Mix & Match met zeewier: een frisse blik op een warme toekomst

Kato
De Clercq

We horen het overal: genetische modificatie en kruisingen van planten en dieren. Maar wat als dit onder water ook steeds belangrijker wordt? Mijn onderzoek nam een verrassende wending toen ik erin slaagde laboratoriumhybriden te maken tussen de twee zeewiersoorten vingerwier en goudwier. Dit onverwachte resultaat roept fascinerende vragen op. Komt dit ook voor in de natuur? Wat betekent dit voor de kweek van zeewier? En hoe hangt dit samen met klimaatverandering? Wat vaststaat, is dat deze ontdekking nieuwe deuren opent in de wereld van zeewier en de mogelijkheden voor de toekomst.

Illustratieve onderwaterfoto van een kelpwoud met een haai die tussen de lange, bruine kelpbladeren zwemt en een school kleine vissen op de achtergrond.

Een primeur onder water

Goudwier en vingerwier zijn twee kelpsoorten met verschillende voorkeuren: de ene groeit liever in warmere wateren, de andere in koelere. Hoewel hun leefgebieden elkaar soms overlappen, heeft niemand ooit kunnen bewijzen dat ze samen levensvatbare nakomelingen kunnen vormen. 

In mijn thesisonderzoek is het wél gelukt: uit een kruising die tot nu toe als onmogelijk werd beschouwd, ontstonden gezonde “babykelpjes”. Een primeur die laat zien dat deze kelpsoorten tot op zekere hoogte genetisch compatibel zijn. Het belangrijkste is dat dit ons veel nieuwe kennis oplevert over kelp, hun levenscyclus en genetische mogelijkheden—kennis die in de toekomst kan bijdragen aan natuurbehoud en duurzame zeewierproductie.

Waarom kelp belangrijker is dan je denkt

Kelp is geen gewoon zeewier. Het vormt onderwaterbossen die net zo belangrijk zijn als tropische regenwouden. In die bossen vinden talloze dieren bescherming en voedsel. Ze produceren zuurstof en nemen CO₂ op, wat hen een cruciale bondgenoot maakt in de strijd tegen klimaatverandering. Als deze ecosystemen achteruitgaan door het veranderende klimaat, verliest de oceaan een van haar belangrijkste levensaders.

Naast het ecologische belang heeft kelp ook een grote economische waarde. Zo is het een belangrijke grondstof die wordt gebruikt in voeding, cosmetica en farmaceutica. Wereldwijd groeit de zeewierindustrie razendsnel, waardoor de aandacht ervoor ook verder toeneemt.

Kelp vormt onderwaterbossen die net zo belangrijk zijn als tropische regenwouden!

Twee soorten, één toekomst?

In mijn onderzoek bracht ik de twee soorten samen in gecontroleerde omstandigheden. Dat klinkt eenvoudiger dan het is: kelpsoorten hebben een ingewikkelde levenscyclus met microscopisch kleine stadia. Alleen door die zorgvuldig samen te brengen, kon ik testen of er werkelijk een hybride zou ontstaan.

Het resultaat was verrassend. Waar eerdere studies vooral mislukte of misvormde nakomelingen zagen, groeiden nu wél gezonde hybriden uit. Nieuwe kelpjes die de kenmerken van beide ouders combineerden, een ontdekking die aantoont dat deze soorten compatibel zijn in laboratoriumcondities.

  “Doorzichtige experimentele waterfles waarin hybride organismen zijn gekweekt en ronddrijven.”     Close-upfoto van een hybride organisme gekweekt in het experiment.

Waarom dit een groot verschil kan maken

De kruising van goudwier en vingerwier biedt interessante inzichten. Door de stijgende temperaturen zouden hun leefgebieden in de toekomst vaker kunnen overlappen, waardoor natuurlijke kruisingen theoretisch mogelijk worden. En dat is belangrijk: hybriden zouden eigenschappen kunnen combineren die nuttig zijn voor de toekomst: meer weerstand tegen warmtegolven, snellere groei of een grotere tolerantie voor wisselende omstandigheden. Dat kan niet alleen bijdragen aan veerkrachtigere kustecosystemen, maar ook aan duurzame zeewierkweek. Ter vergelijking: in de landbouw is hybridisatie al decennialang een beproefde methode om sterkere gewassen te ontwikkelen. 

Met mijn onderzoek heb ik een fundamentele eerste stap gezet. Tegelijkertijd blijven er veel vragen open: zijn hybriden vruchtbaar? Is hybridisatie mogelijk in natuurlijke omstandigheden? Bezitten ze daadwerkelijk eigenschappen die hen beter bestand maken tegen klimaatverandering? Vervolgonderzoek zal uitwijzen wat deze hybride kelp ons nog kan leren.

Een bijdrage aan de toekomst

Onze oceanen staan onder druk: soorten verplaatsen zich en ecosystemen wankelen. Daarom is het nu belangrijker dan ooit om kennis te vergaren en oplossingen te zoeken. Mijn masterthesis levert een bijdrage aan die zoektocht.

Wetenschappers kunnen nu verder onderzoeken welke nieuwe mogelijkheden deze kelphybriden bieden — zowel voor natuurbehoud als voor de mariene landbouw. Kelp speelt immers een sleutelrol in de gezondheid van onze oceanen en wordt meer en meer gebruikt voor voeding, biobrandstof en duurzame materialen.

 

Door deze nieuwe hybriden te bestuderen, kunnen we zowel de veerkracht van mariene ecosystemen versterken als nieuwe strategieën ontwikkelen tegen klimaatverandering. David Attenborough zei het treffend: "This is a story of our changing planet, and what we can do to help it thrive." Precies daar past mijn onderzoek in: nieuwe ontdekkingen die kunnen helpen onze planeet te laten floreren.

 

Bibliografie

Ahmadjian, V., & Hale, M. E. (1973). The lichens. Academic Press. Alba, K., & Kontogiorgos, V. (2019). Seaweed Polysaccharides (Agar, Alginate Carrageenan). In Encyclopedia of Food Chemistry (pp. 240–250). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21587-4 Bartsch, I., Wiencke, C., 

Bischof, K., Buchholz, C. M., Buck, B. H., Eggert, A., Feuerpfeil, P., Hanelt, D., Jacobsen, S., Karez, R., Karsten, U., Molis, M., Roleda, M. Y., Schubert, H., Schumann, R., Valentin, K., Weinberger, F., & Wiese, J. (2008). The genus Laminaria sensu lato: Recent insights and developments. European Journal of Phycology, 43(1), Article 1. https://doi.org/10.1080/09670260701711376 

Baweja, P., Kumar, S., Sahoo, D., & Levine, I. (2016). Biology of Seaweeds. In Seaweed in Health and Disease Prevention (pp. 41–106). Elsevier. https://doi.org/10.1016/B978-0-12-802772-1.00003-8 

Baweja, P., Sahoo, D., García‐Jiménez, P., & Robaina, R. R. (2009). Review: Seaweed tissue culture as applied to biotechnology: Problems, achievements and prospects. Phycological Research, 57(1), 45–58. https://doi.org/10.1111/j.1440-1835.2008.00520.x 

Bell, T. W., Cavanaugh, K. C., Saccomanno, V. R., Cavanaugh, K. C., Houskeeper, H. F., Eddy, N., Schuetzenmeister, F., Rindlaub, N., & Gleason, M. (2023). Kelpwatch: A new visualization and analysis tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves. PLOS ONE, 18(3), e0271477. https://doi.org/10.1371/journal.pone.0271477 

Bengtsson, M. M., Sjøtun, K., Lanzén, A., & Øvreås, L. (2012). Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. The ISME Journal, 6(12), 2188–2198. https://doi.org/10.1038/ismej.2012.67 

Bennett, E., Paine, E. R., Britton, D., Schwoerbel, J., & Hurd, C. L. (2024). The effect of temperature on rates of dissolved organic carbon (DOC) release by the kelp Ecklonia radiata (phylum Ochrophyta): Implications for the future coastal ocean carbon cycle. Journal of Phycology, 60(6), 1471–1484. https://doi.org/10.1111/jpy.13518 

Berchtenbreiter, L., Mumcu, A. E., Rackevei, A. S., Cock, J. M., Kawai, H., & Wolf, M. (2024). 18S and ITS2 rRNA gene sequence-structure phylogeny of the Phaeophyceae (SAR, Stramenopiles) with special reference to Laminariales. European Journal of Protistology, 95, 126107. https://doi.org/10.1016/j.ejop.2024.126107 

Biotope. (2014). Document unique de gestion, état des lieux. Conservatoire du Littoral. https://littoralnormand.n2000.fr/sites/littoralnormand.n2000.fr/files/d…;

Bishop, I. W., & Spaulding, S. A. (2017). Life cycle size dynamics in Didymosphenia geminata (Bacillariophyceae). Journal of Phycology, 53(3), 652–663. https://doi.org/10.1111/jpy.12528 

Biskup, S., Bertocci, I., Arenas, F., & Tuya, F. (2014). Functional responses of juvenile kelps, Laminaria ochroleuca and Saccorhiza polyschides, to increasing temperatures. Aquatic Botany, 113, 117–122. https://doi.org/10.1016/j.aquabot.2013.10.003 

Bissett, A., Bowman, J., & Burke, C. (2008). Flavobacterial response to organic pollution. Aquatic Microbial Ecology, 51, 31–43. https://doi.org/10.3354/ame01174 

Boderskov, T., Rasmussen, M. B., & Bruhn, A. (2021). Obtaining spores for the production of Saccharina latissima: Seasonal limitations in nature, and induction of sporogenesis in darkness. Journal of Applied Phycology, 33(2), 1035–1046. https://doi.org/10.1007/s10811-020-02357-0 

Bolton, J. J. (2010). The biogeography of kelps (Laminariales, Phaeophyceae): A global analysis with new insights from recent advances in molecular phylogenetics. Helgoland Marine Research, 64(4), 263–279. https://doi.org/10.1007/s10152-010-0211-6 

Boscq, S., Billoud, B., Theodorou, I., Joemmanbaks, T., Dufourt, T., & Charrier, B. (2024). MUM, a maternal unknown message, inhibits early establishment of the medio-lateral axis in the embryo of the kelp Saccharina latissima. Development, 151(20), dev202732. https://doi.org/10.1242/dev.202732 

Bradshaw, A. D., & McNeilly, T. (1991). Evolutionary Response to Global Climatic Change. Annals of Botany, 67(supp1), 5–14. https://doi.org/10.1093/oxfordjournals.aob.a088209 

Bradshaw, H. D., & Stettler, R. F. (1993). Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theoretical and Applied Genetics, 86–86(2–3), 301–307. https://doi.org/10.1007/BF00222092 

Brislawn, C. J., Graham, E. B., Dana, K., Ihardt, P., Fansler, S. J., Chrisler, W. B., Cliff, J. B., Stegen, J. C., Moran, J. J., & Bernstein, H. C. (2018). Forfeiting the founder effect: Turnover defines biofilm community succession. https://doi.org/10.1101/282574 

Brumfield, K. D., Chen, A. J., Gangwar, M., Usmani, M., Hasan, N. A., Jutla, A. S., Huq, A., & Colwell, R. R. (2023). Environmental Factors Influencing Occurrence of Vibrio parahaemolyticus and Vibrio vulnificus. Applied and Environmental Microbiology, 89(6), e00307-23. https://doi.org/10.1128/aem.00307-23 

Buchholz, C., & Lüning, K. (1999). Isolated, distal blade discs of the brown alga Laminaria digitata form sorus, but not discs, near to the meristematic transition zone. Journal of Applied Phycology, 11(6), 579–584. https://doi.org/10.1023/A:1008116828263 

Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., & Thomas, T. (2011). Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences, 108(34), 14288–14293. https://doi.org/10.1073/pnas.1101591108 

Campbell, N., Reece, J., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2008). Biology (8th ed.). Pearson Benjamin Cummings. 

Carrano, M. W., Carrano, C. J., Edwards, M. S., Al-Adilah, H., Fontana, Y., Sayer, M. D. J., Katsaros, C., Raab, A., Feldmann, J., & Küpper, F. C. (2021). Laminaria kelps impact iodine speciation chemistry in coastal seawater. Estuarine, Coastal and Shelf Science, 262, 107531. https://doi.org/10.1016/j.ecss.2021.107531 63 

Chapman, A. R. O. (1984). Reproduction, recruitment and mortality in two species of Laminaria in southwest Nova Scotia. Journal of Experimental Marine Biology and Ecology, 78(1–2), 99–109. https://doi.org/10.1016/0022- 0981(84)90072-8 

Chapuis, M.-P., & Estoup, A. (2007). Microsatellite Null Alleles and Estimation of Population Differentiation. Molecular Biology and Evolution, 24(3), 621–631. https://doi.org/10.1093/molbev/msl191 

Chen, S., & Qi, H. (2008). Photolithotrophic cultivation of Laminaria japonica gametophyte cells in a silicone tubular membrane-aerated photobioreactor. Plant Cell, Tissue and Organ Culture, 93(1), 29–38. https://doi.org/10.1007/s11240-008-9339-3 

Choi, J. W., Graf, L., Peters, A. F., Cock, J. M., Nishitsuji, K., Arimoto, A., Shoguchi, E., Nagasato, C., Choi, C. G., & Yoon, H. S. (2020). Organelle inheritance and genome architecture variation in isogamous brown algae. Scientific Reports, 10(1), 2048. https://doi.org/10.1038/s41598-020-58817-7 

Coelho, N. C., Serrão, E. A., & Alberto, F. (2014). Characterization of fifteen microsatellite markers for the kelp Laminaria ochroleuca and cross species amplification within the genus. Conservation Genetics Resources, 6(4), 949–950. https://doi.org/10.1007/s12686-014-0249-x 

Costa, S. D. P. (2025). Cultivation and growth of macroalgae of interest Ulva sp. in aquaculture tanks via life cycle (Master's thesis). 

Coyer, J. A., Hoarau, G., Stam, W. T., & Olsen, J. L. (2007). Hybridization and introgression in a mixed population of the intertidal seaweeds Fucus evanescens and F. serratus. Journal of Evolutionary Biology, 20(6), 2322–2333. https://doi.org/10.1111/j.1420-9101.2007.01411.x 

Cúcio, C., Engelen, A. H., Costa, R., & Muyzer, G. (2016). Rhizosphere Microbiomes of European + Seagrasses Are Selected by the Plant, But Are Not Species Specific. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00440 

Cui, Z., Li, Y., Jing, X., Luan, X., Liu, N., Liu, J., Meng, Y., Xu, J., & Valentine, D. L. (2024). Cycloalkane degradation by an uncultivated novel genus of Gammaproteobacteria derived from China’s marginal seas. Journal of Hazardous Materials, 469, 133904. https://doi.org/10.1016/j.jhazmat.2024.133904 

Curry, K. D., Wang, Q., Nute, M. G., Tyshaieva, A., Reeves, E., Soriano, S., Wu, Q., Graeber, E., Finzer, P., Mendling, W., Savidge, T., Villapol, S., Dilthey, A., & Treangen, T. J. (2022). Emu: Species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nature Methods, 19(7), 845–853. https://doi.org/10.1038/s41592- 022-01520-4 

Daché, E., Dessandier, P.-A., Radhakrishnan, R., Foulon, V., Michel, L., De Vargas, C., Sarrazin, J., & Zeppilli, D. (2024). Benthic foraminifera as bio-indicators of natural and anthropogenic conditions in Roscoff Aber Bay (Brittany, France). PLOS ONE, 19(10), e0309463. https://doi.org/10.1371/journal.pone.0309463 

Davis, K. M., Zeinert, L., Byrne, A., Davis, J., Roemer, C., Wright, M., & Parfrey, L. W. (2023). Successional dynamics of the cultivated kelp microbiome. Journal of Phycology, 59(3), Article 3. https://doi.org/10.1111/jpy.13329 64 

Davis, T. R., Larkin, M. F., Forbes, A., Veenhof, R. J., Scott, A., & Coleman, M. A. (2022). Extreme flooding and reduced salinity causes mass mortality of nearshore kelp forests. Estuarine, Coastal and Shelf Science, 275, 107960. https://doi.org/10.1016/j.ecss.2022.107960 

De Campos Moraes, I., De Campos Rume, G., Souza Sobrinho, F., & Techio, V. H. (2019). Characterization of aneuploidy in interspecific hybrid between Urochloa ruziziensis (R. Germ. & Evrard) Crins and Urochloa decumbens (Stapf) R. D. Webster. Molecular Biology Reports, 46(2), 1931–1940. https://doi.org/10.1007/s11033-019-04643-8 

De La Hoz, C. F., Ramos, E., Puente, A., & Juanes, J. A. (2019). Climate change induced range shifts in seaweeds distributions in Europe. Marine Environmental Research, 148, 1–11. https://doi.org/10.1016/j.marenvres.2019.04.012 

De Storme, N., & Geelen, D. (2013). Sexual polyploidization in plants – cytological mechanisms and molecular regulation. New Phytologist, 198(3), 670–684. https://doi.org/10.1111/nph.12184 

Del Olmo, A., Picon, A., & Nuñez, M. (2018). The microbiota of eight species of dehydrated edible seaweeds from North West Spain. Food Microbiology, 70, 224–231. https://doi.org/10.1016/j.fm.2017.10.009 

Demes, K. W., & Graham, M. H. (2011). Abiotic regulation of investment in sexual versus vegetative reproduction in the clonal kelp laminaria sinclairii (laminariales, phaeophyceae)1: ecophysiology of a clonal kelp. Journal of Phycology, 47(3), 463–470. https://doi.org/10.1111/j.1529-8817.2011.00981.x 

Dharshini, R. S., Manickam, R., Curtis, W. R., Rathinasabapathi, P., & Ramya, M. (2021). Genome analysis of alginate synthesizing Pseudomonas aeruginosa strain SW1 isolated from degraded seaweeds. Antonie van Leeuwenhoek, 114(12), 2205–2217. https://doi.org/10.1007/s10482-021-01673-w 

Doležel, J., & Lucretti, S. (1995). High-resolution flow karyotyping and chromosome sorting in Vicia faba lines with standard and reconstructed karyotypes. Theoretical and Applied Genetics, 90(6), 797–802. https://doi.org/10.1007/BF00222014 

Dong, S., Yang, J., Zhang, X.-Y., Shi, M., Song, X.-Y., Chen, X.-L., & Zhang, Y.-Z. (2012). Cultivable Alginate Lyase-Excreting Bacteria Associated with the Arctic Brown Alga Laminaria. Marine Drugs, 10(11), 2481–2491. https://doi.org/10.3390/md10112481 

Douglas, B. (2025, January 9). Troubleshooting Non-Specific Amplification. Bento Lab. https://bento.bio/resources/bento-lab-advice/troubleshooting-non-specif… Edwards, M., Mooney, K., Healey (Gorman), E., & Champenois, J. (2016). Standard operating protocol manual for seaweed biomass cultivation and analysis. EnAlgae. https://pure.qub.ac.uk/files/200690285/SOP_All_Chapters_Final.pdf 

Egan, S., Fernandes, N. D., Kumar, V., Gardiner, M., & Thomas, T. (2014). Bacterial pathogens, virulence mechanism and host defence in marine macroalgae. Environmental Microbiology, 16(4), 925–938. https://doi.org/10.1111/1462- 2920.12288 

Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2013). The seaweed holobiont: Understanding seaweed–bacteria interactions. FEMS Microbiology Reviews, 37(3), 462–476. https://doi.org/10.1111/1574- 6976.12011 

Eger, A. M., Marzinelli, E. M., Beas-Luna, R., Blain, C. O., Blamey, L. K., Byrnes, J. E. K., Carnell, P. E., Choi, C. G., HessingLewis, M., Kim, K. Y., Kumagai, N. H., Lorda, J., Moore, P., Nakamura, Y., Pérez-Matus, A., Pontier, O., Smale, D., Steinberg, P. D., & Vergés, A. (2023). The value of ecosystem services in global marine kelp forests. Nature Communications, 14(1), 1894. https://doi.org/10.1038/s41467-023-37385-0 EOceanic.com. (n.d.). Goleen. Retrieved from https://eoceanic.com/sailing/harbours/339/goleen 

Fragkopoulou, E., Serrão, E. A., De Clerck, O., Costello, M. J., Araújo, M. B., Duarte, C. M., Krause‐Jensen, D., & Assis, J. (2022). Global biodiversity patterns of marine forests of brown macroalgae. Global Ecology and Biogeography, 31(4), 636–648. https://doi.org/10.1111/geb.13450 

Franco, J. N., Tuya, F., Bertocci, I., Rodríguez, L., Martínez, B., Sousa‐Pinto, I., & Arenas, F. (2018). The ‘golden kelp’ Laminaria ochroleuca under global change: Integrating multiple eco‐physiological responses with species distribution models. Journal of Ecology, 106(1), 47–58. https://doi.org/10.1111/1365-2745.12810 

Gao, X., Endo, H., Taniguchi, K., & Agatsuma, Y. (2013). Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. Journal of Applied Phycology, 25(1), 269–275. https://doi.org/10.1007/s10811-012-9861-x 

Ghaderiardakani, F., Quartino, M. L., & Wichard, T. (2020). Microbiome-Dependent Adaptation of Seaweeds Under Environmental Stresses: A Perspective. Frontiers in Marine Science, 7, 575228. https://doi.org/10.3389/fmars.2020.575228 

Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria Isolated From Laminaria ochroleuca: A Source of New Bioactive Compounds. Frontiers in Microbiology, 10, 683. https://doi.org/10.3389/fmicb.2019.00683 

Gonzalez, S. T., & Raimondi, P. T. (2024). Experimental assessment of environmental versus genetic influences on Macrocystis morphology. Ecosphere, 15(9), e4959. https://doi.org/10.1002/ecs2.4959 

Gordon, B. R., & Leggat, W. (2010). Symbiodinium—Invertebrate Symbioses and the Role of Metabolomics. Marine Drugs, 8(10), Article 10. https://doi.org/10.3390/md8102546 

Gorman, D., & Connell, S. D. (2009). Recovering subtidal forests in human‐dominated landscapes. Journal of Applied Ecology, 46(6), 1258–1265. https://doi.org/10.1111/j.1365-2664.2009.01711.x 

Grebe, G. S., Byron, C. J., Gelais, A. St., Kotowicz, D. M., & Olson, T. K. (2019). An ecosystem approach to kelp aquaculture in the Americas and Europe. Aquaculture Reports, 15, 100215. https://doi.org/10.1016/j.aqrep.2019.100215 

Green, M. R., & Sambrook, J. (2018). Touchdown Polymerase Chain Reaction (PCR). Cold Spring Harbor Protocols, 2018(5), pdb.prot095133. https://doi.org/10.1101/pdb.prot095133 

Greiner, S., Sobanski, J., & Bock, R. (2015). Why are most organelle genomes transmitted maternally? BioEssays, 37(1), 80–94. https://doi.org/10.1002/bies.201400110 

Gruber, A., Roleda, M. Y., Bartsch, I., Hanelt, D., & Wiencke, C. (2011). Sporogenesis under ultraviolet radiation in laminaria digitata (phaeophyceae) reveals protection of photosensitive meiospores within soral tissue: physiological and anatomical evidence1: photoprotective role of paraphyses. Journal of Phycology, 47(3), 603– 614. https://doi.org/10.1111/j.1529-8817.2011.00998.x 

Gusareva, E. S., Acerbi, E., Lau, K. J. X., Luhung, I., Premkrishnan, B. N. V., Kolundžija, S., Purbojati, R. W., Wong, A., Houghton, J. N. I., Miller, D., Gaultier, N. E., Heinle, C. E., Clare, M. E., Vettath, V. K., Kee, C., Lim, S. B. Y., Chénard, C., Phung, W. J., Kushwaha, K. K., … Schuster, S. C. (2019). Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proceedings of the National Academy of Sciences, 116(46), 23299–23308. https://doi.org/10.1073/pnas.1908493116 

Hargrave, M. S., Foggo, A., Pessarrodona, A., & Smale, D. A. (2017). The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions. Oecologia, 183(2), 531–543. https://doi.org/10.1007/s00442-016-3776-1 

Hill J.M. (2008). Laminaria digitata Oarweed. In Tyler-Walters H. and Hiscock K, Marine Life Information Network: Biology and Sensitivity Key Information Reviews. https://doi.org/10.17031/MARLINSP.1386.2 

Hitch, T. C. A., Hall, L. J., Walsh, S. K., Leventhal, G. E., Slack, E., De Wouters, T., Walter, J., & Clavel, T. (2022). Microbiomebased interventions to modulate gut ecology and the immune system. Mucosal Immunology, 15(6), Article 6. https://doi.org/10.1038/s41385-022-00564-1 

Holmström, C., & Kjelleberg, S. (1999). Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiology Ecology, 30(4), 285–293. https://doi.org/10.1111/j.1574-6941.1999.tb00656.x 

Huang, I., Rominger, J., & Nepf, H. (2011). The motion of kelp blades and the surface renewal model. Limnology and Oceanography, 56(4), 1453–1462. https://doi.org/10.4319/lo.2011.56.4.1453 

Hurd, C. L., Harrison, P. J., Bischof, K., & Lobban, C. S. (2014). Seaweed Ecology and Physiology (2nd ed.). Cambridge University Press. https://doi.org/10.1017/cbo9781139192637 

Ihua, M. W., FitzGerald, J. A., Guihéneuf, F., Jackson, S. A., Claesson, M. J., Stengel, D. B., & Dobson, A. D. W. (2020). Diversity of bacteria populations associated with different thallus regions of the brown alga Laminaria digitata. PLOS ONE, 15(11), Article 11. https://doi.org/10.1371/journal.pone.0242675 

Izquierdo, J., Pérez-Ruzafa, I. M., & Gallardo, T. (2002). Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgoland Marine Research, 55(4), 285– 292. https://doi.org/10.1007/s10152-001-0087-6

Kaidi, S., Bentiss, F., Jama, C., Khaya, K., Belattmania, Z., Reani, A., & Sabour, B. (2022). Isolation and Structural Characterization of Alginates from the Kelp Species Laminaria ochroleuca and Saccorhiza polyschides from the Atlantic Coast of Morocco. Colloids and Interfaces, 6(4), 51. https://doi.org/10.3390/colloids6040051 

Kajla, P., Chaudhary, V., Dewan, A., Bangar, S. P., Ramniwas, S., Rustagi, S., & Pandiselvam, R. (2024). Seaweed-based biopolymers for food packaging: A sustainable approach for a cleaner tomorrow. International Journal of Biological Macromolecules, 274, 133166. https://doi.org/10.1016/j.ijbiomac.2024.133166 

Kaur, M., Saini, K. C., Mallick, A., & Bast, F. (2023). Seaweed-associated epiphytic bacteria: Diversity, ecological and economic implications. Aquatic Botany, 189, 103698. https://doi.org/10.1016/j.aquabot.2023.103698 

Kawai, H., Hanyuda, T., Ridgway, L. M., & Holser, K. (2013). Ancestral reproductive structure in basal kelp Aureophycus aleuticus. Scientific Reports, 3(1), 2491. https://doi.org/10.1038/srep02491 

Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715–13720. https://doi.org/10.1073/pnas.1216057111 

Kim, S.-K., & Bhatnagar, I. (2011). Physical, Chemical, and Biological Properties of Wonder Kelp—Laminaria. In Advances in Food and Nutrition Research (Vol. 64, pp. 85–96). Elsevier. https://doi.org/10.1016/B978-0-12- 387669-0.00007-7 

King, N. G., Moore, P. J., Thorpe, J. M., & Smale, D. A. (2023). Consistency and Variation in the Kelp Microbiota: Patterns of Bacterial Community Structure Across Spatial Scales. Microbial Ecology, 85(4), 1265–1275. https://doi.org/10.1007/s00248-022-02038-0 

Kobluk, H. M., Gladstone, K., Reid, M., Brown, K., Krumhansl, K. A., & Salomon, A. K. (2021). Indigenous knowledge of key ecological processes confers resilience to a small‐scale kelp fishery. People and Nature, 3(3), 723–739. https://doi.org/10.1002/pan3.10211 

Koutecký, P., Smith, T., Loureiro, J., & Kron, P. (2023). Best practices for instrument settings and raw data analysis in plant flow cytometry. Cytometry Part A, 103(12), 953–966. https://doi.org/10.1002/cyto.a.24798 

Kraan, S., Verges Tramullas, A., & Guiry, M. D. (2000). The edible brown seaweed Alaria esculenta (Phaeophyceae, Laminariales): Hybridization, growth and genetic comparisons of six Irish populations. Journal of Applied Phycology, 12(6), 577–583. https://doi.org/10.1023/A:1026519030398 

Krause-Jensen, D., Lavery, P., Serrano, O., Marbà, N., Masque, P., & Duarte, C. M. (2018). Sequestration of macroalgal carbon: The elephant in the Blue Carbon room. Biology Letters, 14(6), 20180236. https://doi.org/10.1098/rsbl.2018.0236 

Lachnit, T., Blümel, M., Imhoff, J., & Wahl, M. (2009). Specific epibacterial communities on macroalgae: Phylogeny matters more than habitat. Aquatic Biology, 5(2), 181–186. https://doi.org/10.3354/ab00149 68 Laforest-Lapointe, I., Messier, C., & Kembel, S. W. (2017). Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity. mSystems, 2(6), e00087-17. https://doi.org/10.1128/mSystems.00087-17 

Lane, C. E., Mayes, C., Druehl, L. D., & Saunders, G. W. (2006). A multi‐gene molecular investigation of the kelp (laminariales, phaeophyceae) supports substantial taxonomic re‐organization 1 . Journal of Phycology, 42(2), 493–512. https://doi.org/10.1111/j.1529-8817.2006.00204.x 

Larkum, A. W. D., Grossman, A. R., & Raven, J. A. (Eds.). (2020). Photosynthesis in Algae: Biochemical and Physiological Mechanisms (Vol. 45). Springer International Publishing. https://doi.org/10.1007/978-3-030-33397-3 

Lasker, H. R., & Coffroth, M. A. (1999). Responses of Clonal Reef Taxa to Environmental Change. American Zoologist, 39(1), 92–103. https://doi.org/10.1093/icb/39.1.92 

Lavania, U. C. (2020). Plant speciation and polyploidy: In habitat divergence and environmental perspective. The Nucleus, 63(1), 1–5. https://doi.org/10.1007/s13237-020-00311-6 

Lazzaro, B. P., & Fox, G. M. (2017). Host–Microbe Interactions: Winning the Colonization Lottery. Current Biology, 27(13), Article 13. https://doi.org/10.1016/j.cub.2017.05.068 

Leitch, I. J., & Leitch, A. R. (2013). Genome Size Diversity and Evolution in Land Plants. In J. Greilhuber, J. Dolezel, & J. F. Wendel (Eds.), Plant Genome Diversity Volume 2 (pp. 307–322). Springer Vienna. https://doi.org/10.1007/978- 3-7091-1160-4_19 

Lemay, M. A., Davis, K. M., Martone, P. T., & Parfrey, L. W. (2021). Kelp‐associated Microbiota are Structured by Host Anatomy1 . Journal of Phycology, 57(4), 1119–1130. https://doi.org/10.1111/jpy.13169 

Lewis, R. J., & Neushul, M. (1995). Intergeneric hybridization among five genera of the family lessoniaceae (phaeophyceae) and evidence for polyploidy in a fertile pelagophycus × macrocystis hybrid. Journal of Phycology, 31(6), 1012–1017. https://doi.org/10.1111/j.0022-3646.1995.01012.x 

Liesner, D., Shama, L. N. S., Diehl, N., Valentin, K., & Bartsch, I. (2020). Thermal Plasticity of the Kelp Laminaria digitata (Phaeophyceae) Across Life Cycle Stages Reveals the Importance of Cold Seasons for Marine Forests. Frontiers in Marine Science, 7, 456. https://doi.org/10.3389/fmars.2020.00456 

Lin, J. D., Lemay, M. A., & Parfrey, L. W. (2018). Diverse Bacteria Utilize Alginate Within the Microbiome of the Giant Kelp Macrocystis pyrifera. Frontiers in Microbiology, 9, 1914. https://doi.org/10.3389/fmicb.2018.01914 

Lippman, Z. B., & Zamir, D. (2007). Heterosis: Revisiting the magic. Trends in Genetics, 23(2), Article 2. https://doi.org/10.1016/j.tig.2006.12.006 

Liu, X., Bogaert, K., Engelen, A. H., Leliaert, F., Roleda, M. Y., & De Clerck, O. (2017). Seaweed reproductive biology: Environmental and genetic controls. Botanica Marina, 60(2). https://doi.org/10.1515/bot-2016-0091 

Liu, Y., Liang, Z., Zhang, P., Yuan, Y., Wu, Y., Zhang, D., Duan, M., & Liu, F. (2023). Sorus developmental biology of hybrid cultivar in Saccharina japonica: Environmental and endogenous regulation. Aquaculture, 565, 739165. https://doi.org/10.1016/j.aquaculture.2022.739165 

Lozada, M., Diéguez, M. C., García, P. E., & Dionisi, H. M. (2023). Microbial communities associated with kelp detritus in temperate and subantarctic intertidal sediments. Science of The Total Environment, 857, 159392. https://doi.org/10.1016/j.scitotenv.2022.159392 

Ludington, W. B. (2022). Higher-order microbiome interactions and how to find them. Trends in Microbiology, 30(7), 618–621. https://doi.org/10.1016/j.tim.2022.03.011 

Lüning, K. (1980). Critical levels of light and temperature regulating the gametogenesis of three laminaria species (phaeophyceae) 1 . Journal of Phycology, 16(1), 1–15. https://doi.org/10.1111/j.1529-8817.1980.tb02992.x 

Lüning, K. (1993). Environmental and internal control of seasonal growth in seaweeds. In A. R. O. Chapman, M. T. Brown, & M. Lahaye (Eds.), Fourteenth International Seaweed Symposium (pp. 1–14). Springer Netherlands. https://doi.org/10.1007/978-94-011-1998-6_1 

Lüning, K., & Dring, M. J. (1972). Reproduction induced by blue light in female gametophytes of Laminaria saccharina. Planta, 104(3). https://www.jstor.org/stable/23369690 

Lüning, K., & Dring, M. J. (1975). Reproduction, growth and photosynthesis of gametophytes of Laminaria saccharina grown in blue and red light. Marine Biology, 29. Springer-Verlag. Marietou, A. (2021). Sulfate reducing microorganisms in high temperature oil reservoirs. In Advances in Applied Microbiology (Vol. 116, pp. 99–131). Elsevier. https://doi.org/10.1016/bs.aambs.2021.03.004 

Martins, N., Pearson, G. A., Gouveia, L., Tavares, A. I., Serrão, E. A., & Bartsch, I. (2019). Hybrid vigour for thermal tolerance in hybrids between the allopatric kelps Laminaria digitata and L. pallida (Laminariales, Phaeophyceae) with contrasting thermal affinities. European Journal of Phycology, 54(4), 548–561. https://doi.org/10.1080/09670262.2019.1613571 

Mauger, S., Fouqueau, L., Avia, K., Reynes, L., Serrao, E. A., Neiva, J., & Valero, M. (2021). Development of tools to rapidly identify cryptic species and characterize their genetic diversity in different European kelp species. Journal of Applied Phycology, 33(6), 4169–4186. https://doi.org/10.1007/s10811-021-02613-x 

McDevit, D. C., & Saunders, G. W. (2009). On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol. Phycological Research, 57(2), 131–141. https://doi.org/10.1111/j.1440-1835.2009.00530.x 

McGrath, A. H., Lema, K., Egan, S., Wood, G., Gonzalez, S. V., Kjelleberg, S., Steinberg, P. D., & Marzinelli, E. M. (2024). Disentangling direct vs indirect effects of microbiome manipulations in a habitat-forming marine holobiont. Npj Biofilms and Microbiomes, 10(1), Article 1. https://doi.org/10.1038/s41522-024-00503-x 

McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 

Meichssner, R., Krost, P., & Schulz, R. (2021). Vegetative aquaculture of Fucus in the Baltic Sea—Obtaining low-fertility biomass from attached or unattached populations? Journal of Applied Phycology, 33(3), 1709–1720. https://doi.org/10.1007/s10811-021-02419-x 

Michelou, V. K., Caporaso, J. G., Knight, R., & Palumbi, S. R. (2013). The Ecology of Microbial Communities Associated with Macrocystis pyrifera. PLoS ONE, 8(6), e67480. https://doi.org/10.1371/journal.pone.0067480 

Miller, A. K., Westlake, C. S., Cross, K. L., Leigh, B. A., & Bordenstein, S. R. (2021). The microbiome impacts host hybridization and speciation. PLOS Biology, 19(10), e3001417. https://doi.org/10.1371/journal.pbio.3001417 

Miller, R. J., Lafferty, K. D., Lamy, T., Kui, L., Rassweiler, A., & Reed, D. C. (2018). Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proceedings of the Royal Society B: Biological Sciences, 285(1874), Article 1874. https://doi.org/10.1098/rspb.2017.2571 

Minich, J. J., Morris, M. M., Brown, M., Doane, M., Edwards, M. S., Michael, T. P., & Dinsdale, E. A. (2018). Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption. PLOS ONE, 13(2), e0192772. https://doi.org/10.1371/journal.pone.0192772 

Monotilla, A. P., Nishimura, T., Adachi, M., Tanii, Y., Largo, D. B., & Hiraoka, M. (2018). Examination of prezygotic and postzygotic isolating barriers in tropical Ulva (Ulvophyceae, Chlorophyta): Evidence for ongoing speciation. Journal of Phycology, 54(4), 539–549. https://doi.org/10.1111/jpy.12755 

Montecinos, A. E., Guillemin, M., Couceiro, L., Peters, A. F., Stoeckel, S., & Valero, M. (2017). Hybridization between two cryptic filamentous brown seaweeds along the shore: Analysing pre‐ and postzygotic barriers in populations of individuals with varying ploidy levels. Molecular Ecology, 26(13), 3497–3512. https://doi.org/10.1111/mec.14098 

Monteiro, C. A., Paulino, C., Jacinto, R., Serrão, E. A., & Pearson, G. A. (2016). Temporal windows of reproductive opportunity reinforce species barriers in a marine broadcast spawning assemblage. Scientific Reports, 6(1), 29198. https://doi.org/10.1038/srep29198 

Morrissey, K. L., Çavaş, L., Willems, A., & De Clerck, O. (2019). Disentangling the Influence of Environment, Host Specificity and Thallus Differentiation on Bacterial Communities in Siphonous Green Seaweeds. Frontiers in Microbiology, 10, 717. https://doi.org/10.3389/fmicb.2019.00717 

Mortier, F., Bafort, Q., Milosavljevic, S., Kauai, F., Prost Boxoen, L., Van De Peer, Y., & Bonte, D. (2024). Understanding polyploid establishment: Temporary persistence or stable coexistence? Oikos, 2024(5), e09929. https://doi.org/10.1111/oik.09929 

Msuya, F. E., & Neori, A. (2008). Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. Journal of Applied Phycology, 20(6), 1021–1031. https://doi.org/10.1007/s10811-007-9300-6 

Müller, D. G., Gachon, C., & Küpper, F. (2008). Axenic clonal cultures of filamentous brown algae: Initiation and maintenance. Cahiers de Biologie Marine, 49, 59–65. 

Murray, B. G. (2003). CROP IMPROVEMENT | Hybridization and Plant Breeding. In Encyclopedia of Applied Plant Sciences (pp. 119–125). Elsevier. https://doi.org/10.1016/B0-12-227050-9/00244-1 

Murúa, P., Edrada-Ebel, R., Muñoz, L., Soldatou, S., Legrave, N., Müller, D. G., Patiño, D. J., Van West, P., Küpper, F. C., Westermeier, R., Ebel, R., & Peters, A. F. (2020). Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae). Scientific Reports, 10(1), 8279. https://doi.org/10.1038/s41598-020-65137-3 

Nanda, S., Kumar, G., & Hussain, S. (2022). Utilization of seaweed-based biostimulants in improving plant and soil health: Current updates and future prospective. International Journal of Environmental Science and Technology, 19(12), 12839–12852. https://doi.org/10.1007/s13762-021-03568-9 

National Academy of Sciences. (1995). Chemical Ecology: The Chemistry of Biotic Interaction (p. 4979). National Academies Press. https://doi.org/10.17226/4979 

Natural Resources Wales. (n.d.). Skomer marine conservation zone. Retrieved from https://naturalresources.wales/days-out/places-to-visit/south-west-wale…;

Neiva, J., Serrão, E. A., Anderson, L., Raimondi, P. T., Martins, N., Gouveia, L., Paulino, C., Coelho, N. C., Miller, K. A., Reed, D. C., Ladah, L. B., & Pearson, G. A. (2017). Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds. BMC Evolutionary Biology, 17(1), 30. https://doi.org/10.1186/s12862-017-0878-2 

Nguyen, J., Lara-Gutiérrez, J., & Stocker, R. (2021). Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiology Reviews, 45(4), fuaa068. https://doi.org/10.1093/femsre/fuaa068 

Nichols, H. W. (1980). Polyploidy in Algae. In W. H. Lewis (Ed.), Polyploidy (pp. 151–161). Springer US. https://doi.org/10.1007/978-1-4613-3069-1_8 Pang, S. jun, & Lüning, K. (2004). Breaking seasonal limitation: Year-round sporogenesis in the brown alga Laminaria saccharina by blocking the transport of putative sporulation inhibitors. Aquaculture, 240(1–4), 531–541. https://doi.org/10.1016/j.aquaculture.2004.06.034 

Pellicer, J., Powell, R. F., & Leitch, I. J. (2021). The Application of Flow Cytometry for Estimating Genome Size, Ploidy Level Endopolyploidy, and Reproductive Modes in Plants. In P. Besse (Ed.), Molecular Plant Taxonomy (Vol. 2222, pp. 325–361). Springer US. https://doi.org/10.1007/978-1-0716-0997-2_17 

Pereira, T. R., Azevedo, I. C., Oliveira, P., Silva, D. M., & Sousa-Pinto, I. (2019). Life history traits of Laminaria ochroleuca in Portugal: The range-center of its geographical distribution. Aquatic Botany, 152, 1–9. https://doi.org/10.1016/j.aquabot.2018.09.002 

Pessarrodona, A., Howard, J., Pidgeon, E., Wernberg, T., & Filbee-Dexter, K. (2024). Carbon removal and climate change mitigation by seaweed farming: A state of knowledge review. Science of The Total Environment, 918, 170525. https://doi.org/10.1016/j.scitotenv.2024.170525

Pham, C. H., Price, J. J., Tallant, J. M., & Karowe, D. N. (2022). Climate change is predicted to reduce sympatry among North American wood-warblers. Ornithological Applications, 124(4), duac025. https://doi.org/10.1093/ornithapp/duac025 

Picon, A., Del Olmo, A., & Nuñez, M. (2021). Bacterial diversity in six species of fresh edible seaweeds submitted to high pressure processing and long-term refrigerated storage. Food Microbiology, 94, 103646. https://doi.org/10.1016/j.fm.2020.103646 

Pollet, T., Berdjeb, L., Garnier, C., Durrieu, G., Poupon, C. L., Misson, B., & Briand, J.-F. (2018). Prokaryotic community successions and interactions in marine biofilms: The key role of Flavobacteriia. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiy083 

Qiu, Z., Coleman, M. A., Provost, E., Campbell, A. H., Kelaher, B. P., Dalton, S. J., Thomas, T., Steinberg, P. D., & Marzinelli, E. M. (2019). Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proceedings of the Royal Society B: Biological Sciences, 286(1896), 20181887. https://doi.org/10.1098/rspb.2018.1887 

Ramasamy, K. P., Brugel, S., Eriksson, K. I. A., & Andersson, A. (2023). Pseudomonas ability to utilize different carbon substrates and adaptation influenced by protozoan grazing. Environmental Research, 232, 116419. https://doi.org/10.1016/j.envres.2023.116419 

Ramírez-Puebla, S. T., Weigel, B. L., Jack, L., Schlundt, C., Pfister, C. A., & Mark Welch, J. L. (2022). Spatial organization of the kelp microbiome at micron scales. Microbiome, 10(1), Article 1. https://doi.org/10.1186/s40168-022-01235-w 

Ranjan, A., Townsley, B. T., Ichihashi, Y., Sinha, N. R., & Chitwood, D. H. (2015). An Intracellular Transcriptomic Atlas of the Giant Coenocyte Caulerpa taxifolia. PLoS Genetics, 11(1), e1004900. https://doi.org/10.1371/journal.pgen.1004900 

Ratcliff, J. J., Soler-Vila, A., Hanniffy, D., Johnson, M. P., & Edwards, M. D. (2017). Optimisation of kelp (Laminaria digitata) gametophyte growth and gametogenesis: Effects of photoperiod and culture media. Journal of Applied Phycology, 29(4), 1957–1966. https://doi.org/10.1007/s10811-017-1070-1

Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org 

Rothman, M. D., Mattio, L., Anderson, R. J., & Bolton, J. J. (2017). A phylogeographic investigation of the kelp genus Laminaria (Laminariales, Phaeophyceae), with emphasis on the South Atlantic Ocean. Journal of Phycology, 53(4), 778–789. https://doi.org/10.1111/jpy.12544 

Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D., Eisen, J. A., Hoffman, J. M., Remington, K., Beeson, K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., AndrewsPfannkoch, C., Venter, J. E., … Venter, J. C. (2007). The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biology, 5(3), e77. https://doi.org/10.1371/journal.pbio.0050077

Sadeghi, J., Venney, C. J., Wright, S., Watkins, J., Manning, D., Bai, E., Frank, C., & Heath, D. D. (2024). Aquatic Bacterial Community Connectivity: The Effect of Hydrological Flow on Community Diversity and Composition. Environments, 11(5), 90. https://doi.org/10.3390/environments11050090 

Sahu, P. K., & Mishra, S. (2021). Effect of hybridization on endophytes: The endo-microbiome dynamics. Symbiosis, 84(3), 369–377. https://doi.org/10.1007/s13199-021-00760-w 

SeaTemperature.info. (n.d.). Roscoff water temperature now. Retrieved from https://seatemperature.info/roscoffwater-temperature.html 

SeaTemperature.net. (n.d.). Gatteville-le-Phare (France) sea temperature today & forecast. Retrieved from https://seatemperature.net/current/france/gatteville-le-phare-basse-nor…;

Shimizu‐Inatsugi, R., Terada, A., Hirose, K., Kudoh, H., Sese, J., & Shimizu, K. K. (2017). Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Molecular Ecology, 26(1), 193–207. https://doi.org/10.1111/mec.13738 

Sliwinska, E., Loureiro, J., Leitch, I. J., Šmarda, P., Bainard, J., Bureš, P., Chumová, Z., Horová, L., Koutecký, P., Lučanová, M., Trávníček, P., & Galbraith, D. W. (2022). Application‐based guidelines for best practices in plant flow cytometry. Cytometry Part A, 101(9), 749–781. https://doi.org/10.1002/cyto.a.24499 

Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N., & Hawkins, S. J. (2013). Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast A tlantic perspective. Ecology and Evolution, 3(11), 4016–4038. https://doi.org/10.1002/ece3.774 

Smale, D. A., Wernberg, T., Yunnie, A. L. E., & Vance, T. (2015). The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Marine Ecology, 36(4), 1033–1044. https://doi.org/10.1111/maec.12199 

Smirthwaite, J. (2007). Laminaria ochroleuca golden kelp. Marine Biological Association of the United Kingdom. https://www.marlin.ac.uk/species/detail/1838 

Sneed, J. M., & Pohnert, G. (2011). The green macroalga Dictyosphaeria ocellata influences the structure of the bacterioplankton community through differential effects on individual bacterial phylotypes: Bacterial community of Dictyosphaeria ocellata. FEMS Microbiology Ecology, 75(2), 242–254. https://doi.org/10.1111/j.1574- 6941.2010.01005.x 

Soen, Y. (2014). Environmental disruption of host–microbe co-adaptation as a potential driving force in evolution. Frontiers in Genetics, 5. https://doi.org/10.3389/fgene.2014.00168 

Soltis, D. E., Visger, C. J., & Soltis, P. S. (2014). The polyploidy revolution then…and now: Stebbins revisited. American Journal of Botany, 101(7), 1057–1078. https://doi.org/10.3732/ajb.1400178 

Starko, S., Soto Gomez, M., Darby, H., Demes, K. W., Kawai, H., Yotsukura, N., Lindstrom, S. C., Keeling, P. J., Graham, S. W., & Martone, P. T. (2019). A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Molecular Phylogenetics and Evolution, 136, 138–150. https://doi.org/10.1016/j.ympev.2019.04.012 

Stock, W., Callens, M., Houwenhuyse, S., Schols, R., Goel, N., Coone, M., Theys, C., Delnat, V., Boudry, A., Eckert, E., Laspoumaderes, C., Grossart, H., De Meester, L., Stoks, R., Sabbe, K., & Decaestecker, E. (2021). Human impact on symbioses between aquatic organisms and microbes. Aquatic Microbial Ecology, 87, 113–138. https://doi.org/10.3354/ame01973 

Straub, S. C., Thomsen, M. S., & Wernberg, T. (2016). The Dynamic Biogeography of the Anthropocene: The Speed of Recent Range Shifts in Seaweeds. In Z.-M. Hu & C. Fraser (Eds.), Seaweed Phylogeography (pp. 63–93). Springer Netherlands. https://doi.org/10.1007/978-94-017-7534-2_3 

Su, L., Shan, T. F., Li, J., Pang, S. J., Leng, X. F., Zhang, Y., & Gao, H. T. (2020). Aquaculture of the hybrid cultivars of Saccharina japonica: Removing the obstacle of sori production by photoperiodic control. Aquaculture, 519, 734917. https://doi.org/10.1016/j.aquaculture.2019.734917 

Sugumar, T., Shen, G., Smith, J., & Zhang, H. (2024). Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance. Plants, 13(9), 1238. https://doi.org/10.3390/plants13091238 

Supratya, V. P., & Martone, P. T. (2024). Kelps on demand: Closed‐system protocols for culturing large bull kelp sporophytes for research and restoration. Journal of Phycology, 60(1), 73–82. https://doi.org/10.1111/jpy.13413 

Teagle, H., Hawkins, S. J., Moore, P. J., & Smale, D. A. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492, 81–98. https://doi.org/10.1016/j.jembe.2017.01.017 

Turner, A., & Higgins, C. (2023). Microplastics in Surface Coastal Waters Around Plymouth, UK, and the Importance of Boating and Shipping Activities. SSRN. https://doi.org/10.2139/ssrn.4416057 Tuya, F., Larsen, K., & Platt, V. (2011). Patterns of abundance and assemblage structure of epifauna inhabiting two morphologically different kelp holdfasts. Hydrobiologia, 658(1), 373–382. https://doi.org/10.1007/s10750-010- 0527-x 

UNEP. (2023). Seaweed Farming: Assessment on the Potential of Sustainable Upscaling for Climate, Communities and the Planet. https://www.unep.org/resources/report/seaweed-farming-assessment-sustai…;

Vettori, D., & Nikora, V. (2017). Morphological and mechanical properties of blades of Saccharina latissima. Estuarine, Coastal and Shelf Science, 196, 1–9. https://doi.org/10.1016/j.ecss.2017.06.033 

Vigil, B. E., Ascue, F., Ayala, R. Y., Murúa, P., Calderon, M. S., & Bustamante, D. E. (2024). Functional prediction based on 16S rRNA metagenome data from bacterial microbiota associated with macroalgae from the Peruvian coast. Scientific Reports, 14(1), 18577. https://doi.org/10.1038/s41598-024-69538-6 

Von Gönner, J., Herrmann, T. M., Bruckermann, T., Eichinger, M., Hecker, S., Klan, F., Lorke, J., Richter, A., Sturm, U., VoigtHeucke, S., Brink, W., Liedtke, C., Premke-Kraus, M., Altmann, C., Bauhus, W., Bengtsson, L., Büermann, A., Dietrich, P., Dörler, D., … Bonn, A. (2023). Citizen science’s transformative impact on science, citizen empowerment and sociopolitical processes. Socio-Ecological Practice Research, 5(1), 11–33. https://doi.org/10.1007/s42532-022-00136-4 75 

Vranken, S., Wernberg, T., Scheben, A., Severn‐Ellis, A. A., Batley, J., Bayer, P. E., Edwards, D., Wheeler, D., & Coleman, M. A. (2021). Genotype–Environment mismatch of kelp forests under climate change. Molecular Ecology, 30(15), 3730–3746. https://doi.org/10.1111/mec.15993 

Weigel, B. L., Miranda, K. K., Fogarty, E. C., Watson, A. R., & Pfister, C. A. (2022). Functional Insights into the Kelp Microbiome from Metagenome-Assembled Genomes. mSystems, 7(3), e01422-21. https://doi.org/10.1128/msystems.01422-21 

Weigel, B. L., & Pfister, C. A. (2019). Successional Dynamics and Seascape-Level Patterns of Microbial Communities on the Canopy-Forming Kelps Nereocystis luetkeana and Macrocystis pyrifera. Frontiers in Microbiology, 10, 346. https://doi.org/10.3389/fmicb.2019.00346 

Wilding, C. T., H. Corrigan, S. E. Stuart, E. Ashton I. A. Felstead, P. Lubelski, A. Burrows, M. Smale D. (2021). Seaweed aquaculture and mechanical harvesting: An evidence review to support sustainable management. Natural England.

Wood, G., Steinberg, P. D., Campbell, A. H., Vergés, A., Coleman, M. A., & Marzinelli, E. M. (2022). Host genetics, phenotype and geography structure the microbiome of a foundational seaweed. Molecular Ecology, 31(7), 2189–2206. https://doi.org/10.1111/mec.16378 

Wright, L. S., Pessarrodona, A., & Foggo, A. (2022). Climate‐driven shifts in kelp forest composition reduce carbon sequestration potential. Global Change Biology, 28(18), 5514–5531. https://doi.org/10.1111/gcb.16299 

Xu, N., Wang, W., Xu, K., Xu, Y., Ji, D., Chen, C., & Xie, C. (2022). Cultivation of different seaweed species and seasonal changes cause divergence of the microbial community in coastal seawaters. Frontiers in Microbiology, 13, 988743. https://doi.org/10.3389/fmicb.2022.988743 

Yawata, Y., Cordero, O. X., Menolascina, F., Hehemann, J.-H., Polz, M. F., & Stocker, R. (2014). Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proceedings of the National Academy of Sciences, 111(15), 5622–5627. https://doi.org/10.1073/pnas.1318943111 

Yellow Sea Fisheries Research Institute. (1989). Laminaria seafarming in China (Training Manual 89/5, RAS/86/024). UNDP/FAO Regional Seafarming Project. https://www.fao.org/4/ab724e/AB724E09.htm 

Yoon, H. S., Lee, J. Y., Boo, S. M., & Bhattacharya, D. (2001). Phylogeny of Alariaceae, Laminariaceae, and Lessoniaceae (Phaeophyceae) Based on Plastid-Encoded RuBisCo Spacer and Nuclear-Encoded ITS Sequence Comparisons. Molecular Phylogenetics and Evolution, 21(2), 231–243. https://doi.org/10.1006/mpev.2001.1009 

Zaneveld, J. R., McMinds, R., & Vega Thurber, R. (2017). Stress and stability: Applying the Anna Karenina principle to animal microbiomes. Nature Microbiology, 2(9), 17121. https://doi.org/10.1038/nmicrobiol.2017.121 

Zhang, L., Xue, N., Li, X., Zhou, X., & Yang, G. (2025). Apomixis in kelp genetic improvement: Practices, challenges, and prospects. Aquaculture, 598, 741996. https://doi.org/10.1016/j.aquaculture.2024.741996 

Zhang, Y., Nair, S., Zhang, Z., Zhao, J., Zhao, H., Lu, L., Chang, L., & Jiao, N. (2024). Adverse Environmental Perturbations May Threaten Kelp Farming Sustainability by Exacerbating Enterobacterales Diseases. Environmental Science & Technology, 58(13), 5796–5810. https://doi.org/10.1021/acs.est.3c09921 

Zhong, Z., Huang, Y., Peng, C., Liu, Z., Zhang, X., Xu, Z., Liu, Z., Hu, J., & Qin, S. (2024). Erosion of cultivated kelp facilitates dissolved organic carbon release. Marine Environmental Research, 202, 106728. https://doi.org/10.1016/j.marenvres.2024.106728 

Zhu, S., Wang, X., Zhao, W., Zhang, Y., Song, D., Cheng, H., & Zhang, X.-H. (2023). Vertical dynamics of free-living and particle-associated vibrio communities in the eastern tropical Indian Ocean. Frontiers in Microbiology, 14, 1285670. https://doi.org/10.3389/fmicb.2023.1285670

Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2025
Promotor(en)
Olivier De Clerck