthesis. In Bioenergetic Processes of Cyanobacteria (pp. 265–284). Springer Netherlands. https://doi.org/10.1007/978-94-007-0388-9_11
Dromgoole, F. I. (1981). Form and Function of the Pneumatocysts of Marine Algae. J. Variations in the Pressure and Composition of Internal Gases. In Botanica Marina: Vol. XXIV.
Dromgoole, F. I. (1982). The Buoyant Properties of Codium. Botanica Marina, XXV, 391–397. https://doi.org/https://doi.org/10.1515/botm.1982.25.8.391
El Maghraby, D. M., & Fakhry, E. M. (2015). Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production. Oceanologia, 57(1), 86–92. https://doi.org/10.1016/j.oceano.2014.08.001
Farooqi, A. A., Butt, G., & Razzaq, Z. (2012). Algae extracts and methyl jasmonate anti-cancer activities in prostate cancer: Choreographers of “the dance macabre.” In Cancer Cell International (Vol. 12). https://doi.org/10.1186/1475-2867-12-50
Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P. (2013). Carbon sequestration and the role of biological carbon mitigation: A review. In Renewable and Sustainable Energy Reviews (Vol. 21, pp. 712–727). Elsevier Ltd. https://doi.org/10.1016/j.rser.2012.12.038
Fattorusso, E., & Taglialatela-Scafati, O. (2008). Modern Alkaloids. Wiley-VCH.
Ferdouse, F. ;, Holdt, S. L., Smith, R. ;, Murua, P. ;, & Yang, Z. (2018). The global status of seaweed production, trade and utilization. APA.
Figueroa, F. L., Israel, A., Neori, A., Martínez, B., Malta, E. J., Put, A., Inken, S., Marquardt, R., Abdala, R., & Korbee, N. (2010). Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta). Marine Pollution Bulletin, 60(10), 1768–1778. https://doi.org/10.1016/j.marpolbul.2010.06.009
Franz, S., Altenburger, R., Heilmeier, H., & Schmitt-Jansen, M. (2008). What contributes to the sensitivity of microalgae to triclosan? Aquatic Toxicology, 90(2), 102–108. https://doi.org/10.1016/j.aquatox.2008.08.003
Fu, M., Cao, S., Li, J., Zhao, S., Liu, J., Zhuang, M., Qin, Y., Gao, S., Sun, Y., Kim, J. K., Zhang, J., & He, P. (2022). Controlling the main source of green tides in the Yellow Sea through the method of biological competition. Marine Pollution Bulletin, 177. https://doi.org/10.1016/j.marpolbul.2022.113561
Gallo, A., Guida, M., Armiento, G., Siciliano, A., Mormile, N., Carraturo, F., Pellegrini, D., Morroni, L., Tosti, E., Ferrante, M. I., Montresor, M., Molisso, F., Sacchi, M., Danovaro, R., Lofrano, G., & Libralato, G. (2020). Species-specific sensitivity of three microalgae to sediment elutriates. Marine Environmental Research, 156. https://doi.org/10.1016/j.marenvres.2020.104901
Gantt, E. (1975). Phycobilisomes: Light-Harvesting Pigment Complexes (Vol. 25, Issue 12).
Garbary, D. J., Beveridge, L. F., Flynn, A. D., & White, K. L. (2012). Population ecology of Palmaria palmata (Palmariales, Rhodophyta) from harvested and non-harvested shores on Digby Neck, Nova Scotia, Canada. ALGAE, 27(1), 33–42. https://doi.org/10.4490/algae.2012.27.1.033
Garcia-Jimenez, P., Brito-Romano, O., & Robaina, R. R. (2013). Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): Emission of ethylene and dimethyl sulfide. Journal of Phycology, 49(4), 661–669. https://doi.org/10.1111/jpy.12083
Gibson, T. M., Shih, P. M., Cumming, V. M., Fischer, W. W., Crockford, P. W., Hodgskiss, M. S. W., Wörndle, S., Creaser, R. A., Rainbird, R. H., Skulski, T. M., & Halverson, G. P. (2018). Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology, 46(2), 135–138. https://doi.org/10.1130/G39829.1
Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. In Annual Review of Plant Biology (Vol. 56, pp. 99–131). https://doi.org/10.1146/annurev.arplant.56.032604.144052
Girmatsion, M., Adhanom, A., Gebremedhin, H., Mahmud, A., Xie, Y., Cheng, Y., Yu, H., Yao, W., Guo, Y., & Qian, H. (2021). Ultrasensitive and selective detection of Hg2+ using fluorescent phycocyanin in an aqueous system. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 56(8), 886–895. https://doi.org/10.1080/10934529.2021.1935600
Glazer, A. N. (1989). Light guides. Journal of Biological Chemistry, 264(1), 1–4. https://doi.org/10.1016/s0021-9258(17)31212-7
Goldman, J. C., Azov, Y., Riley, C. B., & Dennett, M. R. (1982). THE EFFECT OF pH IN INTENSIVE MICROALGAL CULTURES. I. BIOMASS REGULATION’. In Mar. Biol. Ecol (Vol. 57).
Gômez, I., & Huovinen, P. (2012). Morpho-functionality of Carbon Metabolism in Seaweeds. In C. Wiencke & K. Bischof (Eds.), Seaweed Biology (pp. 25–40). http://www.springer.com/series/86
Goulard, F., Diouris, M., Quere, G., Deslandes, E., & Floc, J.-Y. (2001). Salinity effects on NDP-sugars, floridoside, starch, and carrageenan yield, and UDP-glucose-pyrophosphorylase and-epimerase activities of cultivated Solieria chordalis. In J. Plant Physiol (Vol. 158). http://www.urbanfischer.de/journals/jpp
Goulard, F., Le Corre, G., Diouris, M., Deslandes, E., & Floc’H, J. Y. (2001). NDP-sugars, floridoside and floridean starch levels in relation to activities of udp-glucose pyrophosphorylase and UDP-glucose-4-epimerase in Solieria chordalis (Rhodophyceae) under experimental conditions. Phycological Research, 49(1), 43–50. https://doi.org/10.1046/j.1440-1835.2001.00219.x
Gray, M. W. (2012). Mitochondrial evolution. Cold Spring Harbor Perspectives in Biology, 4(9). https://doi.org/10.1101/cshperspect.a011403
Gross, E. M. (2003). Allelopathy of aquatic autotrophs. In Critical Reviews in Plant Sciences (Vol. 22, Issues 3–4, pp. 313–339). CRC Press LLC. https://doi.org/10.1080/713610859
Gschwend, P., MacFarlane, J. K., & Newamn, K. A. (1985). Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae. Science, 227 (4690), 1033–1035.
Gu, H., & Yin, K. (2022). Forecasting algae and shellfish carbon sink capability on fractional order accumulation grey model. Mathematical Biosciences and Engineering, 19(6), 5409–5427. https://doi.org/10.3934/mbe.2022254
Guidi, L., Tattini, M., & Landi, M. (2017). How Does Chloroplast Protect Chlorophyll Against Excessive Light? In Chlorophyll. InTech. https://doi.org/10.5772/67887
Guillén, P. O., Rodríguez-Pesantes, D., Motti, P., Loor, A., Zheng, X., Wigby, J. N., Sonnenholzner, S., Mangelinckx, S., Bossier, P., & Van Den Hende, S. (2024). Characterized extracts of the tropical red seaweed Acanthophora spicifera protect Ostrea edulis larvae against Vibrio coralliilyticus. Aquaculture, 580. https://doi.org/10.1016/j.aquaculture.2023.740282
Heffernan, N., Smyth, T. J., Soler-Villa, A., Fitzgerald, R. J., & Brunton, N. P. (2015). Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). Journal of Applied Phycology, 27(1), 519–530. https://doi.org/10.1007/s10811-014-0291-9
Heimann, K., & Huerlimann, R. (2015). Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In Handbook of Marine Microalgae: Biotechnology Advances (pp. 25–41). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800776-1.00003-0
Hellio, C., Berge, J. P., Beaupoil, C., Gal, Y. Le, & Bourgougnon, N. (2002). Screening of marine algal extracts for anti-settlement activities against microalgae and macroalgae. Biofouling, 18(3), 205–215. https://doi.org/10.1080/08927010290010137
Hellio, C., Maréchal, J. P., Da Gama, B. A. P., Pereira, R. C., & Clare, A. S. (2009). Natural marine products with antifouling activities. In Advances in Marine Antifouling Coatings and Technologies (pp. 572–622). https://doi.org/https://doi.org/10.1533/9781845696313.3.572
Hellio, C., Simon-Colin, C., Clare, A. S., & Deslandes, E. (2004). Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu, inhibit settlement of Balanus amphitrite cyprid larvae. Biofouling, 20(3), 139–145. https://doi.org/10.1080/08927010412331279605
Hierro, J. L., & Callaway, R. M. (2021). The Ecological Importance of Allelopathy. 43, 56. https://doi.org/10.1146/annurev-ecolsys-051120
Huang, S., Zhu, J., Zhang, L., Peng, X., Zhang, X., Ge, F., Liu, B., & Wu, Z. (2020). Combined Effects of Allelopathic Polyphenols on Microcystis aeruginosa and Response of Different Chlorophyll Fluorescence Parameters. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.614570
Irvine, L. M., & Farnham. (1995). AlgaeBase - Gracilaria gracilis. Phycologia 34(2): 113-127, 37 . https://www.algaebase.org/search/species/detail/?species_id=18
J. McLachlan, & J.S. Craigie. (1963). ALGAL INHIBITION BY YELLOW ULTRAVIOLET-ABSORBING SUBSTANCES FROM FUCUS VESICULOSUS. www.nrcresearchpress.com
Jéquier, E. (1994). Carbohydrates as a source of energy. American Journal of Clinical Nutrition.
Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. In Food Research International (Vol. 167). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2023.112737
Joyce Lewin, B. C. (1958). The Taxonomic Position of Phaeodactylum tricornutum. In J. gen. Microbiol (Vol. 18).
Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakurqt, T., Oohusa, T., Hara $, Y., & Chihara~, M. (1988). AN ALLELOPATHIC FATTY ACID FROM THE BROWN ALGA CLADOSIPHON OKAMURANUS. Phytochemistry, 27(3), 73–735.
Kamaya, Y., Kurogi, Y., & Suzuki, K. (2003). Acute toxicity of fatty acids to the freshwater green alga Selenastrum capricornutum. Environmental Toxicology, 18(5), 289–294. https://doi.org/10.1002/tox.10127
Kannaujiya, V. K., & Sinha, R. P. (2016). Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives. Journal of Applied Phycology, 28(2), 1063–1070. https://doi.org/10.1007/s10811-015-0638-x
Karseno, Harada, K., Bamba, T., Dwi, S., Mahakhant, A., Yoshikawa, T., & Hirata, K. (2009). Extracellular phycoerythrin-like protein released by freshwater cyanobacteria Oscillatoria and Scytonema sp. Biotechnology Letters, 31(7), 999–1003. https://doi.org/10.1007/s10529-009-9964-x
Kavitha, M. D., Gouda, K. G. M., Aditya Rao, S. J., Shilpa, T. S., Shetty, N. P., & Sarada, R. (2019). Atheroprotective effect of novel peptides from Porphyridium purpureum in RAW 264.7 macrophage cell line and its molecular docking study. Biotechnology Letters, 41(1), 91–106. https://doi.org/10.1007/s10529-018-2621-5
Khamare, Y., Chen, J., & Marble, S. C. (2022). Allelopathy and its application as a weed management tool: A review. In Frontiers in Plant Science (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpls.2022.1034649
Khongthong, S., Theapparat, Y., Roekngam, N., Tantisuwanno, C., Otto, M., & Piewngam, P. (2021). Characterization and immunomodulatory activity of sulfated galactan from the red seaweed Gracilaria fisheri. International Journal of Biological Macromolecules, 189, 705–714. https://doi.org/10.1016/j.ijbiomac.2021.08.182
Kim, D., & Kang, S. M. (2020). Red Algae-Derived Carrageenan Coatings for Marine Antifouling Applications. Biomacromolecules, 21(12), 5086–5092. https://doi.org/10.1021/acs.biomac.0c01248
Kim, E. Y., Choi, Y. H., & Nam, T. J. (2018). Identification and antioxidant activity of synthetic peptides from phycobiliproteins of Pyropia yezoensis. International Journal of Molecular Medicine, 42(2), 789–798. https://doi.org/10.3892/ijmm.2018.3650
Kim, M. J., Li, Y. X., Dewapriya, P., Ryu, B., & Kim, S. K. (2013). Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Reports, 46(8), 398–403. https://doi.org/10.5483/BMBRep.2013.46.8.237
Kim, M., Yim, J. H., Kim, S. Y., Kim, H. S., Lee, W. G., Kim, S. J., Kang, P. S., & Lee, C. K. (2012). In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Research, 93(2), 253–259. https://doi.org/10.1016/j.antiviral.2011.12.006
Knott, M. G., de la Mare, J. A., Edkins, A. L., Zhang, A., Stillman, M. J., Bolton, J. J., Antunes, E. M., & Beukes, D. R. (2019). Plaxenone A and B: Cytotoxic halogenated monoterpenes from the South African red seaweed Plocamium maxillosum. Phytochemistry Letters, 29, 182–185. https://doi.org/10.1016/j.phytol.2018.12.009
Korbee, N., Figueroa, F. L., & Aguilera, J. (2005). Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). Journal of Photochemistry and Photobiology B: Biology, 80(2), 71–78. https://doi.org/10.1016/j.jphotobiol.2005.03.002
Kuczynska, P., Jemiola-Rzeminska, M., & Strzalka, K. (2015). Photosynthetic pigments in diatoms. In Marine Drugs (Vol. 13, Issue 9, pp. 5847–5881). MDPI AG. https://doi.org/10.3390/md13095847
Lachnit, T., Wahl, M., & Harder, T. (2010). Isolated thallus-associated compounds from the macroalga Fucus vesiculosus mediate bacterial surface colonization in the field similar to that on the natural alga. Biofouling, 26(3), 247–255. https://doi.org/10.1080/08927010903474189
Lam, C., Grage, A., Schulz, D., Schulte, A., & Harder, T. (2008). Extracts of North Sea macroalgae reveal specific activity patterns against attachment and proliferation of benthic diatoms: a laboratory study. Biofouling, 24(1), 59–66. https://doi.org/10.1080/08927010701827646
Leal, M. C., Munro, M. H. G., Blunt, J. W., Puga, J., Jesus, B., Calado, R., Rosa, R., & Madeira, C. (2013). Biogeography and biodiscovery hotspots of macroalgal marine natural products. In Natural Product Reports (Vol. 30, Issue 11, pp. 1380–1390). Royal Society of Chemistry. https://doi.org/10.1039/c3np70057g
Lee, D., Nishizawa, M., Shimizu, Y., & Saeki, H. (2017). Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a. Food Research International, 100, 514–521. https://doi.org/10.1016/j.foodres.2017.06.040
Levy, J. L., Angel, B. M., Stauber, J. L., Poon, W. L., Simpson, S. L., Cheng, S. H., & Jolley, D. F. (2008). Uptake and internalisation of copper by three marine microalgae: Comparison of copper-sensitive and copper-tolerant species. Aquatic Toxicology, 89(2), 82–93. https://doi.org/10.1016/j.aquatox.2008.06.003
Levy, J. L., Stauber, J. L., & Jolley, D. F. (2007). Sensitivity of marine microalgae to copper: The effect of biotic factors on copper adsorption and toxicity. Science of the Total Environment, 387(1–3), 141–154. https://doi.org/10.1016/j.scitotenv.2007.07.016
Li, W., Su, H. N., Pu, Y., Chen, J., Liu, L. N., Liu, Q., & Qin, S. (2019). Phycobiliproteins: Molecular structure, production, applications, and prospects. In Biotechnology Advances (Vol. 37, Issue 2, pp. 340–353). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2019.01.008
Li, Y. X., Li, Y., Lee, S. H., Qian, Z. J. I., & Kim, S. E. K. (2010). Inhibitors of oxidation and matrix metalloproteinases, floridoside, and D-Lsofloridoslde from marine red alga laurencia undulata. Journal of Agricultural and Food Chemistry, 58(1), 578–586. https://doi.org/10.1021/jf902811j
Lopes, D., Melo, T., Rey, F., Meneses, J., Monteiro, F. L., Helguero, L. A., Abreu, M. H., Lillebø, A. I., Calado, R., & Domingues, M. R. (2020). Valuing Bioactive Lipids from Green, Red and Brown Macroalgae from Aquaculture, to Foster Functionality and Biotechnological Applications. Molecules, 25(17). https://doi.org/10.3390/molecules25173883
Luo, M., Shao, B., Nie, W., Wei, X. W., Li, Y. L., Wang, B. L., He, Z. Y., Liang, X., Ye, T. H., & Wei, Y. Q. (2015). Antitumor and Adjuvant Activity of λ-carrageenan by Stimulating Immune Response in Cancer Immunotherapy. Scientific Reports, 5. https://doi.org/10.1038/srep11062
Maberly, S. C. (1990). EXOGENOUS SOURCES OF INORGANIC CARBON FOR PHOTOSYNTHESIS BY MARINE MACROALGAE. Journal of Phycology, 26(3), 439–449. https://doi.org/10.1111/j.0022-3646.1990.00439.x
Machado, L. P., Carvalho, L. R., Young, M. C. M., Cardoso-Lopes, E. M., Centeno, D. C., Zambotti-Villela, L., Colepicolo, P., & Yokoya, N. S. (2015). Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts. Revista Brasileira de Farmacognosia, 25(6), 657–662. https://doi.org/10.1016/j.bjp.2015.09.003
Macías, F. A., Galindo, J. L. G., García-Díaz, M. D., & Galindo, J. C. G. (2008). Allelopathic agents from aquatic ecosystems: Potential biopesticides models. In Phytochemistry Reviews (Vol. 7, Issue 1, pp. 155–178). https://doi.org/10.1007/s11101-007-9065-1
Magnusson, M., Heimann, K., Quayle, P., & Negri, A. P. (2010). Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Marine Pollution Bulletin, 60(11), 1978–1987. https://doi.org/10.1016/j.marpolbul.2010.07.031
Martin Glicksman. (1983). Red Seaweed Extracts (Agar, Carrageenans, Furcellaran). In Food Hydrocolloids.
Martin, W. F., Garg, S., & Zimorski, V. (2015). Endosymbiotic theories for eukaryote origin. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 370, Issue 1678). Royal Society of London. https://doi.org/10.1098/rstb.2014.0330
Martinez-Garcia, M., & van der Maarel, M. J. E. C. (2016). Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress. AMB Express, 6(1). https://doi.org/10.1186/s13568-016-0244-6
Martino, A. De, Meichenin, A., Shi, J., Pan, K., & Bowler, C. (2007). Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. Journal of Phycology, 43(5), 992–1009. https://doi.org/10.1111/j.1529-8817.2007.00384.x
Matos, G. S., Pereira, S. G., Genisheva, Z. A., Gomes, A. M., Teixeira, J. A., Rocha, C. M. R., Alexandre, C., Manuel, J., Saraiva, A., & Pintado, M. (2021). foods Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. https://doi.org/10.3390/foods
Matos, J., Costa, S., Rodrigues, A., Pereira, R., & Sousa Pinto, I. (2006). Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture, 252(1), 31–42. https://doi.org/10.1016/j.aquaculture.2005.11.047
Minhas, L. A., Kaleem, M., Farooqi, H. M. U., Kausar, F., Waqar, R., Bhatti, T., Aziz, S., Jung, D. W., & Mumtaz, A. S. (2024). Algae-derived bioactive compounds as potential pharmaceuticals for cancer therapy: A comprehensive review. Algal Research, 78. https://doi.org/10.1016/j.algal.2024.103396
Molnar, C., Gair, J., Rye, C., Avissar, Y., Jurukovski, V., Fowler, S., Wise, R., Roush, R., Choi, J., Desaix, J., Wise, J., Nakano, M., & Victoria, B. (2015). Concepts of Biology - 1st Canadian Edition. https://opentextbc.ca/biology/
Mtolera, M. S. P., Collén, J., Pedersén, M., Ekdahl, A., Abrahamsson, K., & Semesi, A. K. (1996). Stress-induced production of volatile halogenated organic compounds in eucheuma denticulatum (Rhodophyta) caused by elevated ph and high light intensities. European Journal of Phycology, 31(1), 89–95. https://doi.org/10.1080/09670269600651241
Nägeli. (1858). AlgaeBase - Acrochaetium secundatum. https://www.algaebase.org/search/species/detail/?species_id=365
Nan, C., Zhang, H., & Zhao, G. (2004). Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species. Journal of Sea Research, 52(4), 259–268. https://doi.org/10.1016/j.seares.2004.04.001
Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. In Journal of Natural Products (Vol. 83, Issue 3, pp. 770–803). American Chemical Society. https://doi.org/10.1021/acs.jnatprod.9b01285
NOAA. (n.d.). Light and Color in the Deep Sea. Retrieved September 26, 2024, from https://oceanexplorer.noaa.gov/edu/materials/light-and-color-fact-sheet…
Nobel, P. S. (2020). Photochemistry of Photosynthesis. In Physicochemical and Environmental Plant Physiology (pp. 259–307). Elsevier. https://doi.org/10.1016/b978-0-12-819146-0.00005-5
Nova, P., Pimenta-Martins, A., Maricato, É., Nunes, C., Abreu, H., Coimbra, M. A., Freitas, A. C., & Gomes, A. M. (2023). Chemical Composition and Antioxidant Potential of Five Algae Cultivated in Fully Controlled Closed Systems. Molecules, 28(12). https://doi.org/10.3390/molecules28124588
Ohsawa, N., Ogata, Y., Okada, N., & Itoh, N. (2001). Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry, 58, 683–692. www.elsevier.com/locate/phytochem
Okechukwu, Q. N., Adepoju, F. O., Kanwugu, O. N., Adadi, P., Serrano-Aroca, Á., Uversky, V. N., & Okpala, C. O. R. (2024). Marine-Derived Bioactive Metabolites as a Potential Therapeutic Intervention in Managing Viral Diseases: Insights from the SARS-CoV-2 In Silico and Pre-Clinical Studies. In Pharmaceuticals (Vol. 17, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ph17030328
O’Keefe, B. R., Giomarelli, B., Barnard, D. L., Shenoy, S. R., Chan, P. K. S., McMahon, J. B., Palmer, K. E., Barnett, B. W., Meyerholz, D. K., Wohlford-Lenane, C. L., & McCray, P. B. (2010). Broad-Spectrum In vitro Activity and In vivo Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family Coronaviridae . Journal of Virology, 84(5), 2511–2521. https://doi.org/10.1128/jvi.02322-09
O’Leary, B., Park, J., & Plaxton, W. C. (2011). The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): Recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. In Biochemical Journal (Vol. 436, Issue 1, pp. 15–34). https://doi.org/10.1042/BJ20110078
Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A., & Cunningham, V. (2002). Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry, 21(7), 1338–1349. https://doi.org/10.1002/etc.5620210703
Osborn, H. (2003). Carbohydrates. https://books.google.be/books?hl=nl&lr=&id=S4sSyb6NsNcC&oi=fnd&pg=PP1&d…
Øverland, M., Mydland, L. T., & Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. In Journal of the Science of Food and Agriculture (Vol. 99, Issue 1, pp. 13–24). John Wiley and Sons Ltd. https://doi.org/10.1002/jsfa.9143
Oyemitan, I. A. (2017). African medicinal spices of genus Piper. In Medicinal Spices and Vegetables from Africa: Therapeutic Potential Against Metabolic, Inflammatory, Infectious and Systemic Diseases (pp. 581–597). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809286-6.00027-3
Paduch, R., Kandefer-Szerszeń, M., Trytek, M., & Fiedurek, J. (2007). Terpenes: Substances useful in human healthcare. In Archivum Immunologiae et Therapiae Experimentalis (Vol. 55, Issue 5, pp. 315–327). https://doi.org/10.1007/s00005-007-0039-1
Papazian, S., Parrot, D., Burýšková, B., Weinberger, F., & Tasdemir, D. (2019). Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39212-3
Patel, S. (2012). Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. In 3 Biotech (Vol. 2, Issue 3, pp. 171–185). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13205-012-0061-9
Peixoto, W. F. S., Pereira, R. C., Azevedo, E. dos S. S., dos Santos, F. M., Coutinho, R., & de Oliveira, L. S. (2025). The molecular complexity of terpene biosynthesis in red algae: current state and future perspectives. In Natural Product Reports. Royal Society of Chemistry. https://doi.org/10.1039/d4np00034j
Pereira, H., Barreira, L., Figueiredo, F., Custódio, L., Vizetto-Duarte, C., Polo, C., Rešek, E., Aschwin, E., & Varela, J. (2012). Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Marine Drugs, 10(9), 1920–1935. https://doi.org/10.3390/md10091920
Pereira, L. (2021). Macroalgae. Encyclopedia, 1(1), 177–188. https://doi.org/10.3390/encyclopedia1010017
Pereira, L., & Gaspar, R. (2020). Illustrated Guide to the Macroalgae of Buarcos Bay, Figueira da Foz, Portugal. https://doi.org/10.13140/RG.2.2.31009.56165
Pereira, T., Barroso, S., Mendes, S., & Gil, M. M. (2020). Stability, kinetics, and application study of phycobiliprotein pigments extracted from red algae Gracilaria gracilis. Journal of Food Science, 85(10), 3400–3405. https://doi.org/10.1111/1750-3841.15422
Perveen, S. (2018). Introductory Chapter: Terpenes and Terpenoids. In Terpenes and Terpenoids. IntechOpen. https://doi.org/10.5772/intechopen.79683
Petit, L., Vernès, L., & Cadoret, J.-P. (2021). Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. Journal of Applied Phycology. https://doi.org/10.1007/s10811-021-02372-9/Published
Pratoomthai, B., Songtavisin, T., Gangnonngiw, W., & Wongprasert, K. (2018). In vitro inhibitory effect of sulfated galactans isolated from red alga Gracilaria fisheri on melanogenesis in B16F10 melanoma cells. Journal of Applied Phycology, 30(4), 2611–2618. https://doi.org/10.1007/s10811-018-1469-3
Priyanka, K. R., Rajaram, R., & Sivakumar, S. R. (2022). A critical review on pharmacological properties of marine macroalgae. In Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13399-022-03134-4
Raven, J. (1997). Putting the c in phycology. European Journal of Phycology, 32(4), 319–333. https://doi.org/10.1080/09670269710001737259
Raven, J. A. (1996). Into the Voids : The Distribution, Function, Development and Maintenance of Gas Spaces in Plants. In Annals of Botany Company (Vol. 78).
Richard, S. B. (1980). The Strategy Of Red Algal Life History. The American Naturalist.
Rioux, L. E., & Turgeon, S. L. (2015). Seaweed carbohydrates. In Seaweed Sustainability: Food and Non-Food Applications (pp. 141–192). Elsevier Inc. https://doi.org/10.1016/B978-0-12-418697-2.00007-6
Robert R. L. Guillard. (1975). CULTURE OF PHYTOPLANKTON FOR FEEDING MARINE INVERTEBRATES. https://doi.org/http://dx.doi.org/10.1007/978-1-4615-8714-9_3
Robert R. L. Guillard, & John H. Ryther. (1962). STUDIES OF MARINE PLANKTONIC DIATOMS: I. CYCLOTELLA NANA HUSTEDT, AND DETONULA CONFERVACEA (CLEVE) GRAN. https://doi.org/https://doi.org/10.1139/m62-029
Robinson, J. G., & Stone, N. J. (2006). Antiatherosclerotic and Antithrombotic Effects of Omega-3 Fatty Acids. The American Journal of Cardiology, 98(4), 39–49. https://doi.org/10.1016/j.amjcard.2005.12.026
Rocha, O. P., De Felício, R., Rodrigues, A. H. B., Ambrósio, D. L., Cicarelli, R. M. B., De Albuquerque, S., Young, M. C. M., Yokoya, N. S., & Debonsi, H. M. (2011). Chemical profile and biological potential of non-polar fractions from centroceras clavulatum (C. Agardh) montagne (Ceramiales, Rhodophyta). Molecules, 16(8), 7105–7114. https://doi.org/10.3390/molecules16087105
Rodrigues, D., Freitas, A. C., Pereira, L., Rocha-Santos, T. A. P., Vasconcelos, M. W., Roriz, M., Rodríguez-Alcalá, L. M., Gomes, A. M. P., & Duarte, A. C. (2015). Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chemistry, 183, 197–207. https://doi.org/10.1016/j.foodchem.2015.03.057
Rodríguez, P. F., Murillo-González, L., Rodríguez, E., & Pérez, A. M. (2023). Marine phenolic compounds: Sources, commercial value, and biological activities. In Marine Phenolic Compounds: Science and Engineering (pp. 47–86). Elsevier. https://doi.org/10.1016/B978-0-12-823589-8.00005-4
Rossano, R., Ungaro, N., D’Ambrosio, A., Liuzzi, G. M., & Riccio, P. (2003). Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. Journal of Biotechnology, 101(3), 289–293. https://doi.org/10.1016/S0168-1656(03)00002-6
Rupérez, P. (2002). Mineral content of edible marine seaweeds. www.elsevier.com/locate/foodchem
Ryu, B. M., Li, Y. X., Kang, K. H., Kim, S. K., & Kim, D. G. (2015). Floridoside from Laurencia undulata promotes osteogenic differentiation in murine bone marrow mesenchymal cells. Journal of Functional Foods, 19, 505–511. https://doi.org/10.1016/j.jff.2015.09.022
Sadeghi, A., Rajabiyan, A., Nabizade, N., Meygoli Nezhad, N., & Zarei-Ahmady, A. (2024). Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. In International Journal of Biological Macromolecules (Vol. 266). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2024.131147
Sanderson, J. C., Dring, M. J., Davidson, K., & Kelly, M. S. (2012). Culture, yield and bioremediation potential of Palmaria palmata (Linnaeus) Weber & Mohr and Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders adjacent to fish farm cages in northwest Scotland. Aquaculture, 354–355, 128–135. https://doi.org/10.1016/j.aquaculture.2012.03.019
Santhanaraju Vairappan, C., Daitoh, M., Suzuki, M., Abe, T., & Masuda, M. (2001). Antibacterial halogenated metabolites from the Malaysian Laurencia species. Phytochemistry, 58, 291–297. www.elsevier.com/locate/phytochem
Schmid, M., Guihéneuf, F., & Stengel, D. B. (2014). Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. Journal of Applied Phycology, 26(1), 451–463. https://doi.org/10.1007/s10811-013-0132-2
Schmidt, L. E., & Hansen, P. J. (2001). Allelopathy in the prymnesiophyte Chrysochromulina polylepis: Effect of cell concentration, growth phase and pH. Marine Ecology Progress Series, 216, 67–81. https://doi.org/10.3354/meps216067
Semmouri, I., Janssen, C. R., & Asselman, J. (2024). Allelopathy in macroalgae: Ecological principles, research opportunities and pitfalls reviewed. In Journal of Applied Phycology (Vol. 36, Issue 1, pp. 441–458). Springer Science and Business Media B.V. https://doi.org/10.1007/s10811-023-03110-z
Senthilkumar, N., Thangam, R., Murugan, P., Suresh, V., Kurinjimalar, C., Kavitha, G., Sivasubramanian, S., & Rengasamy, R. (2018). Hepato-protective effects of R-phycoerythrin-rich protein extract of Portieria hornemannii (Lyngbye) Silva against DEN-induced hepatocellular carcinoma. Journal of Food Biochemistry, 42(6). https://doi.org/10.1111/jfbc.12695
Shapumba, C. W., Knott, M., & Kapewangolo, P. (2017). Antioxidant activity of a halogenated monoterpene isolated from a Namibian marine algal Plocamium species. Journal of Food Science and Technology, 54(10), 3370–3373. https://doi.org/10.1007/s13197-017-2784-4
Sigwart, J. D., Blasiak, R., Jaspars, M., Jouffray, J. B., & Tasdemir, D. (2021). Unlocking the potential of marine biodiscovery. In Natural Product Reports (Vol. 38, Issue 7, pp. 1235–1242). Royal Society of Chemistry. https://doi.org/10.1039/d0np00067a
Sinha, R. P., Klisch, M., Grö, A., & Häder, D.-P. (2000). Mycosporine-like amino acids in the marine red alga Gracilaria cornea-effects of UV and heat. In Environmental and Experimental Botany (Vol. 43). www.elsevier.com/locate/envexpbot
Škrovánková, S. (2011). Seaweed Vitamins as Nutraceuticals. In Advances in Food and Nutrition Research (Vol. 64).
Sohrabipour, J., Rabiei, R., & Pirian, K. (2019). Fatty Acids Composition of Marine Macroalgae (Review). Journal of Phycological Research.
Soult, A. (2025). CHEMISTRY FOR ALLIED HEALTH. https://LibreTexts.org
Souza, C. R. M., Bezerra, W. P., & Souto, J. T. (2020). Marine alkaloids with anti-inflammatory activity: Current knowledge and future perspectives. In Marine Drugs (Vol. 18, Issue 3). MDPI AG. https://doi.org/10.3390/md18030147
Sudatti, D. B., Duarte, H. M., Soares, A. R., Salgado, L. T., & Pereira, R. C. (2020). New Ecological Role of Seaweed Secondary Metabolites as Autotoxic and Allelopathic. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00347
Suzanne Fredericq. (2003). The Wonderful World of Seaweeds. https://oceanexplorer.noaa.gov/explorations/03mex/background/seaweeds/s…
Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. In Advances in Nutrition (Vol. 3, Issue 1, pp. 1–7). https://doi.org/10.3945/an.111.000893
Takaichi, S. (2011). Carotenoids in algae: Distributions, biosyntheses and functions. In Marine Drugs (Vol. 9, Issue 6, pp. 1101–1118). MDPI AG. https://doi.org/10.3390/md9061101
Tamayo, G. (2014). Bioprospecting. https://www.researchgate.net/publication/264238213
Taniguchi, M., & Lindsey, J. S. (2023). Absorption and fluorescence spectra of open-chain tetrapyrrole pigments–bilirubins, biliverdins, phycobilins, and synthetic analogues. In Journal of Photochemistry and Photobiology C: Photochemistry Reviews (Vol. 55). Elsevier B.V. https://doi.org/10.1016/j.jphotochemrev.2023.100585
Tanner, J. E. (1995). Competition between scleractinian corals and macroalgae: An experimental investigation of coral growth, survival and reproduction. In Journal of Experimental Marine Biology and Ecology (Vol. 190).
Thomas, P. K., Hietala, D. C., & Cardinale, B. J. (2023). Tolerance to allelopathic inhibition by free fatty acids in five biofuel candidate microalgae strains. Bioresource Technology Reports, 21. https://doi.org/10.1016/j.biteb.2022.101321
Torres, P. B., Chow, F., Ferreira, M. J. P., & dos Santos, D. Y. A. C. (2016). Mycosporine-like amino acids from Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) and its variation under high light. Journal of Applied Phycology, 28(3), 2035–2040. https://doi.org/10.1007/s10811-015-0708-0
Torres-Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. In Biotechnology Advances (Vol. 41). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2020.107536
Unsworth, R. K. F., & Cullen-Unsworth, L. C. (2017). The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems – a review. Current Biology Magazine, 27(11). https://www.cell.com/current-biology/fulltext/S0960-9822(17)30022-2
Valavanidis, A. (2023). Oceans and Forests are “Lungs of Planet Earth”. Anthropogenic pollution of oceans and marine ecosystems is a worrying global problem. https://www.researchgate.net/publication/374170326
Van Dooren, G. G., Kennedy, A. T., & McFadden, G. I. (2012). The use and abuse of heme in apicomplexan parasites. In Antioxidants and Redox Signaling (Vol. 17, Issue 4, pp. 634–656). https://doi.org/10.1089/ars.2012.4539
Verma, C., Salman, M., Farooq, M. U., Rahman, A. U., Yaseen, M., Sharma, S., Ganjoo, R., Kumar, A., Thakur, A., Hashemzadeh, N., Sajedi-Amin, S., Jouyban, A., Rahimpour, E., Assad, H., Sharma, P. K., Vinayagamurthy, K., Yalavarthi, K., Ramudu, K. N., Stephen, N. M., … Grueso, E. (2024). Science and Engineering of Polyphenols (C. Verma, Ed.).
VLIZ. (n.d.). roodwieren (Rhodophyta). Platform Voor Marien Onderzoek. Retrieved March 10, 2025, from https://www.vliz.be/vmdcdata/berms/group.php?id=1756
Wang, Q., Ren, F., & Li, R. (2024). Uncovering the world’s largest carbon sink—a profile of ocean carbon sinks research. Environmental Science and Pollution Research, 31(13), 20362–20382. https://doi.org/10.1007/s11356-024-32161-z
Weber, F., & Mohr, D. M. H. (1805). AlgaeBase - Palmaria palmata. Beiträge Zur Naturkunde 1: 204-329. https://www.algaebase.org/search/bibliography/detail/?biblio_id=17746
Wehr, J. D. (2015). Brown Algae. In Freshwater Algae of North America: Ecology and Classification (pp. 851–871). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385876-4.00019-0
Wen, X., Peng, C., Zhou, H., Lin, Z., Lin, G., Chen, S., & Li, P. (2006). Nutritional composition and assessment of Gracilaria lemaneiformis Bory. Journal of Integrative Plant Biology, 48(9), 1047–1053. https://doi.org/10.1111/j.1744-7909.2006.00333.x
Wongprasert, K., Rudtanatip, T., & Praiboon, J. (2014). Immunostimulatory activity of sulfated galactans isolated from the red seaweed Gracilaria fisheri and development of resistance against white spot syndrome virus (WSSV) in shrimp. Fish and Shellfish Immunology, 36(1), 52–60. https://doi.org/10.1016/j.fsi.2013.10.010
World Bank Group. (n.d.). Seaweed Aquaculture for Food Security, Income Generation and Environmental Health in Tropical Developing Countries.
Wu, J. T., Chiang, Y. R., Huang, W. Y., & Jane, W. N. (2006). Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquatic Toxicology, 80(4), 338–345. https://doi.org/10.1016/j.aquatox.2006.09.011
Yang, Y., Liu, D., Wu, J., Chen, Y., & Wang, S. (2011). In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis. International Journal of Biological Macromolecules, 49(5), 1031–1037. https://doi.org/10.1016/j.ijbiomac.2011.08.026
Ye, C., Liao, H., & Yang, Y. (2014). Allelopathic inhibition of photosynthesis in the red tide-causing marine alga, Scrippsiella trochoidea (Pyrrophyta), by the dried macroalga, Gracilaria lemaneiformis (Rhodophyta). Journal of Sea Research, 90, 10–15. https://doi.org/10.1016/j.seares.2014.02.015
Ye, C., & Zhang, M. (2013). Allelopathic Effect of Macroalga Gracilaria Tenuistipitata (Rhodophyta) on the Photosynthetic Apparatus of Red-tide Causing Microalga Prorocentrum micans. IERI Procedia, 5, 209–215. https://doi.org/10.1016/j.ieri.2013.11.094
Yu, S., Blennow, A., Bojko, M., Madsen, F., Olsen, C. E., & Engelsen, S. B. (2002). Physico-chemical characterization of floridean starch of red algae. Starch/Staerke, 54(2), 66–74. https://doi.org/10.1002/1521-379X(200202)54:2<66::AID-STAR66>3.0.CO;2-B
Zeng, Z., Zhu, X. J., Huo, J., Liu, Y. J., Peng, Z. H., Chen, J. Y., & Zhang, L. S. (2020). The establishment of a three-color flow cytometry approach for the scoring of micronucleated reticulocytes in rat bone marrow. Journal of Sichuan University (Medical Science Edition), 51(1), 67–73. https://doi.org/10.12182/20200160603
Zhao, Q., Chen, A. N., Hu, S. X., Liu, Q., Chen, M., Liu, L., Shao, C. L., Tang, X. X., & Wang, C. Y. (2018). Microalgal Microscale Model for Microalgal Growth Inhibition Evaluation of Marine Natural Products. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28980-z
Zhao, Q., Jiang, R., Shi, Y., Shen, A., He, P., & Shao, L. (2023). Allelopathic Inhibition and Mechanism of Quercetin on Microcystis aeruginosa. Plants, 12(9). https://doi.org/10.3390/plants12091808
Zhao, Y., Bourgougnon, N., Lanoisellé, J. L., & Lendormi, T. (2022). Biofuel Production from Seaweeds: A Comprehensive Review. In Energies (Vol. 15, Issue 24). MDPI. https://doi.org/10.3390/en15249395