Meer dan gewichtsverlies: Mounjaro en de vergeten vraag rond eicelkwaliteit

Silke
Roofthooft

Silke Roofthooft

Na de hype rond Ozempic verovert Mounjaro nu in sneltempo de Belgische markt. Het geneesmiddel laat de kilo’s smelten als sneeuw voor de zon. Toch duiken er nieuwe vragen op: wat betekent dit voor de gezondheid van de eicel? 

Obesitas zet vrouwelijke vruchtbaarheid op het spel

Obesitas is uitgegroeid tot één van de grootste gezondheidsproblemen van onze tijd. In 2022 was wereldwijd al één op de acht volwassenen obees. Het gaat daarbij om meer dan alleen wat kilo’s te veel. Het is een ernstige vorm van overgewicht die de stofwisseling in ons lichaam uit balans brengt en gepaard gaat met gezondheidsrisico’s, gaande van hart-en vaatziekten tot nierfalen. Minder bekend is dat obesitas ook de vruchtbaarheid aantast. Niet alleen bij mannen, maar ook bij vrouwen. In mijn thesis focuste ik mij specifiek op de impact op de eicel. Bij obesitas verandert de samenstelling van het bloed: er circuleren meer vrije vetzuren, die ook de eicel bereiken. Het gevolg is schade die de kwaliteit van de eicel vermindert en de kans op een natuurlijke zwangerschap verkleint. Vooral de mitochondriën, de energieleveranciers van de cel en cruciaal voor een goede werking van de eicel, blijken zwaar getroffen.


Preconceptiezorg: de eicelkwaliteit herstellen vóór de zwangerschap 

Een gezonde eicel is de basis voor een succesvolle zwangerschap en voor een gezonde baby. Preconceptiezorg, letterlijk “zorg vóór de bevruchting”, omvat maatregelen die de gezondheid van toekomstige ouders verbeteren, en dus ook die van de eicel. Vandaag ligt de nadruk vooral op gewichtsverlies via een gezonder dieet, maar onderzoek met obese muizen toont  aan dat dit niet altijd volstaat. Zelfs na gewichtsverlies via dieet normalisatie blijft schade in de eicel zichtbaar, vooral in de mitochondriën. Dat roept een belangrijke vraag op: hoe zorgen we ervoor dat de eicel écht volledig herstelt? Is dat eigenlijk wel mogelijk? Misschien ligt de oplossing in een combinatie van levensstijlaanpassingen met medicatie die gewichtsverlies promoot. Precies dat vraagstuk stond centraal in mijn masteronderzoek.


Ozempic was nog maar het begin: Mounjaro in opmars

Een groep geneesmiddelen die hier voor in aanmerking komt zijn de incretine-agonisten, beter bekend als obesitas medicatie. Tot voor kort ging alle aandacht naar Ozempic, maar sinds de officiële toelating op de Belgische markt (november 2024) wint Mounjaro vliegensvlug terrein. Het succes is eenvoudig te verklaren: Mounjaro, met tirzepatide als actief bestanddeel, blijkt nog effectiever in het bevorderen van gewichtsverlies dan Ozempic, waarbij semaglutide als actief bestanddeel optreedt. Het verschil zit in het werkingsmechanisme van de actieve stoffen. Beide bootsen incretinehormonen na. Deze lichaamseigen stoffen komen na een maaltijd vrij vanuit de darmen en zorgen voor onder meer een stabiele bloedsuikerspiegel en verminderde eetlust. Ozempic is enkel instaat GLP-1 na te bootsen, terwijl Mounjaro daarnaast ook in staat is GIP na te bootsen. Dat dubbele effect zorgt doorgaans voor sterker en consistenter gewichtsverlies.


Vrouwen van vruchtbare leeftijd en Mounjaro: veel vragen 

Vrouwen van vruchtbare leeftijd die een zwangerschap plannen, krijgen vandaag het advies om minstens één maand voor de bevruchting te stoppen met Mounjaro,  een zogenaamde “washout-periode”. Opmerkelijk genoeg, bestaan er nauwelijks gegevens over het effect van dit geneesmiddel op de eicel tijdens de preconceptieperiode. Deze inzichten zijn urgenter dan ooit. Vrouwen in de vruchtbare leeftijd vormen immers de snelst groeiende groep met obesitas. Ik wilde daarom in mijn thesis nagaan of tirzepatide, de actieve stof in Mounjaro, invloed heeft op de eicel in de periode vóór de zwangerschap, en of het geneesmiddel misschien zelfs kan bijdragen aan een beter herstel van de eicel als onderdeel van preconceptiezorg.

Muizenonderzoek biedt eerste inzichten 

Om die eerste resultaten te verkrijgen, voerden mijn collega’s en ik een studie uit met een dieet-geïnduceerd obees muismodel. Deze muizen ontwikkelen obesitas door een suiker- en vetrijk rantsoen dat onze moderne levensstijl nabootst, een model dat  vaak wordt gebruikt binnen het Gamete Research Centre aan de Universiteit Antwerpen. In dit specifieke experiment werden obese muizen verdeeld in drie groepen; een eerste groep bleef obees, een tweede schakelde over op een gezond dieet en een derde kreeg naast dat dieet ook tirzepatide-injecties. Na twee weken werd bij de helft van de muizen de eicellen verzameld. De rest van de muizen volgde de interventie nog twee weken langer, met als enige aanpassing dat in de derde groep de tirzepatide-injecties stopgezet werden  om zo een “wahsout-periode” na te bootsen zoals ook bij vrouwen wordt aangeraden. De verzamelde eicellen werden vervolgens onderzocht op drie parameters die samen een eerste inzicht geven  over de gezondheid van de eicel: de hoeveelheid vetdruppels in de eicel, de activiteit van de mitochondriën en de aanwezigheid van reactieve zuurstof. Dat laatste zijn kleine, agressieve deeltjes die vrijkomen wanneer cellen energie produceren, een soort afvalproduct van de mitochondriën. 


Dus..?

Net als bij mensen verloren de obese muizen met het nemen van tirzepatide aanzienlijk meer gewicht dan met enkel een gezond dieet. Uit mijn thesis bleek echter dat dit snelle gewichtsverlies acute stress veroorzaakt op het niveau van de eicel tijdens de preconceptieperiode. Dit komt doordat bij obesitas een overmaat aan vet wordt opgeslagen in het lichaam. Tijdens een periode van snel gewichtsverlies komt dit vet plots in grote hoeveelheiden in de bloedbaan terecht. Ook de eicel wordt eraan blootgesteld, met schade als gevolg. Gelukkig vertoonden de eicellen gecollecteerd na de "washout-periode", waarin de behandeling met het geneesmiddel twee weken werd stopgezet, minder effecten van deze stress periode. Dat komt omdat de muizen toen minder snel afvielen en zelfs wat bijkwamen, waardoor de eicel minder werd belast door vrije vetzuren. Het is belangrijk om te benadrukken dat deze resultaten voortvloeien uit een eerste verkennend onderzoek, uitgevoerd op muizen, gebaseerd op slechts drie parameters die indicatief zijn voor de gezondheid van de eicel. Meer onderzoek is nodig om de volledige impact van tirzepatide op eicelniveau bij de mens te begrijpen. Mijn thesis was slechts een klein onderdeel van een groter doctoraatonderzoek waarin verdere analyse van meerdere parameters gaande is! Eén ding is duidelijk: tirzepatide mag dan spectaculair gewichtsverlies opleveren, het verhaal is complexer dan een simpele “wonderspuit”, toch als het over de eicel gaat. 

Bibliografie

1.              Izquierdo-Torres, E., et al., Obesity, the other pandemic: linking diet and carcinogenesis by epigenetic mechanisms. J Nutr Biochem, 2022. 108: p. 109092.

2.              WHO, European Regional Obesity Report 2022. 2022: Copenhagen. p. 2022.

3.              Sciensano, Determinanten van Gezondheid: Gewichtstoestand, Health Status Report. 2020: Brussel.

4.              Organization, W.H. Obesity and overweight 2022  [cited 2025 12/01]; Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

5.              Bhurosy, T. and R. Jeewon, Overweight and obesity epidemic in developing countries: a problem with diet, physical activity, or socioeconomic status? ScientificWorldJournal, 2014. 2014: p. 964236.

6.              Gonzalez, M.B., R.L. Robker, and R.D. Rose, Obesity and oocyte quality: significant implications for ART and emerging mechanistic insights. Biol Reprod, 2022. 106(2): p. 338-350.

7.              Okunogbe, A., et al., Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Glob Health, 2022. 7(9).

8.              Gorasso, V., et al., Health care costs and lost productivity costs related to excess weight in Belgium. BMC Public Health, 2022. 22(1): p. 1693.

9.              Nakamura, M., Lipotoxicity as a therapeutic target in obesity and diabetic cardiomyopathy. J Pharm Pharm Sci, 2024. 27: p. 12568.

10.            Apovian, C.M., Obesity: definition, comorbidities, causes, and burden. Am J Manag Care, 2016. 22(7 Suppl): p. s176-85.

11.            Tannir, H., et al., Body Composition in Adolescents and Young Adults with Anorexia Nervosa: A Clinical Review. Curr Rheumatol Rev, 2020. 16(2): p. 92-98.

12.            Maeseneer, W.D., Is de BMI achterhaald? “Buikomtrek is betere voorspeller van gezondheidsrisico’s”, in vrtnws. 2025.

13.            Frank, A.P., et al., Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J Lipid Res, 2019. 60(10): p. 1710-1719.

14.            Chalk, M.B., Obesity: addressing a multifactorial disease. Case Manager, 2004. 15(6): p. 47-9; quiz 50.

15.            Speakman, J.R., Use of high-fat diets to study rodent obesity as a model of human obesity. Int J Obes (Lond), 2019. 43(8): p. 1491-1492.

16.            Varlamov, O., Western-style diet, sex steroids and metabolism. Biochim Biophys Acta Mol Basis Dis, 2017. 1863(5): p. 1147-1155.

17.            Committee on Accelerating Progress in Obesity, P., et al., in Accelerating Progress in Obesity Prevention: Solving the Weight of the Nation, D. Glickman, et al., Editors. 2012, National Academies Press (US) Copyright 2012 by the National Academy of Sciences. All rights reserved.: Washington (DC).

18.            Standing Committee on Childhood Obesity, P., et al., in Creating Equal Opportunities for a Healthy Weight: Workshop Summary. 2013, National Academies Press (US) Copyright 2013 by the National Academy of Sciences. All rights reserved.: Washington (DC).

19.            Smits, A., Opportunities for improvement of oocyte quality in metabolically compromised conditions : from fundamental discoveries in the well until the development of preconception care strategies in an obese mouse model, in Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Veterinary Sciences Faculty of Medicine and Health Sciences. 2022, University of Antwerp. p. 356.

20.            Xhonneux, I., The interaction of pre- and postnatal obesogenic environments in affecting daughter’s metabolic health and oocyte quality : fundamental insights for sustainable advice. 2024: Antwerp : University of Antwerp p. 219.

21.            Panchal, S.K. and L. Brown, Rodent models for metabolic syndrome research. J Biomed Biotechnol, 2011. 2011: p. 351982.

22.            Botchlett, R. and C. Wu, Diet Composition for the Management of Obesity and Obesity-related Disorders. J Diabetes Mellit Metab Syndr, 2018. 3: p. 10-25.

23.            Botchlett, R., et al., Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol, 2017. 233(3): p. R145-r171.

24.            Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet, 2024. 403(10431): p. 1027-1050.

25.            Meulders, B., et al., Lipotoxicity and Oocyte Quality in Mammals: Pathogenesis, Consequences, and Reversibility. Annu Rev Anim Biosci, 2024.

26.            Klop, B., J.W. Elte, and M.C. Cabezas, Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 2013. 5(4): p. 1218-40.

27.            Moorkens, K., Maternal metabolic health and fertility : acute and chronic effects of a western-type diet on oviductal and ovarian cells: a multi-omic approach, in Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Veterinary Sciences 2024, University of Antwerp: Antwerp. p. 363.

28.            Goldstein, J.L. and M.S. Brown, The LDL receptor. Arterioscler Thromb Vasc Biol, 2009. 29(4): p. 431-8.

29.            Lewis, G.F., et al., Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes, 1993. 42(6): p. 833-42.

30.            Karpe, F., J.R. Dickmann, and K.N. Frayn, Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes, 2011. 60(10): p. 2441-9.

31.            Samms, R.J., M.P. Coghlan, and K.W. Sloop, How May GIP Enhance the Therapeutic Efficacy of GLP-1? Trends Endocrinol Metab, 2020. 31(6): p. 410-421.

32.            Yadav, A., et al., Role of leptin and adiponectin in insulin resistance. Clin Chim Acta, 2013. 417: p. 80-4.

33.            Silvestris, E., et al., Obesity as disruptor of the female fertility. Reprod Biol Endocrinol, 2018. 16(1): p. 22.

34.            Aisike, G., et al., Correlation analysis of obesity phenotypes with leptin and adiponectin. Sci Rep, 2023. 13(1): p. 17718.

35.            Varì, R., et al., Obesity-Associated Inflammation: Does Curcumin Exert a Beneficial Role? Nutrients, 2021. 13(3).

36.            Petito, G., et al., Adipose Tissue Remodeling in Obesity: An Overview of the Actions of Thyroid Hormones and Their Derivatives. Pharmaceuticals (Basel), 2023. 16(4).

37.            Kawai, T., M.V. Autieri, and R. Scalia, Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol, 2021. 320(3): p. C375-c391.

38.            Hotamisligil, G.S., Inflammation, metaflammation and immunometabolic disorders. Nature, 2017. 542(7640): p. 177-185.

39.            Weisberg, S.P., et al., Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest, 2003. 112(12): p. 1796-808.

40.            Ahmed, B., R. Sultana, and M.W. Greene, Adipose tissue and insulin resistance in obese. Biomed Pharmacother, 2021. 137: p. 111315.

41.            Kosmas, C.E., et al., Insulin resistance and cardiovascular disease. J Int Med Res, 2023. 51(3): p. 3000605231164548.

42.            Haeusler, R.A., T.E. McGraw, and D. Accili, Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol, 2018. 19(1): p. 31-44.

43.            Brown, A.E. and M. Walker, Genetics of Insulin Resistance and the Metabolic Syndrome. Curr Cardiol Rep, 2016. 18(8): p. 75.

44.            Zakai, N.A., et al., Race-Dependent Association of High-Density Lipoprotein Cholesterol Levels With Incident Coronary Artery Disease. J Am Coll Cardiol, 2022. 80(22): p. 2104-2115.

45.            Defronzo, R.A., Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 2009. 58(4): p. 773-95.

46.            Cusi, K., The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Curr Diab Rep, 2010. 10(4): p. 306-15.

47.            de Moura, E.D.M., et al., Diet-induced obesity in animal models: points to consider and influence on metabolic markers. Diabetol Metab Syndr, 2021. 13(1): p. 32.

48.            Engin, A.B., What Is Lipotoxicity? Adv Exp Med Biol, 2017. 960: p. 197-220.

49.            Meulders, B., Mitochondrial dysfunction and epigenetic alterations in metabolically compromised oocytes : a key pathway to subfertility and a target to improve offspring health, in Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Department of Veterinary Sciences. 2024, University of Antwerp: Antwerp p. 282.

50.            Longo, N., M. Frigeni, and M. Pasquali, Carnitine transport and fatty acid oxidation. Biochim Biophys Acta, 2016. 1863(10): p. 2422-35.

51.            Kovacic, P., et al., Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem, 2005. 12(22): p. 2601-23.

52.            Lipke, K., A. Kubis-Kubiak, and A. Piwowar, Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells, 2022. 11(5).

53.            Bergman, R.N. and M. Ader, Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab, 2000. 11(9): p. 351-6.

54.            Ballesteros-Guzmán, A.K., et al., Prepregnancy Obesity, Maternal Dietary Intake, and Oxidative Stress Biomarkers in the Fetomaternal Unit. Biomed Res Int, 2019. 2019: p. 5070453.

55.            Chandel, N.S., Lipid Metabolism. Cold Spring Harb Perspect Biol, 2021. 13(9).

56.            Gehrmann, W., M. Elsner, and S. Lenzen, Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells. Diabetes Obes Metab, 2010. 12 Suppl 2: p. 149-58.

57.            Leroy, J., et al., Maternal metabolic health and fertility: we should not only care about but also for the oocyte! Reprod Fertil Dev, 2022. 35(2): p. 1-18.

58.            Hass, D.T. and C.J. Barnstable, Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res, 2021. 83: p. 100941.

59.            Rutkowski, D.T. and R.J. Kaufman, A trip to the ER: coping with stress. Trends Cell Biol, 2004. 14(1): p. 20-8.

60.            Weng, H., et al., A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family. Curr Neuropharmacol, 2020. 18(7): p. 613-623.

61.            Jovaisaite, V., L. Mouchiroud, and J. Auwerx, The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol, 2014. 217(Pt 1): p. 137-43.

62.            Runkel, E.D., R. Baumeister, and E. Schulze, Mitochondrial stress: balancing friend and foe. Exp Gerontol, 2014. 56: p. 194-201.

63.            Seli, E., T. Wang, and T.L. Horvath, Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. Fertil Steril, 2019. 111(2): p. 197-204.

64.            Chiaratti, M.R., et al., Oocyte mitochondria: role on fertility and disease transmission. Anim Reprod, 2018. 15(3): p. 231-238.

65.            Yoon, Y., et al., Mitochondrial dynamics in diabetes. Antioxid Redox Signal, 2011. 14(3): p. 439-57.

66.            Scott, I. and R.J. Youle, Mitochondrial fission and fusion. Essays Biochem, 2010. 47: p. 85-98.

67.            Ashrafi, G. and T.L. Schwarz, The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death & Differentiation, 2013. 20(1): p. 31-42.

68.            Amiri, M. and F. Ramezani Tehrani, Potential Adverse Effects of Female and Male Obesity on Fertility: A Narrative Review. Int J Endocrinol Metab, 2020. 18(3): p. e101776.

69.            Turner, N. and R.L. Robker, Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role? Mol Hum Reprod, 2015. 21(1): p. 23-30.

70.            Kort, H.I., et al., Impact of body mass index values on sperm quantity and quality. Journal of andrology, 2006. 27(3): p. 450-452.

71.            Amoah, C., et al., Obesity and overweight and associated factors among women with infertility undergoing assisted reproductive technology treatment in a low income setting. Sci Rep, 2025. 15(1): p. 6163.

72.            Grzegorczyk-Martin, V., et al., IVF outcomes in patients with a history of bariatric surgery: a multicenter retrospective cohort study. Hum Reprod, 2020. 35(12): p. 2755-2762.

73.            Rich-Edwards, J.W., et al., Adolescent body mass index and infertility caused by ovulatory disorder. Am J Obstet Gynecol, 1994. 171(1): p. 171-7.

74.            Vahratian, A. and Y.R. Smith, Should access to fertility-related services be conditional on body mass index? Hum Reprod, 2009. 24(7): p. 1532-7.

75.            Narula, K., et al., Obesity, insulin resistance and fertility: unresolved questions and emerging insights. Curr Opin Endocrinol Diabetes Obes, 2025.

76.            Jungheim, E.S. and K.H. Moley, Current knowledge of obesity's effects in the pre- and periconceptional periods and avenues for future research. Am J Obstet Gynecol, 2010. 203(6): p. 525-30.

77.            Luzzo, K.M., et al., High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One, 2012. 7(11): p. e49217.

78.            Emokpae, M.A. and S.I. Brown, Effects of lifestyle factors on fertility: practical recommendations for modification. Reprod Fertil, 2021. 2(1): p. R13-r26.

79.            Smits, A., et al., Diet normalization or caloric restriction as a preconception care strategy to improve metabolic health and oocyte quality in obese outbred mice. Reprod Biol Endocrinol, 2021. 19(1): p. 166.

80.            Shi, M. and M.A. Sirard, Metabolism of fatty acids in follicular cells, oocytes, and blastocysts. Reprod Fertil, 2022. 3(2): p. R96-r108.

81.            Luke, B., et al., Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. Hum Reprod, 2011. 26(1): p. 245-52.

82.            Marei, W.F.A., et al., Differential effects of high fat diet-induced obesity on oocyte mitochondrial functions in inbred and outbred mice. Sci Rep, 2020. 10(1): p. 9806.

83.            Purcell, S.H. and K.H. Moley, The impact of obesity on egg quality. J Assist Reprod Genet, 2011. 28(6): p. 517-24.

84.            Robker, R.L., Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology, 2008. 15(2): p. 115-21.

85.            Marquard, K.L., et al., Polycystic ovary syndrome and maternal obesity affect oocyte size in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril, 2011. 95(6): p. 2146-9, 2149.e1.

86.            Minge, C.E., et al., Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology, 2008. 149(5): p. 2646-56.

87.            Jungheim, E.S., et al., Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology, 2010. 151(8): p. 4039-46.

88.            Depalo, R., et al., Oocyte morphological abnormalities in overweight women undergoing in vitro fertilization cycles. Gynecol Endocrinol, 2011. 27(11): p. 880-4.

89.            Broughton, D.E. and K.H. Moley, Obesity and female infertility: potential mediators of obesity's impact. Fertil Steril, 2017. 107(4): p. 840-847.

90.            Moorkens, K., et al., Effects of an obesogenic diet on the oviduct depend on the duration of feeding. PLoS One, 2022. 17(9): p. e0275379.

91.            Hennet, M.L. and C.M. Combelles, The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol, 2012. 56(10-12): p. 819-31.

92.            Basuino, L. and C.F. Silveira, Jr., Human follicular fluid and effects on reproduction. JBRA Assist Reprod, 2016. 20(1): p. 38-40.

93.            Samuelsson, A.M., et al., Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension, 2008. 51(2): p. 383-92.

94.            Klenov, V.E. and E.S. Jungheim, Obesity and reproductive function: a review of the evidence. Curr Opin Obstet Gynecol, 2014. 26(6): p. 455-60.

95.            Bradley, J. and K. Swann, Mitochondria and lipid metabolism in mammalian oocytes and early embryos. Int J Dev Biol, 2019. 63(3-4-5): p. 93-103.

96.            Ferguson, E.M. and H.J. Leese, A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev, 2006. 73(9): p. 1195-201.

97.            Baddela, V.S., A. Sharma, and J. Vanselow, Non-esterified fatty acids in the ovary: friends or foes? Reprod Biol Endocrinol, 2020. 18(1): p. 60.

98.            Robker, R.L., et al., Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab, 2009. 94(5): p. 1533-40.

99.            Dickson, M.J., et al., Experimentally Induced Endometritis Impairs the Developmental Capacity of Bovine Oocytes†. Biol Reprod, 2020. 103(3): p. 508-520.

100.         Dunning, K.R., et al., Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod, 2010. 83(6): p. 909-18.

101.         Sharma, A., et al., Elevated free fatty acids affect bovine granulosa cell function: a molecular cue for compromised reproduction during negative energy balance. Endocr Connect, 2019. 8(5): p. 493-505.

102.         Valckx, S.D., et al., Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol, 2014. 12: p. 13.

103.         Aardema, H., et al., Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod, 2011. 85(1): p. 62-9.

104.         Wu, L.L., et al., High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology, 2010. 151(11): p. 5438-45.

105.         Jungheim, E.S., et al., Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil Steril, 2011. 95(6): p. 1970-4.

106.         Trebichalská, Z., et al., Cytoplasmic maturation in human oocytes: an ultrastructural study †. Biol Reprod, 2021. 104(1): p. 106-116.

107.         Babayev, E. and E. Seli, Oocyte mitochondrial function and reproduction. Curr Opin Obstet Gynecol, 2015. 27(3): p. 175-81.

108.         St John, J., The control of mtDNA replication during differentiation and development. Biochim Biophys Acta, 2014. 1840(4): p. 1345-54.

109.         Boudoures, A.L., et al., Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Dev Biol, 2017. 426(1): p. 126-138.

110.         Rojansky, R., M.Y. Cha, and D.C. Chan, Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. Elife, 2016. 5.

111.         Desmet, K.L.J., et al., Oocyte maturation under lipotoxic conditions induces carryover transcriptomic and functional alterations during post-hatching development of good-quality blastocysts: novel insights from a bovine embryo-transfer model. Human Reproduction, 2020. 35(2): p. 293-307.

112.         Morgan, H.D., et al., Epigenetic reprogramming in mammals. Hum Mol Genet, 2005. 14 Spec No 1: p. R47-58.

113.         Ge, Z.J., et al., DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect, 2014. 122(2): p. 159-64.

114.         Hou, Y.-J., et al., Both diet and gene mutation induced obesity affect oocyte quality in mice. Scientific Reports, 2016. 6(1): p. 18858.

115.         Meulders, B., et al., Effect of lipotoxicity on mitochondrial function and epigenetic programming during bovine in vitro embryo production. Scientific Reports, 2023. 13(1): p. 21664.

116.         Van Blerkom, J., Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod Biomed Online, 2008. 16(4): p. 553-69.

117.         Zeng, H.T., et al., Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Hum Reprod, 2007. 22(6): p. 1681-6.

118.         Meriano, J.S., et al., Tracking of oocyte dysmorphisms for ICSI patients may prove relevant to the outcome in subsequent patient cycles. Hum Reprod, 2001. 16(10): p. 2118-23.

119.         Grindler, N.M. and K.H. Moley, Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol Hum Reprod, 2013. 19(8): p. 486-94.

120.         Dorney, E. and K. Black, Preconception care. Aust J Gen Pract, 2024. 53(11): p. 805-812.

121.         Cha, E., et al., Preconception Care to Reduce the Risks of Overweight and Obesity in Women of Reproductive Age: An Integrative Review. Int J Environ Res Public Health, 2021. 18(9).

122.         Sim, K.A., S.R. Partridge, and A. Sainsbury, Does weight loss in overweight or obese women improve fertility treatment outcomes? A systematic review. Obes Rev, 2014. 15(10): p. 839-50.

123.         Einarsson, S., et al., Weight reduction intervention for obese infertile women prior to IVF: a randomized controlled trial. Hum Reprod, 2017. 32(8): p. 1621-1630.

124.         Mutsaerts, M.A., et al., Randomized Trial of a Lifestyle Program in Obese Infertile Women. N Engl J Med, 2016. 374(20): p. 1942-53.

125.         van Elten, T.M., et al., Preconception lifestyle intervention reduces long term energy intake in women with obesity and infertility: a randomised controlled trial. Int J Behav Nutr Phys Act, 2019. 16(1): p. 3.

126.         Balen, A.H., et al., Should obese women with polycystic ovary syndrome receive treatment for infertility? Bmj, 2006. 332(7539): p. 434-5.

127.         Price, S.A. and P. Sumithran, Using a Very Low Energy Diet to Achieve Substantial Preconception Weight Loss in Women with Obesity: A Review of the Safety and Efficacy. Nutrients, 2022. 14(20).

128.         Smits, A., et al., Obese outbred mice only partially benefit from diet normalization or calorie restriction as preconception care interventions to improve metabolic health and oocyte quality. Hum Reprod, 2022. 37(12): p. 2867-2884.

129.         Lin, J., et al., Trends in use of sodium-glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) in Australia in the era of increased evidence of their cardiovascular benefits (2014-2022). Eur J Clin Pharmacol, 2023. 79(9): p. 1239-1248.

130.         Watanabe, J.H., et al., Trends in glucagon-like peptide 1 receptor agonist use, 2014 to 2022. J Am Pharm Assoc (2003), 2024. 64(1): p. 133-138.

131.         Wang, J.Y., et al., GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front Endocrinol (Lausanne), 2023. 14: p. 1085799.

132.         Nauck, M.A. and J.J. Meier, Incretin hormones: Their role in health and disease. Diabetes Obes Metab, 2018. 20 Suppl 1: p. 5-21.

133.         Cornell, S., A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once-weekly agents. J Clin Pharm Ther, 2020. 45 Suppl 1(Suppl 1): p. 17-27.

134.         Nauck, M.A. and J.J. Meier, The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol, 2016. 4(6): p. 525-36.

135.         2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care, 2020. 43(Suppl 1): p. S14-s31.

136.         Hammond, M., Trends of Glucagon-Like Peptide 1 Receptor Agonist Usage, Self-Payments and Total Payments Among People Without Diabetes in the United States from 2017–2022, in American Heart Association Scientific Sessions. 2025, Circulation: Philadelphia, PA. p. P1034.

137.         Drucker, D.J., Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab, 2018. 27(4): p. 740-756.

138.         Adriaenssens, A.E., et al., Glucose-Dependent Insulinotropic Polypeptide Receptor-Expressing Cells in the Hypothalamus Regulate Food Intake. Cell Metab, 2019. 30(5): p. 987-996.e6.

139.         Timper, K. and J.C. Brüning, Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech, 2017. 10(6): p. 679-689.

140.         Myers, M.G., Jr. and D.P. Olson, Central nervous system control of metabolism. Nature, 2012. 491(7424): p. 357-63.

141.         Cone, R.D., Anatomy and regulation of the central melanocortin system. Nat Neurosci, 2005. 8(5): p. 571-8.

142.         Secher, A., et al., The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest, 2014. 124(10): p. 4473-88.

143.         Adriaenssens, A., et al., Hypothalamic and brainstem glucose-dependent insulinotropic polypeptide receptor neurons employ distinct mechanisms to affect feeding. JCI Insight, 2023. 8(10).

144.         Imeryüz, N., et al., Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol, 1997. 273(4): p. G920-7.

145.         Samms, R.J., et al., GIPR Function in the Central Nervous System: Implications and Novel Perspectives for GIP-Based Therapies in Treating Metabolic Disorders. Diabetes, 2021. 70(9): p. 1938-1944.

146.         Gorgojo-Martínez, J.J., et al., Clinical Recommendations to Manage Gastrointestinal Adverse Events in Patients Treated with Glp-1 Receptor Agonists: A Multidisciplinary Expert Consensus. J Clin Med, 2022. 12(1).

147.         Regmi, A., et al., Tirzepatide modulates the regulation of adipocyte nutrient metabolism through long-acting activation of the GIP receptor. Cell Metabolism, 2024. 36(7): p. 1534-1549.e7.

148.         Asmar, M., et al., Glucose-Dependent Insulinotropic Polypeptide May Enhance Fatty Acid Re-esterification in Subcutaneous Abdominal Adipose Tissue in Lean Humans. Diabetes, 2010. 59(9): p. 2160-2163.

149.         Drucker, D.J., et al., Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care, 2010. 33(2): p. 428-33.

150.         Saran, A., et al., GLP-1R agonists: recent advances, current gaps, and future challenges. Molecular Diversity, 2025.

151.         Drucker, D.J., The GLP-1 journey: from discovery science to therapeutic impact. J Clin Invest, 2024. 134(2).

152.         Collins L, C.R., Glucagon-Like Peptide-1 Receptor Agonists. 2024, StatPearls: Treasure Island (FL).

153.         Wilding, J.P.H., et al., Once-Weekly Semaglutide in Adults with Overweight or Obesity. New England Journal of Medicine, 2021. 384(11): p. 989-1002.

154.         O'Neil, P.M., et al., Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. The Lancet, 2018. 392(10148): p. 637-649.

155.         Agency, E.M. Victoza: EPAR – Product Information. 20/02/2025 [cited 2025 04/06/2025]; Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/victoza.

156.         Agency, E.M. Saxenda. 20/02/2025 [cited 2025 04/06/2025]; Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/saxenda.

157.         Aronne, L.J., et al., Continued Treatment With Tirzepatide for Maintenance of Weight Reduction in Adults With Obesity: The SURMOUNT-4 Randomized Clinical Trial. Jama, 2024. 331(1): p. 38-48.

158.         Agency, E.M. 13/02/2025 [cited 2025 04/06/2025]; Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/ozempic.

159.         Agency, E.M. Wegovy. 08/01/2025 [cited 2025 04/06/2025]; Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/wegovy.

160.         Coskun, T., et al., LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol Metab, 2018. 18: p. 3-14.

161.         Tetelbaun, L., J.A. Mullally, and W.H. Frishman, The First Triple Agonist for Antiobesity: Retatrutide. Cardiol Rev, 2024.

162.         Kaur, M. and S. Misra, A review of an investigational drug retatrutide, a novel triple agonist agent for the treatment of obesity. Eur J Clin Pharmacol, 2024. 80(5): p. 669-676.

163.         Alsugair, H.A., et al., Weekly Semaglutide vs. Liraglutide Efficacy Profile: A Network Meta-Analysis. Healthcare (Basel), 2021. 9(9).

164.         Svendstrup, M., et al., Semaglutide treatment of hypothalamic obesity - a real-life data study. Pituitary, 2024. 27(5): p. 685-692.

165.         Forzano, I., et al., Tirzepatide: A Systematic Update. Int J Mol Sci, 2022. 23(23).

166.         Syed, Y.Y., Tirzepatide: First Approval. Drugs, 2022. 82(11): p. 1213-1220.

167.         Regmi, A., et al., Tirzepatide modulates the regulation of adipocyte nutrient metabolism through long-acting activation of the GIP receptor. Cell Metab, 2024. 36(7): p. 1534-1549.e7.

168.         Finan, B., et al., Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med, 2013. 5(209): p. 209ra151.

169.         Agency, E.M. Mounjaro 2024 25/10/2024; Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/mounjaro.

170.         Een nieuw krachtig geneesmiddel 'Mounjaro' op de Belgische markt voor personen met diabetes type 2, voorlopig zonder terugbetaling. 2024, Diabetes Liga.

171.         EU, L. Lilly Receives European Marketing Authorization for tirzepatide (Mounjaro®) in KwikPen® Presentation for Two Indication. 2024  [cited 2025 09/06/2025]; Available from: https://www.lilly.com/eu/story/lilly-receives-european-marketing-authorization-for-tirzepatide-mounjaro-r.

172.         Maeseneer, W.D., "Betere resultaten dan Ozempic": nieuw diabetes- en afslankmiddel Mounjaro vanaf vandaag verkrijgbaar in België, in vrtnws 2024

173.         Jastreboff, A.M., et al., Triple–Hormone-Receptor Agonist Retatrutide for Obesity — A Phase 2 Trial. New England Journal of Medicine, 2023. 389(6): p. 514-526.

174.         Healthcare, G. Eli Lilly infiltrates anti-obesity market with strong Phase III trial results for Retatrutide. 2023  [cited 2025 04/06/2025]; Available from: https://www.clinicaltrialsarena.com/analyst-comment/eli-lilly-infiltrates-anti-obesity-market-phase-iii-trial-retatrutide/.

175.         FAGG, Risico op zwangerschap bij gebruik van Ozempic. 2024, Federaal agentschap voor geneesmiddelen en gezondheidsproblemen 

176.         Chen, L., et al., Tirzepatide protects against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and inflammation via PI3K/Akt signaling. Peptides, 2024. 178: p. 171245.

177.         Ma, J., et al., Tirzepatide administration improves cognitive impairment in HFD mice by regulating the SIRT3-NLRP3 axis. Endocrine, 2024.

178.         Ahmed, B. and J.C. Konje, The epidemiology of obesity in reproduction. Best Pract Res Clin Obstet Gynaecol, 2023. 89: p. 102342.

179.         Belga, Aanstaande moeders kampen steeds vaker met overgewicht, in De Specialist. 2024, Reflexion Medical Network 

180.         Agency, E.M., Samenvatting van de productkenmerken 2022.

181.         Tappy, L., Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J Exp Biol, 2018. 221(Pt Suppl 1).

182.         Pellizzon, M.A. and M.R. Ricci, The common use of improper control diets in diet-induced metabolic disease research confounds data interpretation: the fiber factor. Nutr Metab (Lond), 2018. 15: p. 3.

183.         Duah, J. and D.B. Seifer, Medical therapy to treat obesity and optimize fertility in women of reproductive age: a narrative review. Reprod Biol Endocrinol, 2025. 23(1): p. 2.

184.         Kong, W., et al., Tirzepatide as an innovative treatment strategy in a pre-clinical model of obesity-driven endometrial cancer. Gynecol Oncol, 2024. 191: p. 116-123.

185.         Komatsu, K., et al., Mitochondrial membrane potential in 2-cell stage embryos correlates with the success of preimplantation development. Reproduction, 2014. 147(5): p. 627-38.

186.         De Biasi, S., L. Gibellini, and A. Cossarizza, Uncompensated Polychromatic Analysis of Mitochondrial Membrane Potential Using JC-1 and Multilaser Excitation. Curr Protoc Cytom, 2015. 72: p. 7.32.1-7.32.11.

187.         Van Hoeck, V., et al., Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction, 2013. 145(1): p. 33-44.

188.         Bai, J., et al., Correlation analysis of the abdominal visceral fat area with the structure and function of the heart and liver in obesity: a prospective magnetic resonance imaging study. Cardiovasc Diabetol, 2023. 22(1): p. 206.

189.         Ertunc, M.E. and G.S. Hotamisligil, Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res, 2016. 57(12): p. 2099-2114.

190.         Yalcin, B., et al., Commercially available outbred mice for genome-wide association studies. PLoS Genet, 2010. 6(9): p. e1001085.

191.         ssniff, Purified DIO & control diets 2017: Soest, Germany p. 9.

192.         Pickering, C., et al., Withdrawal from free-choice high-fat high-sugar diet induces craving only in obesity-prone animals. Psychopharmacology (Berl), 2009. 204(3): p. 431-43.

193.         Letranchant, A., et al., Anorexia nervosa, fertility and medically assisted reproduction. Ann Endocrinol (Paris), 2022. 83(3): p. 191-195.

194.         Zgheib, S., et al., Long-term physiological alterations and recovery in a mouse model of separation associated with time-restricted feeding: a tool to study anorexia nervosa related consequences. PLoS One, 2014. 9(8): p. e103775.

195.         Pahl, M.V., et al., Effect of rapid weight loss with supplemented fasting on serum electrolytes, lipids, and blood pressure. J Natl Med Assoc, 1988. 80(7): p. 803-9.

196.         Fabozzi, G., et al., The Impact of Unbalanced Maternal Nutritional Intakes on Oocyte Mitochondrial Activity: Implications for Reproductive Function. Antioxidants (Basel), 2021. 10(1).

197.         Van Blerkom, J., et al., Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod, 2002. 17(2): p. 393-406.

198.         Van Blerkom, J., P. Davis, and S. Alexander, Inner mitochondrial membrane potential (DeltaPsim), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes. Hum Reprod, 2003. 18(11): p. 2429-40.

199.         Stojkovic, M., et al., Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod, 2001. 64(3): p. 904-9.

200.         Geisler, C.E., et al., Tirzepatide suppresses palatable food intake by selectively reducing preference for fat in rodents. Diabetes Obes Metab, 2023. 25(1): p. 56-67.

Download scriptie (7.64 KB)
Universiteit of Hogeschool
Universiteit Antwerpen
Thesis jaar
2025
Promotor(en)
Jo Leroy, Waleed Marei