Factoren zoals stijgende temperaturen en pesticiden, die de overlevingskans van dieren in gevaar brengen, worden ‘stressoren’ genoemd. Maar, dieren kunnen mechanismen inschakelen om zich beter te beschermen tegen deze stressoren en zo hun overlevingskansen vergroten. Dit begrip wordt tolerantie genoemd en is het vermogen van een dier om te overleven ondanks dat ze terecht komen in schadelijke omstandigheden.
Recent onderzoek heeft aangetoond dat bacteriën in het spijsverteringstelsel van watervlooien (heel kleine aquatische diertjes) een heel belangrijke rol spelen bij het tolerant worden van hun gastheer tegen pesticiden. Maar hoe kunnen bacteriën een invloed hebben op de overlevingskansen van hun gastheer? Er bestaan bacteriën die de giftige pesticiden onschadelijk kunnen maken, waardoor deze geen negatieve effecten meer hebben op hun gastheer. Er bestaan ook bacteriën die beter bestand zijn tegen hogere temperaturen en hun gastheer dus kunnen helpen wanneer deze hieraan wordt blootgesteld.
![]()
Wij wilden nagaan wat er gebeurt met de bacteriën in het lichaam van watervlooien wanneer de watervlooien worden blootgesteld aan verschillende stressoren. Daarnaast onderzochten we ook welk effect deze stressoren hebben op de overleving van de watervlooien. In ons onderzoek gebruikten we als stressoren malathion (een wereldwijd gebruikt pesticide) en verhoogde temperatuur van 32 °C (om de klimaatsverandering na te bootsen). We gebruikten verschillende soorten watervlooien: gewone watervlooien, watervlooien die tolerant waren tegen het pesticide, watervlooien die tolerant waren tegen 32 °C en watervlooien die tolerant waren tegen zowel het pesticide als de verhoogde temperaturen. Hierdoor konden we een experiment opstellen waar de vier verschillende soorten watervlooien werden blootgesteld aan 1) geen stressoren, 2) het pesticide, 3) aan 32 °C of 4) zowel het pesticide als 32 °C.
Tijdens het onderzoek vonden we een paar opmerkelijke dingen. Zo stelden we vast dat de pesticide-tolerante watervlooien meer bacteriën hadden die het pesticide onschadelijk konden maken dan de gewone watervlooien. We vonden ook dat de temperatuur-tolerante watervlooien meer bacteriën hadden die temperatuur-tolerant waren dan zowel de pesticide-tolerante als de gewone watervlooien. Dit bevestigde dus dat de tolerantie tegen een bepaalde stressor afhangt van de bacteriën in de gastheer.
Bij watervlooien kan de samenstelling van de bacteriën in het lichaam veranderen naargelang de stressoren waarmee de gastheer geconfronteerd wordt.
Maar wat als de verschillende watervlo soorten worden blootgesteld aan een stressor waar ze niet tolerant tegen zijn? We vonden dat, wanneer de watervlooien worden blootgesteld aan een nieuwe stressor, er meer bacteriën waren die hun konden beschermen tegen deze nieuwe stressor. Zo toonden we bijvoorbeeld aan dat wanneer de pesticide-tolerante watervlooien werden blootgesteld aan 32 °C, een deel van de bacteriën die normaal het pesticide onschadelijk maken, verloren gingen. Dit was echter niet voor niets want deze bacteriën werden vervangen door bacteriën die beter met de hitte konden omgaan. Bij watervlooien kan de samenstelling van de bacteriën in het lichaam dus veranderen naargelang de stressoren waarmee de gastheer geconfronteerd wordt.
Er is echter wel een belangrijke vraag die gesteld moet worden: ‘Is het altijd voordelig om tolerant te zijn?’ Er is namelijk één groot nadeel: Tolerantie tegen een bepaalde stressor onderhouden kost veel energie en dit is energie die niet gestoken kan worden in bv. het zoeken naar voedsel of volwassen worden. Er is in dat geval ook minder energie over om te reageren op of zich aan te passen aan een nieuwe stressor die komt opduiken. Wanneer een dier tolerant is tegen een stressor die er op dat moment niet is, of wanneer een andere stressor komt opdagen, kan dit nadelig zijn voor het dier.
Dit is ook wat we vonden in ons onderzoek. Wanneer de pesticide-tolerante watervlooien werden blootgesteld aan 32 °C, vonden we dat hun overlevingskans zeer laag lag, zelfs lager dan de overlevingskans van de gewone watervlooien die aan 32 °C werden blootgesteld. Het onderhouden van de tolerantie tegen het pesticide vroeg voor de pesticide-tolerante watervlooien dus zo veel energie, dat ze niet meer genoeg energie overhadden om zich te verdedigen tegen de verhoogde temperatuur. We vonden ook dat wanneer de watervlooien werden blootgesteld aan beide stressoren, dat watervlooien die tolerant zijn aan beide stressoren beter kunnen overleven dan watervlooien die maar tolerant zijn aan één van deze stressoren. In een wereld met meerdere gevaren is het dus niet voldoende om tolerant te zijn tegen slechts één van deze.
Dit onderzoek toont aan dat de bacteriën in het lichaam van de watervlooien een belangrijke rol speelden in de tolerantie tegen een bepaalde stressor en dat deze bacteriën dus een invloed hebben op de overlevingskansen van de watervlooien wanneer ze geconfronteerd werden met gevaren. Daarnaast zien we ook dat het niet voldoende is om tolerant te zijn tegen één stressor wanneer er meerdere stressoren aanwezig zijn. Dat pesticiden en stijgende temperaturen nadelig zijn voor heel wat dieren is dus nog maar eens bevestigd. Bacteriën kunnen echter wel de onzichtbare held zijn.
Akbar, S., Gu, L., Sun, Y., Zhang, L., Lyu, K., Huang, Y., & Yang, Z. (2022). Understanding host-microbiome-environment interactions: Insights from Daphnia as a model organism. In Science of the Total Environment (Vol. 808). Elsevier B.V.
https://doi.org/10.1016/j.scitotenv.2021.152093
Ansari, M., Moraiet, M., & Ahmad, S. (2014). Insecticides: Impact on the Environment and Human Health. In Environmental Deterioration and Human Health: Natural and Anthropogenic Determinants (pp. 99–124). Springer, Dordrecht.
https://doi.org/10.1007/978-94-007-7890-0
Barry, M. J. (1998). The effects of a pesticide on inducible phenotypic plasticity in Daphnia. https://doi.org/10.1016/S0269-7491(98)00188-2
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
Berdejo, D., Mortier, J., Cambré, A., Sobota, M., Van Eyken, R., Kim, T. D., Vanoirbeek, K., Gonzalo, D. G., Pagán, R., Diard, M., & Aertsen, A. (2024). Evolutionary trade-off between heat shock resistance, growth at high temperature, and virulence expression in Salmonella typhimurium. MBio, 15(3). https://doi.org/10.1128/mbio.03105-23
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. In Microbiome (Vol. 8, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40168-020-00875-0
Bliss, C. I. (1939). The toxicity of poissons applied jointly. Annals of Applied Biology, 26(3), 585–615. https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771–1789. https://doi.org/10.1890/03-9000
Carmichael, W. W., & Boyer, G. L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. In Harmful Algae (Vol. 54, pp. 194–212). Elsevier B.V. https://doi.org/10.1016/j.hal.2016.02.002
Chen, L., Gómez, R., & Weiss, L. C. (2021). Distinct Gene Expression Patterns of Two Heat Shock Protein 70 Members During Development, Diapause, and Temperature Stress in the Freshwater Crustacean Daphnia magna. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.692517
Cheng, D., Guo, Z., Riegler, M., Xi, Z., Liang, G., & Xu, Y. (2017a). Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome, 5(1). https://doi.org/10.1186/s40168-017-0236-z
Coors, A., & De Meester, L. (2008). Synergistic, antagonistic and additive effects of multiple stressors: Predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology, 45(6), 1820–1828. https://doi.org/10.1111/j.1365-2664.2008.01566.x
Cuenca Cambronero, M., Beasley, J., Kissane, S., & Orsini, L. (2018a). Evolution of thermal tolerance in multifarious environments. Molecular Ecology, 27(22), 4529–4541. https://doi.org/10.1111/mec.14890
Cuenca Cambronero, M., Zeis, B., & Orsini, L. (2018b). Haemoglobin-mediated response to hyper-thermal stress in the keystone species Daphnia magna. Evolutionary Applications, 11(1), 112–120. https://doi.org/10.1111/eva.12561
Davis, N. M., Proctor, Di. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome, 6(1). https://doi.org/10.1186/s40168-018-0605-2
Delcour, I., Spanoghe, P., & Uyttendaele, M. (2015). Literature review: Impact of climate change on pesticide use. In Food Research International (Vol. 68, pp. 7–15). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2014.09.030
Delnat, V. (2022a). Protocol Intrinsic population growth rate.
Delnat, V., Janssens, L., & Stoks, R. (2019). Whether warming magnifies the toxicity of a pesticide is strongly dependent on the concentration and the null model. Aquatic Toxicology, 211, 38–45. https://doi.org/10.1016/j.aquatox.2019.03.010
Delnat, V., Verheyen, J., Van Hileghem, I., & Stoks, R. (2022b). Genetic variation of the interaction type between two stressors in a single population: From antagonism to synergism when combining a heat spike and a pesticide. Environmental Pollution, 308. https://doi.org/10.1016/j.envpol.2022.119654
Dong, Y., Van de Maele, M., De Meester, L., Verheyen, J., & Stoks, R. (2024). Pollution offsets the rapid evolution of increased heat tolerance in a natural population. Science of the Total Environment, 944. https://doi.org/10.1016/j.scitotenv.2024.173070
Duquesne, S. (2006). Effects of an organophosphate on Daphnia magna at suborganismal and organismal levels: Implications for population dynamics. Ecotoxicology and Environmental Safety, 65(2), 145–150. https://doi.org/10.1016/j.ecoenv.2006.01.008
Ebert, D. (2022). Daphnia as a versatile model system in ecology and evolution. In EvoDevo (Vol. 13, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13227-022-00199-0
Edgerton, M. D. (2009). Increasing crop productivity to meet global needs for feed, food, and fuel. In Plant Physiology (Vol. 149, Issue 1, pp. 7–13). American Society of Plant Biologists. https://doi.org/10.1104/pp.108.130195
El Moussaoui, H. (2021). Effects of Multi-generational exposure of Daphnia magna to pesticides and environmental stress.
Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression. In Sage, Thousand Oaks CA (Third edition, Issue Third edition). Sage, Thousand Oaks CA.
Frankel-Bricker, J., Song, M. J., Benner, M. J., & Schaack, S. (2019). Variation in the Microbiota Associated with Daphnia magna Across Genotypes, Populations, and Temperature. Microbial Ecology, 79(3), 731–742. https://doi.org/10.1007/s00248-019-01412-9
Fukuto, T. R. (1990). Mechanism of Action of Organophosphorus and Carbamate Insecticides. In Environmental Health Perspectives (Vol. 87). https://doi.org/10.1289/ehp.9087245
Geerts, A. N., Vanoverbeke, J., Vanschoenwinkel, B., Van Doorslaer, W., Feuchtmayr, H., Atkinson, D., Moss, B., Davidson, T. A., Sayer, C. D., & De Meester, L. (2015). Rapid evolution of thermal tolerance in the water flea Daphnia. Nature Climate Change, 5(7), 665–668. https://doi.org/10.1038/nclimate2628
Giebelhausen, B., & Lampert, W. (2001). Temperature reaction norms of Daphnia magna: The effect of food concentration. Freshwater Biology, 46(3), 281–289. https://doi.org/10.1046/j.1365-2427.2001.00630.x
Glazier, D. S., & Calow, P. (1992). Energy allocation rules in Daphnia magna: clonal and age differences in the effects of food limitation. Oecologia, 90(4), 540–549. https://doi.org/10.1007/BF01875448
Gupta, R. C., Miller Mukherjee, I. R., Malik, J. K., Doss, R. B., Dettbarn, W. D., & Milatovic, D. (2019). Insecticides. In Biomarkers in Toxicology (pp. 455–475). Elsevier. https://doi.org/10.1016/B978-0-12-814655-2.00026-8
Hallman, T. A., & Brooks, M. L. (2015). The deal with diel: Temperature fluctuations, asymmetrical warming, and ubiquitous metals contaminants. Environmental Pollution, 206, 88–94. https://doi.org/10.1016/j.envpol.2015.06.005
Hooper, M. J., Ankley, G. T., Cristol, D. A., Maryoung, L. A., Noyes, P. D., & Pinkerton, K. E. (2013). Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environmental Toxicology and Chemistry, 32(1), 32–48. https://doi.org/10.1002/etc.2043
Jain, S., Sharma, G., & Mathur, Y. P. (2013). Effects of temperature variations on fish in lakes. International Journal of Engineering Research & Technology (IJERT), 2(10).
Jansen, M., Geerts, A. N., Rago, A., Spanier, K. I., Denis, C., De Meester, L., & Orsini, L. (2017). Thermal tolerance in the keystone species Daphnia magna—a candidate gene and an outlier analysis approach. Molecular Ecology, 26(8), 2291–2305. https://doi.org/10.1111/mec.14040
Janssens, L., Van de Maele, M., Delnat, V., Theys, C., Mukherjee, S., De Meester, L., & Stoks, R. (2022). Evolution of pesticide tolerance and associated changes in the microbiome in the water flea Daphnia magna. Ecotoxicology and Environmental Safety, 240.
https://doi.org/10.1016/j.ecoenv.2022.113697
Jensen, I. M., & Whatling, P. (2010). Malathion: A Review of Toxicology. In Hayes’ Handbook of Pesticide Toxicology, Third Edition: Volume 1 (Vol. 1, pp. 1527–1542). Elsevier. https://doi.org/10.1016/B978-0-12-374367-1.00071-9
Kang, X., Zhou, Y., Liu, Q., Liu, M., Chen, J., Zhang, Y., Wei, J., & Wang, Y. (2024). Characterization and Expression of the Cytochrome P450 Genes in Daphnia magna Exposed to Cerium Oxide Nanoparticles. International Journal of Molecular Sciences, 25(19). https://doi.org/10.3390/ijms251910812
Khan, M. A. Q., & Khan, M. A. (2008). Effect of temperature on waterflea Daphnia magna (Crustacea:Cladocera).
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1). https://doi.org/10.1093/nar/gks808
Kumar, S., Kaushik, G., Dar, M. A., Nimesh, S., Lopez-Chuken, U. J., & Villareal-Chiu, J. F. (2018). Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 28(2), 190–208. https://doi.org/10.1016/S1002-0160(18)60017-7
Lenth, R. V. (2025). emmeans: Estimated Marginal Means, aka Least-Squares Means. In CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.package.emmeans
Levinton, J. S., Suatoni, E., Wallace, W., Junkins, R., Kelaher, B., & Allen, B. J. (2003). Rapid loss of genetically based resistance to metals after the cleanup of a Superfund site. Proceedings of the National Academy of Sciences, 100(17), 9889–9891. https://doi.org/10.1073/pnas.1731446100
Macke, E., Callens, M., De Meester, L., & Decaestecker, E. (2017). Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01714-x
Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. In Plant, Soil and Microbes: Volume 1: Implications in Crop Science (pp. 253–269). Springer International Publishing. https://doi.org/10.1007/978-3-319-27455-3_13
Mallon, C. A., van Elsas, J. D., & Salles, J. F. (2015). Microbial invasions: The process, patterns, and mechanisms. In Trends in Microbiology (Vol. 23, Issue 11, pp. 719–729). Elsevier Ltd. https://doi.org/10.1016/j.tim.2015.07.013
Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (eds.)]. (2021). IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 2391 pp.,. https://doi.org/10.1017/9781009157896
McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4), E61217. https://doi.org/10.1371/journal.pone.0061217
Meng, L. W., Yuan, G. R., Lu, X. P., Jing, T. X., Zheng, L. S., Yong, H. X., & Wang, J. J. (2019). Two delta class glutathione S-transferases involved in the detoxification of malathion in Bactrocera dorsalis (Hendel). Pest Management Science, 75(6), 1527–1538.
https://doi.org/10.1002/ps.5318
Moe, S. J., De Schamphelaere, K., Clements, W. H., Sorensen, M. T., Van den Brink, P. J., & Liess, M. (2013). Combined and interactive effects of global climate change and toxicants on populations and communities. Environmental Toxicology and Chemistry, 32(1), 49–61. https://doi.org/10.1002/etc.2045
National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 4004, Malathion.
Noyes, P. D., & Lema, S. C. (2015). Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. In Current Zoology (Vol. 61, Issue 4).
https://doi.org/10.1093/czoolo/61.4.669
Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: Environmental contaminants in a warming world. In Environment International (Vol. 35, Issue 6, pp. 971–986). Elsevier Ltd. https://doi.org/10.1016/j.envint.2009.02.006
Oerke, E. C. (2006). Crop losses to pests. In Journal of Agricultural Science (Vol. 144, Issue 1, pp. 31–43). https://doi.org/10.1017/S0021859605005708
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Borman, T. (2001). vegan: Community Ecology Package. In CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.package.vegan
Op de Beeck, L., Verheyen, J., & Stoks, R. (2017). Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect. Environmental Pollution, 224, 714–721. https://doi.org/10.1016/j.envpol.2016.11.014
Palacio-Castro, A. M., Rosales, S. M., Dennison, C. E., & Baker, A. C. (2022). Microbiome signatures in Acropora cervicornis are associated with genotypic resistance to elevated nutrients and heat stress. Coral Reefs, 41(5), 1389–1403. https://doi.org/10.1007/s00338-022-02289-w
Pestana, J. L. T., Loureiro, S., Baird, D. J., & Soares, A. M. V. M. (2009). Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk. Aquatic Toxicology, 93(2–3), 138–149. https://doi.org/10.1016/j.aquatox.2009.04.008
Qi, W., Nong, G., Preston, J. F., Ben-Ami, F., & Ebert, D. (2009). Comparative metagenomics of Daphnia symbionts. BMC Genomics, 10. https://doi.org/10.1186/1471-2164-10-172
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1).
https://doi.org/10.1093/nar/gks1219
R Core Team. (2025). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.
Ramos-Rodríguez, E., Pérez-Martínez, C., & Conde-Porcuna, J. M. (2022). A Non-Stressful Temperature Rise and Greater Food Availability Could Increase Tolerance to Calcium Limitation of Daphnia cf. pulex (Sensu Hebert, 1995) Populations in Cold Soft-Water Lakes. Biology, 11(10). https://doi.org/10.3390/biology11101539
Reynaldi, S., Duquesne, S., Jung, K., & Liess, M. (2006). Linking feeding activity and maturation of Daphnia magna following short-term exposure to fenvalerate. Environmental Toxicology and Chemistry, 25(7), 1826–1830.
https://doi.org/10.1897/05-469R.1
Ripley, B., & Venables, B. (2002). MASS: Support Functions and Datasets for Venables and Ripley’s MASS. In CRAN: Contributed Packages.
https://doi.org/10.32614/CRAN.package.MASS
Rivero, A., Magaud, A., Nicot, A., & Vézilier, J. (2011). Energetic cost of insecticide resistance in Culex pipiens mosquitoes. Journal of Medical Entomology, 48(3), 694–700. https://doi.org/10.1603/ME10121
Russell, J. A., & Moran, N. A. (2006). Costs and benefits of symbiont infection in aphids: Variation among symbionts and across temperatures. Proceedings of the Royal Society B: Biological Sciences, 273(1586), 603–610. https://doi.org/10.1098/rspb.2005.3348
Russell, R. J., Scott, C., Jackson, C. J., Pandey, R., Pandey, G., Taylor, M. C., Coppin, C. W., Liu, J. W., & Oakeshott, J. G. (2011). The evolution of new enzyme function: Lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evolutionary Applications, 4(2), 225–248. https://doi.org/10.1111/j.1752-4571.2010.00175.x
Salice, C. J., Anderson, T. A., & Roesijadi, G. (2010). Adaptive responses and latent costs of multigeneration cadmium exposure in parasite resistant and susceptible strains of a freshwater snail. Ecotoxicology, 19(8), 1466–1475. https://doi.org/10.1007/s10646-010-0532-x
Sánchez-Bayo, F. (2021). Indirect effect of pesticides on insects and other arthropods. In Toxics (Vol. 9, Issue 8). MDPI. https://doi.org/10.3390/toxics9080177
Sepulveda, J., & Moeller, A. H. (2020). The Effects of Temperature on Animal Gut Microbiomes. In Frontiers in Microbiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2020.00384
Serrão, J. E., Plata-Rueda, A., Martínez, L. C., & Zanuncio, J. C. (2022). Side-effects of pesticides on non-target insects in agriculture: a mini-review. In Science of Nature (Vol. 109, Issue 2). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00114-022-01788-8
Shahid, N., Liess, M., & Knillmann, S. (2019). Environmental Stress Increases Synergistic Effects of Pesticide Mixtures on Daphnia magna. Environmental Science and Technology, 53(21), 12586–12593. https://doi.org/10.1021/acs.est.9b04293
Shahid, N., Siddique, A., & Liess, M. (2024). Predicting the Combined Effects of Multiple Stressors and Stress Adaptation in Gammarus pulex. Environmental Science and Technology, 58(29), 12899–12908. https://doi.org/10.1021/acs.est.4c02014
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. In SN Applied Sciences (Vol. 1, Issue 11). Springer Nature. https://doi.org/10.1007/s42452-019-1485-1
Siddique, A., Liess, M., Shahid, N., & Becker, J. M. (2020). Insecticides in agricultural streams exert pressure for adaptation but impair performance in Gammarus pulex at regulatory acceptable concentrations. Science of the Total Environment, 722.
https://doi.org/10.1016/j.scitotenv.2020.137750
Siddique, A., Shahid, N., & Liess, M. (2021). Multiple Stress Reduces the Advantage of Pesticide Adaptation. Environmental Science and Technology, 55(22), 15100–15109.
https://doi.org/10.1021/acs.est.1c02669
Siepmann, S., & Slater, S. B. (1998). Hazard Assessment of the Insecticide Malathion to Aquatic Organisms in the Sacramento-San Joaquin River System.
Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. In FEMS Microbiology Reviews (Vol. 30, Issue 3, pp. 428–471).
https://doi.org/10.1111/j.1574-6976.2006.00018.x
Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2012). afex: Analysis of Factorial Experiments. In CRAN: Contributed Packages.
https://doi.org/10.32614/CRAN.package.afex
Sokolova, I. M., & Lannig, G. (2008). Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change. Climate Research, 37(2–3), 181–201. https://doi.org/10.3354/cr00764
Stenersen, Jørgen. (2004). Chemical pesticides : mode of action and toxicology. CRC Press. https://doi.org/10.1201/9780203646830
Stock, W., Callens, M., Houwenhuyse, S., Schols, R., Goel, N., Coone, M., Theys, C., Delnat, V., Boudry, A., Eckert, E. M., Laspoumaderes, C., Grossart, H. P., De Meester, L., Stoks, R., Sabbe, K., & Decaestecker, E. (2021). Human impact on symbioses between aquatic organisms and microbes. In Aquatic Microbial Ecology (Vol. 87, pp. 113–138). Inter-Research. https://doi.org/10.3354/AME01973
Suppa, A., Kvist, J., Li, X., Dhandapani, V., Almulla, H., Tian, A. Y., Kissane, S., Zhou, J., Perotti, A., Mangelson, H., Langford, K., Rossi, V., Brown, J. B., & Orsini, L. (2020). Roundup causes embryonic development failure and alters metabolic pathways and gut microbiota functionality in non-target species. Microbiome, 8(1).
https://doi.org/10.1186/s40168-020-00943-5
Theys, C., Verheyen, J., Delnat, V., Janssens, L., Tüzün, N., & Stoks, R. (2023a). Thermal and latitudinal patterns in pace-of-life traits are partly mediated by the gut microbiome. Science of the Total Environment, 855.
https://doi.org/10.1016/j.scitotenv.2022.158829
Theys, C., Verheyen, J., Janssens, L., Tüzün, N., & Stoks, R. (2023b). Effects of heat and pesticide stress on life history, physiology and the gut microbiome of two congeneric damselflies that differ in stressor tolerance. Science of the Total Environment, 875.
https://doi.org/10.1016/j.scitotenv.2023.162617
Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K., & Ślaska, B. (2021). Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. In Science of the Total Environment (Vol. 763). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.143038
Trac, L. N., Andersen, O., & Palmqvist, A. (2016). Deciphering mechanisms of malathion toxicity under pulse exposure of the freshwater cladoceran Daphnia magna. Environmental Toxicology and Chemistry, 35(2), 394–404. https://doi.org/10.1002/etc.3189
Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 3, pp. 1–24). MDPI AG. https://doi.org/10.3390/ijerph18031112
United Nations. (2024). World Population Prospects 2024 Summary of Results Ten key messages.
Van de Maele, M., Janssens, L., & Stoks, R. (2025). The Benefit of Evolution of Pesticide Tolerance Is Overruled under Combined Stressor Exposure due to Synergistic Stressor Interactions. Environmental Science and Technology.
https://doi.org/10.1021/acs.est.4c07144
Verberk, W. C. E. P., Atkinson, D., Hoefnagel, K. N., Hirst, A. G., Horne, C. R., & Siepel, H. (2021). Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews, 96(1), 247–268. https://doi.org/10.1111/brv.12653
Verheyen, J., Delnat, V., & Theys, C. (2022). Daily temperature fluctuations can magnify the toxicity of pesticides. In Current Opinion in Insect Science (Vol. 51). Elsevier Inc. https://doi.org/10.1016/j.cois.2022.100919
Verheyen, J., & Stoks, R. (2019). Shrinking Body Size and Physiology Contribute to Geographic Variation and the Higher Toxicity of Pesticides in a Warming World. Environmental Science and Technology, 53(19), 11515–11523.
https://doi.org/10.1021/acs.est.9b03806
Visser, P. M., Verspagen, J. M. H., Sandrini, G., Stal, L. J., Matthijs, H. C. P., Davis, T. W., Paerl, H. W., & Huisman, J. (2016). How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. In Harmful Algae (Vol. 54, pp. 145–159). Elsevier B.V. https://doi.org/10.1016/j.hal.2015.12.006
Wang, G. H., Berdy, B. M., Velasquez, O., Jovanovic, N., Alkhalifa, S., Minbiole, K. P. C., & Brucker, R. M. (2020). Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure. Cell Host and Microbe, 27(2), 213-224.e7. https://doi.org/10.1016/j.chom.2020.01.009
Wang, C., Zhang, R., Liu, B. T., Liu, C. L., & Du, Z. J. (2019). Paracnuella aquatica gen. Nov., sp. nov., a member of the family chitinophagaceae isolated from a hot spring. International Journal of Systematic and Evolutionary Microbiology, 69(8), 2360–2366. https://doi.org/10.1099/ijsem.0.003476
Ware, G. W., & Whitacre, D. M. (2004). An introduction to insecticides. In The Pesticide Book, 6th ed*. MeisterPro Information Resources.
Wei, Y., Liu, Q., & Zhao, J. (2023). Formulation of water pollutant discharge limits for malathion based on nonsensitive aquatic organism protection. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43494-z
Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marquine, M., & Raymond, M. (2004). The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Molecular Biology, 13(1), 1–7. https://doi.org/10.1111/j.1365-2583.2004.00452.x
Whipps, J. M., Lewis, K., & Cooke, R. C. (1988). Mycoparasitism and plant disease control. Manchester University Press, In Fungi in Biological Control Systems, 161–187.
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., Dunnington, D., & van den Brand, T. (2016). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. In CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.package.ggplot2
Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change and freshwater ecosystems: Impacts across multiple levels of organization. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 365, Issue 1549, pp. 2093–2106). Royal Society. https://doi.org/10.1098/rstb.2010.0055
Woolway, R. I., Jennings, E., & Carrea, L. (2020). Impact of the 2018 European heatwave on lake surface water temperature. Inland Waters, 10(3), 322–332.
https://doi.org/10.1080/20442041.2020.1712180
Zhang, A., Xie, X., Ye, J., Lin, C., & Hu, X. (2011). Stereoselective toxicity of malathion and its metabolites, malaoxon and isomalathion. Environmental Chemistry Letters, 9(3), 369–373. https://doi.org/10.1007/s10311-010-0288-9
Zhang, C., Jansen, M., De Meester, L., & Stoks, R. (2018). Thermal evolution offsets the elevated toxicity of a contaminant under warming: A resurrection study in Daphnia magna. Evolutionary Applications, 11(8), 1425–1436. https://doi.org/10.1111/eva.12637
Zhang, Y., Cai, T., Ren, Z., Liu, Y., Yuan, M., Cai, Y., Yu, C., Shu, R., He, S., Li, J., Wong, A. C. N., & Wan, H. (2021a). Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. ISME Journal, 15(12), 3693–3703. https://doi.org/10.1038/s41396-021-01046-1