‘Back to nature’: recente technologie vormt nieuw alternatief voor kunstmatige plaagbestrijding.

Simon
Vermeulen

40%. Dit is het geschatte aandeel aan landbouwgewassen dat verloren gaat door allerhande pesten alvorens het verwerkt kan worden in een product zoals voeding of kledij, aldus het voedselagentschap van de Verenigde Naties. In een wereld waar de problematiek rond voedselonzekerheid blijft aangroeien is dit uiteraard nefast waardoor het bestrijden van deze pesten broodnodig is. Hier komt dan vaak de discussie over het gebruik van schadelijke kunstmatige pesticiden in het spel. Maar wat als ik u vertel dat dit helemaal niet hoeft? Een lopend onderzoek, waaraan ik in het kader van mijn masterthesis toe heb bijgedragen, probeert de natuur in te schakelen voor een milieuvriendelijke maar toch economisch haalbare bestrijding van de grootste boosdoeners: insecten.

De Coloradokever (boven) en de legerrups (onder) zijn slechts enkele beruchte pestinsecten die wereldwijd respectievelijk aardappel- en graangewassen aantasten.

Kunstmatige insecticiden meer flop of top?

Kunstmatige insecticiden zijn ondertussen al zo’n 80 jaar een vaste waarde binnen de landbouw. Het verhaal begint omstreeks de jaren ’40 met het beruchte middel DDT. Hoewel het een gewenst bestrijdingseffect teweegbracht, duurde het niet lang voor de eerste bewijzen van schadelijkheid de kop op staken, en dit voor zowel de gezondheid van de natuur als van de mens. Sindsdien hebben ook andere soortgelijke middelen eenzelfde lot ondergaan.

Desondanks zijn kunstmatige pesticiden tot op vandaag nog alom vertegenwoordigd in de landbouwsector. Dit heeft vooral te maken met hun relatief goedkope productie, eenvoudige gebruik en het voorlopige gebrek aan een economisch evenwaardig alternatief.

Gebruik maken van wat de natuur ons biedt

De milieuvriendelijkere technologie die we willen hanteren heet met een wetenschappelijke term RNA interferentie, vaak afgekort tot RNAi. De naam en werking van deze technologie is het eenvoudigst uit te leggen aan de hand van een metafoor uit de industrie.

Net als planten en andere dieren zijn ook insecten opgebouwd uit cellen die elk DNA bevatten met informatie voor de aanmaak van levensnoodzakelijke stoffen. Deze cellen kan je vergelijken met fabrieken die verschillende belangrijke producten maken. Om productiefouten te vermijden, wendt de fabriek zich tot kleine instructiehandleidingen die gekopieerd worden van een grote database vol informatie (DNA). Ook die handleidingen krijgen in de wetenschap een naam: RNA.

Met de RNAi-technologie proberen we kleine stukjes papier binnen te brengen in de fabrieken die delen van de handleidingen bedekken en onleesbaar maken. Zo valt ook de aanmaak van de belangrijke producten stil en gaan de fabrieken failliet. Vanuit een wetenschappelijk oogpunt brengen we kleine stukjes nieuw RNA binnen in de cellen van de te bestrijden insecten met als doel het aanwezige RNA te blokkeren. Hierdoor mist het insect cruciale stoffen en sterft het. Een eerste pluspunt: uitgezonderd het binnenbrengen van het nieuwe RNA verloopt dit proces volledig zoals in de natuur.

Inspelen op genetica: genetisch gemodificeerde organismen (GMO)?

Meteen een volgend pluspunt: nee. Terugkerend naar het fabrieksmetafoor slaat de term GMO op onomkeerbare aanpassingen van de informatie uit de grote database (DNA). De RNAi-technologie mikt niet op deze database maar op de handleidingen (RNA) die ervan gekopieerd worden. In de natuur breken die handleidingen vanzelf snel af en moeten er vaak nieuwe kopieën gemaakt worden. Bij een bestrijdingsstop, waarbij geen nieuwe bedekkende papierstukjes meer worden toegediend, kan zo een terugkeer naar de natuurlijke situatie plaatsvinden. Dit maakt deze technologie wél omkeerbaar.

Is het mogelijk om GMO’s toch een plaats te geven in dit verhaal? Ja; bij de manier waarop de papierstukjes toegediend worden aan het insect. Het is mogelijk om de te beschermen gewassen genetisch aan te passen zodat ze de stukjes zelf aanmaken en opstapelen in de plant. Als de insecten van de plant eten, krijgen ze deze dus binnen en start het afdodingsproces. Het goede nieuws is dat dit in ons onderzoek niet van toepassing is. Wij spitsen ons op de ontwikkeling van een middel waarbij de landbouwer de stukjes op de plant dient te sproeien. Het effect is op zich identiek en op die manier kunnen ook landbouwers in gebieden waar GMO-teelt verboden is milieuvriendelijker te werk gaan.

Effect op andere planten en dieren

Ook hier kunnen we positief zijn. Als wetenschappers hebben we de mogelijkheid om de handleidingen van de insecten de we willen bestrijden in te lezen. Hierbij gaan we op zoek naar instructies die we bij fabrieken van andere planten of dieren, waaronder de mens, niet terugvinden. Door onze stukjes papier dusdanig te ontwerpen dat ze specifiek die instructies onleesbaar maken, vermijden we impact op de gezondheid van de mens, alsook het behoud van flora en fauna die we wél willen aantreffen. Denk maar aan dat schattige vlindertje of die nuttige bij. Naast hun onschadelijkheid zijn ze door hun natuurlijke aard ook sneller afbreekbaar dan kunstmatige insecticiden.

Een compleet feilloos wondermiddel?

Spijtig genoeg (nog) niet. Zoals wel vaker gooit het weer ook hier roet in het eten en raar maar waar: ditmaal hoort ook de zon hierbij. Regen en wind kunnen onze papierstukjes makkelijk van de plant spoelen of blazen waardoor de insecten deze niet opeten. De UV-straling van de zon zorgt daarnaast voor een nog snellere afbraak van de stukjes. Vanuit een ecologisch standpunt lijkt dit interessant maar een te snelle afbraak doet de werkzaamheid van de bestrijding dalen. Helaas is de keerzijde van de medaille hiermee niet afgerond. De stukjes papier zijn namelijk ook slecht bestand tegen het spijsverteringsstelsel van vele pestinsecten.

Het onderzoek focust dan ook op het ontdekken van manieren om onze papierstukjes te beschermen. We zoeken als het ware naar een geschikte jas als pantser tegen weer, wind en het spijsverteringsstelsel. De uitdaging: deze jas mag zelf niet schadelijk zijn voor plant, dier en mens. De thesis leverde alvast enkele nuttige bevindingen en potentiële kandidaat-jassen op. Verdere testen zullen ook nog de dodende werking van de RNAi-technologie tegen verschillende types pestinsecten moeten aantonen. En wie weet vinden we binnenkort wel een manier om niet enkel pestinsecten, maar ook het overmatig gebruik van kunstmatige insecticiden te verdelgen.

Bibliografie

Adhikari, U. (2022). INSECT PEST MANAGEMENT: MECHANICAL AND PHYSICAL TECHNIQUES. Reviews In Food And Agriculture, 3(1), 48-53. DOI: http://doi.org/10.26480/rfna.01.2022.48.53

 

Agrawal, N., Dasaradhi, P. V. N., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA Interference: Biology, Mechanism, and Applications. Microbiology and Molecular Biology Reviews, 67(4). DOI: https://doi.org/10.1128/mmbr.67.4.657-685.2003

 

Ahmad, M. F., Ahmad, F. A., Alsayegh, A. A., Zeyaullah, M., AlShahrani, A. M., Muzammil, K., Saati, A. A., Wahab, S., Elbendary, E. Y., Kambal, N., Abdelrahman, M. H., & Hussain, S. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10(7). DOI: https://doi.org/10.1016/j.heliyon.2024.e29128

 

Alakonya, A., Kumar, R., Koenig, D., Kimura, S., Townsley, B., Runo, S., Garces, H. M., Kang, J., Yanez, A., David-Schwartz, R., Machuka, J., & Sinha, N. (2012). Interspecific RNA Interference of SHOOT MERISTEMLESS-Like Disrupts Cuscuta pentagona Plant Parasitism. The Plant Cell, 24(7), 3153-3166. DOI: https://doi.org/10.1105/tpc.112.099994

 

Alyokhin, A. (2009). Colorado potato beetle management on potatoes: Current challenges and future prospects. Fruit, Vegetable and Cereal Science and Biotechnology, 3, 10-19. URL: http://www.globalsciencebooks.info/Online/GSBOnline/images/0906/FVCSB_3(SI1)/FVCSB_3(SI1)10-19o.pdf

 

Arjunan, N., Thiruvengadam, V., & Sushil, S. N. (2024). Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review. Molecular Biology Reports, 51, 355. DOI: https://doi.org/10.1007/s11033-023-09187-6

 

Ayilara, M. S., Adeleke, B. S., Akinola, S. A., Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., Omole, R. K., Johnson, R. M., Uthman, Q. O., & Babalola, O. O. (2023). Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Frontiers in Microbiology, 14, 1040901. DOI: https://doi.org/10.3389/
fmicb.2023.1040901

 

Bai-Zhong, Z., Xu, S., Cong-Ai, Z., Liu-Yang, L., Ya-She, L., Xing, G., Dong-Mei, C., Zhang, P., Ming-Wang, S., & Xi-Ling, C. (2020). Silencing of Cytochrome P450 in Spodoptera frugiperda (Lepidoptera: Noctuidae) by RNA Interference Enhances Susceptibility to Chlorantraniliprole. Journal of Insect Science, 20(3), 12. DOI: https://doi.org/10.1093/jisesa/ieaa047

 

Barathi, S., Sabapathi, N., Kandasamy, S., & Lee, J. (2024). Present status of insecticide impacts and eco-friendly approaches for remediation-a review. Environmental Research, 240(1), 117432. DOI: https://doi.org/10.1016/j.envres.2023.117432

 

Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322-1326, DOI: https://doi.org/10.1038/
nbt1359

 

Beernink, B. M., Amanat, N., Li, V. H., Manchur, C. L., Whyard, S., & Belmonte, M. F. (2024). SIGS vs. HIGS: opportunities and challenges of RNAi pest and pathogen control strategies. Canadian Journal of Plant Pathology, 46(6), 675-689. DOI: https://doi.org/10.1080/
07060661.2024.2392610

 

Bennett, M., Deikman, J., Hendrix, B., & Iandolino, A. (2020). Barriers to Efficient Foliar Uptake of dsRNA and Molecular Barriers to dsRNA Activity in Plant Cells. Frontiers in Plant Science, 11, 816. DOI: https://doi.org/10.3389/fpls.2020.00816

 

Bera, P., Suby, S. B., Dixit, S., Vijayan, V., Kumar, N., Sekhar, J. C., & Vadassery, J. (2025). Identification of novel target genes for RNAi mediated management of the pest, Fall Armyworm (Spodoptera frugiperda, J. E. Smith). Crop Protection, 187, 106792. DOI: https://doi.org/10.1016/
j.cropro.2024.106972

 

Bessin, R. (2019). Colorado Potato Beetle Management. University of Kentucky Department of Entomology. URL: https://entomology.ca.uky.edu/ef312

 

Bodnariuk, B., & Scholtens, B. (2013). Leptinotarsa decemlineata. Animal Diversity Web. URL: https://animaldiversity.org/accounts/Leptinotarsa_decemlineata/#comments

 

Boiteau, G., & Le Blanc, J.-P. R. (1992). Colorado potato beetle LIFE STAGES. Government of Canada Publications. URL: https://publications.gc.ca/collections/Collection/A43-1878-1992E.pdf

 

Bolaji Umar, O., Amudalat Ranti, L., Shehu Abdulbaki, A., Lukman Bola, A., Khadijat Abdulhamid, A., Ramat Biola, M., & Oluwagbenga Victor, K. (2022). Stresses in Plants: Biotic and Abiotic. Current Trends in Wheat Research. DOI: https://doi.org/10.5772/intechopen.100501

 

Bolognesi, R., Ramaseshadri, P., Anderson, J., Bachman, P., Clinton, W., Flannagan, R., Ilagan, O., Lawrence, C., Levine, S., Moar, W., Mueller, G., Tan, J., Uffman, J., Wiggins, E., Heck, G., & Segers, G. (2012). Characterizing the Mechanism of Action of Double-Stranded RNA Activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). Public Library of Science One, 7(10), e47534. DOI: https://doi.org/10.1371/journal.pone.0047534

 

Bragard, C., Dehnen-Schmutz, K., Di Serio, F., Gonthier, P., Jacques, M.-A., Jaques Miret, J. A., Justesen, A. F., Magnusson, C. S., Milonas, P., Navas-Cortes, J. A., Parnell, S., Potting, R., Reignault, P. L., Thulke, H.-H., Van der Werf, W., Civera, A. V., Yuen, J., Zappalà, L., Kertesz, V., Maiorano, A., Streissl, F., & MacLeod, A. (2020). Pest categorisation of Leptinotarsa decemlineata. European Food Safety Authority Journal, 18(12), e06359. DOI: https://doi.org/10.2903/j.efsa.2020.6359

 

Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., & Hannon, G. J. (2007). Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in DrosophilaCell, 128(6), 1089-1103. DOI: https://doi.org/10.1016/j.cell.2007.01.043

 

Bronkhorst, A. W., & van Rij, R. P. (2014). The long and short of antiviral defense: small RNA-based immunity in insects. Current Opinion in Virology, 7, 19-28. DOI: https://doi.org/10.1016/
j.coviro.2014.03.010

 

Bulgarella, M., Baty, J. W., McGruddy, R., & Lester, P. J. (2023). Gene silencing for invasive paper wasp management: Synthesized dsRNA can modify gene expression but did not affect mortality. Public Library of Science One, 18(1), e0279983. DOI: https://doi.org/10.1371/
journal.pone.0279983

Cappelle, K., de Oliveira, C. F. R., Van Eynde, B., Christiaens, O., & Smagghe, G. (2016). The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Molecular Biology, 25(3), 315-323. DOI: https://doi.org/10.1111/imb.12222

 

Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. DOI: https://doi.org/10.1016/j.cell.2009.01.035

 

Caton, B. P., Dobbs, T. T., & Brodel, C. F. (2006). Arrivals of hitchhiking insect pests on international cargo aircraft at Miami International Airport. Biological Invasions, 8, 765-785. DOI: https://doi.org/10.1007/s10530-005-3736-x

 

Centre for Agriculture and Bioscience International. (2021). Leptinotarsa decemlineata (Colorado potato beetle). Centre for Agriculture and Bioscience International Compendium. DOI: https://doi.org/10.1079/cabicompendium.30380

 

Centre for Agriculture and Bioscience International. (2025). Leptinotarsa decemlineata (Colorado potato beetle): Distribution Table. Centre for Agriculture and Bioscience International Compendium. DOI: https://doi.org/10.1079/cabicompendium.30380

 

Chen, C., Imran, M., Feng, X., Shen, X., & Sun, Z. (2025). Spray-induced gene silencing for crop protection: recent advances and emerging trends. Frontiers in Plant Science, 16, 1527944. DOI: https://doi.org/10.3389/fpls.2025.1527944

 

Cherlinka, V. (2025). Integrated Pest Management Strategies In Agriculture. Earth Observing System Data Analytics. URL: https://eos.com/blog/integrated-pest-management/

 

Chikate, Y. R., Dawkar, V. V., Barbole, R. S., Tilak, P. V., Gupta, V. S., & Giri, A. P. (2016). RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 133, 44-51. DOI: https://doi.org/10.1016/j.pestbp.2016.03.006

 

Choudry, M. W., Nawaz, P., Jahan, N., Riaz, R., Ahmed, B., Raza, M. H., Fayyaz, Z., Malik, K., & Afzal, S. (2024). RNA based gene silencing modalities to control insect and fungal plant pests – Challenges and future prospects. Physiological and Molecular Plant Pathology, 130, 102241. DOI: https://doi.org/10.1016/j.pmpp.2024.102241

 

Christiaens, O., Tardajos, M. G., Martinez Reyna, Z. L., Dash, M., Dubruel, P., Smagghe, G. (2018). Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers. Frontiers in Physiology, 9, 316. DOI: https://doi.org/10.3389/fphys.2018.00316

 

Chung, W.-J., Okamura, K., Martin, R., & Lai, E. C. (2008). Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons. Current Biology, 18(11), 795-802. DOI: https://doi.org/10.1016/j.cub.2008.05.006

 

Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafá, G., & Crozier, J. (2017). Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific Reports, 7, 4103. DOI: https://doi.org/10.1038/s41598-017-04238-y

 

Cooper, A. M. W., Silver, K., Zhang, J., Park, Y., & Zhu, K. Y. (2019). Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Management Science, 75(1), 18-28. DOI: https://
doi.org/10.1002/ps.5126

 

Cornec, A., & Poirier, E. Z. (2023). Interplay between RNA interference and transposable elements in mammals. Frontiers in Immunology, 14, 1212086. DOI: https://doi.org/10.3389/
fimmu.2023.1212086

 

Czech, B., Malone, C. D., Zhou, R., Stark, A., Schlingeheyde, C., Dus, M., Perrimon, N., Kellis, M., Wohlschlegel, J. A., Sachidanandam, R., Hannon, G. J., & Brennecke, J. (2008). An endogenous small interfering RNA pathway in Drosophila. Nature, 453, 798-802. DOI: https://doi.org/
10.1038/nature07007

 

Dang, Y., Yang, Q., Xue, Z., & Liu, Y. (2011). RNA Interference in Fungi: Pathways, Functions, and Applications. Eukaryotic Cell, 10(9), 1148-1155. DOI: https://doi.org/10.1128/ec.05109-11

 

Das, P. R., & Sherif, S. M. (2020). Application of Exogenous dsRNAs-induced RNAi in Agriculture: Challenges and Triumphs. Frontiers in Plant Science, 11, 946. DOI: https://doi.org/10.3389/
fpls.2020.00946

 

Dasgupta, R., Garcia, B. H., & Goodman, R. M. (2001). Systemic spread of an RNA insect virus in plants expressing plant viral movement protein genes. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 4910-4915. DOI: https://doi.org/10.1073/
pnas.081288198

 

Davis-Vogel, C., Van Allen, B., Van Hemert, J. L., Sethi, A., Nelson, M. E., & Sashital, D. G. (2018). Identification and comparison of key RNA interference machinery from western corn rootworm, fall armyworm, and southern green stink bug. Public Library of Science One, 13(9), e0203160. DOI: https://doi.org/10.1371/journal.pone.0203160

 

Deng, P., Peng, Y., Sheng, Z., Li, W., & Liu, Y. (2024). RNAi silencing CHS1 gene shortens the mortality time of Plutella xylostella feeding Bt-transgenic Brassica napus. Pest Management Science, 80(6), 2610-2618. DOI: https://doi.org/10.1002/ps.7968

 

Deng, T., Su, S., Yuan, X., He, J., Huang, Y., Ma, J., & Wang, J. (2023). Structural mechanism of R2D2 and Loqs-PD synergistic modulation on DmDcr-2 oligomers. Nature Communications, 14, 5228. DOI: https://doi.org/10.1038/s41467-023-40919-1

 

Denli, A. M., Tops, B. B. J., Plasterk, R. H. A., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature, 432, 231-235. DOI: https://doi.org/
10.1038/nature03049

 

De Schutter, K., Taning, C. N. T., Van Daele, L., Van Damme, E. J. M., Dubruel, P., & Smagghe, G. (2022). RNAi-Based Biocontrol Products: Market Status, Regulatory Aspects, and Risk Assessment. Frontiers in Insect Science, 1, 818037. DOI: https://doi.org/10.3389/finsc.2021.818037

 

Dowling, D., Pauli, T., Donath, A., Meusemann, K., Podsiadlowski, L., Petersen, M., Peters, R. S., Mayer, C., Liu, S., Zhou, X., Misof, B., & Niehuis, O. (2016). Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects. Genome Biology and Evolution, 8(12), 3784-3793. DOI: https://doi.org/10.1093/gbe/evw281

 

Dunn, E. (1949). Colorado Beetle in the Channel Islands, 1947 and 1948. Annals of Applied Biology, 36(4), 525-534. DOI: https://doi.org/10.1111/j.1744-7348.1949.tb06948.x

 

Eaton, A. T., & Maccini, R. (2016). Colorado Potato Beetle. University of New Hampshire Cooperative Extension. URL: https://extension.unh.edu/sites/default/files/migrated_unmanaged_files/
Resource002811_Rep4166.pdf

 

El-Sappah, A., Yan, K., Huang, Q., Islam, M. M., Li, Q., Wang, Y., Khan, M. S., Zhao, X., Mir, R. R., Li, J., El-Tarabily, K. A., & Abbas, M. (2021). Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. Frontiers in Plant Science, 12. DOI: https://doi.org/10.3389/fpls.2021.705249

 

European and Mediterranean Plant Protection Organization. (2025a). Spodoptera frugiperda. URL: https://gd.eppo.int/taxon/LAPHFR/datasheet

 

European and Mediterranean Plant Protection Organization. (2025b). Leptinotarsa decemlineata. URL: https://gd.eppo.int/taxon/LPTNDE/datasheet

 

European and Mediterranean Plant Protection Organization. (2025c). EPPO Global Database. URL: https://gd.eppo.int/

 

Feinberg, E. H., & Hunter, C. P. (2003). Transport of dsRNA into Cells by the Transmembrane Protein SID-1. Science, 301(5639), 1545-1547. DOI: https://doi.org/10.1126/science.1087117

 

Felton, G. W., Workman, J., & Duffey, S. S. (1992). Avoidance of antinutritive plant defense: Role of midgut pH in Colorado potato beetle. Journal of Chemical Ecology, 18, 571-583. DOI: https://doi.org/10.1007/BF00987820

 

Ferro, D. N., Logan, J. A., Voss, R. H., & Elkinton, J. S. (1985). Colorado Potato Beetle (Coleoptera: Chrysomelidae) Temperature-dependent Growth and Feeding Rates. Environmental Entomology, 14(3), 343-348. DOI: https://doi.org/10.1093/ee/14.3.343

 

Ferro, D. N., Tuttle, A. F., & Weber, D. C. (1991). Ovipositional and Flight Behavior of Overwintered Colorado Potato Beetle (Coleoptera: Chrysomelidae). Environmental Entomology, 20(5), 1309-1314. DOI: https://doi.org/10.1093/ee/20.5.1309

 

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811. DOI: https://doi.org/10.1038/35888

 

Fitch, C. A., Platzer, G., Okon, M., Garcia-Moreno E., B., & McIntosh, L. P. (2015). Arginine: Its pKa value revisited. Protein Science, 24(5), 752-761. DOI: https://doi.org/10.1002/pro.2647

 

Flint, M. L., Daar, S., & Molinar, R. (2003). Establishing Integrated Pest Management Policies and Programs: A Guide for Public Agencies. University of California Agriculture and Natural Resources. URL: https://anrcatalog.ucanr.edu/pdf/8093.pdf

 

Food and Agriculture Organization of the United Nations. (2024a). About FAO’s work on plant Production and Protection. URL: https://www.fao.org/plant-production-protection/about/
en#:~:text=Every%20year%2C%20up%20to%2040%20percent%20of%20crops%20are%20lost,to%20plant%20pests%20and%20diseases

Food and Agriculture Organization of the United Nations. (2024b). Pesticides Use. URL: https://www.fao.org/faostat/en/#data/RP

 

Food and Agriculture Organization of the United Nations. (2024c). Global Action for Fall Armyworm Control. URL: https://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/

 

Fridrich, A., & Moran, Y. (2023). Some flies do not play ping-pong. Public Library of Science Biology, 21(6), e3002152. DOI: https://doi.org/10.1371/journal.pbio.3002152

 

Fukunaga, R., Han, B. W., Hung, J.-H., Xu, J., Weng, Z., & Zamore, P. D. (2012). Dicer Partner Proteins Tune the Length of Mature miRNAs in Flies and Mammals. Cell, 151(3), 533-546. DOI: https://doi.org/10.1016/j.cell.2012.09.027

 

Gammon, D. B., Ishidate, T., Li, L., Gu, W., Silverman, N., & Mello, C. C. (2017). The Antiviral RNA Interference Response Provides Resistance to Lethal Arbovirus Infection and Vertical Transmission in Caenorhabditis elegans. Current Biology, 27(6), 795-806. DOI: https://doi.org/
10.1016/j.cub.2017.02.004

 

Garino, C., Zagon, J., & Braeuning, A. (2019). Insects in food and feed – allergenicity risk assessment and analytical detection. European Food Safety Authority Journal, 17(2), e170907. DOI: https://doi.org/10.2903/j.efsa.2019.e170907

 

Ge, S., He, L., He, W., Yan, R., Wyckhuys, K. A. G., & Wu, K. (2021). Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. Journal of Integrative Agriculture, 20(3), 707-714. DOI: https://doi.org/10.1016/S2095-3119(20)63166-5

 

Ghildiyal, M., Seitz, H., Horwich, M. D., Li, C., Du, T., Lee, S., Xu, J., Kittler, E. L. W., Zapp, M. L., Weng, Z., & Zamore, P. D. (2008). Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells. Science, 320(5879), 1077-1081. DOI: https://doi.org/10.1126/
science.1157396

 

Göldel, B., Lemic, D., & Bažok, R. (2020). Alternatives to Synthetic Insecticides in the Control of the Colorado Potato Beetle (Leptinotarsa decemlineata Say) and Their Environmental Benefits. Agriculture, 10(12), 611. DOI: https://doi.org/10.3390/agriculture10120611

 

Gong, L., Wang, Z., Wang, H., Qi, J., Hu, M., & Hu, Q. (2015). Core RNAi Machinery and Three Sid-1 Related Genes in Spodoptera litura (Fabricius). International Journal of Agriculture & Biology, 17(5), 937-944. DOI: https://doi.org/10.17957/IJAB/15.0005

 

Gordon, K. H. J., & Waterhouse, P. M. (2007). RNAi for insect-proof plants. Nature Biotechnology, 25, 1231-1232. DOI: https://doi.org/10.1038/nbt1107-1231

 

Government of Ontario. (s.d.). Potatoes: Colorado Potato Beetle. URL: https://cropipm.omafra.gov.on.ca/en-ca/crops/potatoes/insects-and-mites/d0c9f45d-9230-4408-8391-42dd02777b60?iid=c807dcf5-00f2-4ceb-a3eb-c21ca47a7203

 

Gringorten, J. L., Crawford, D. N., & Harvey, W. R. (1993). HIGH pH IN THE ECTOPERITROPHIC SPACE OF THE LARVAL LEPIDOPTERAN MIDGUT. Journal of Experimental Biology, 183(1), 353-359. DOI: https://doi.org/10.1242/jeb.183.1.353

 

Guedes, R. N. C., Walse, S. S., & Throne, J. E. (2017). Sublethal exposure, insecticide resistance, and community stress. Current Opinion in Insect Science, 21, 47-53. DOI: https://doi.org/10.1016/
j.cois.2017.04.010

 

Guo, W., Li, C., Ahemaiti, T., Jiang, W., Li, G., Wu, J., & Fu, K. (2017). Colorado Potato Beetle Leptinotarsa decemlineata (Say). In F. Wan, M. Jiang, & A. Zhan (Eds.), Biological Invasions and Its Management in China (195-217). Springer Nature. DOI: https://doi.org/10.1007/978-94-024-0948-2_10

 

Gurusamy, D., Mogilicherla, K., Palli, S. R. (2020a). Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochemistry and Physiology, 104(4), e21677. DOI: https://doi.org/10.1002/
arch.21677

 

Gurusamy, D., Mogilicherla, K., Shukla, J. N., & Palli, S. R. (2020b). Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochemistry and Physiology, 104(4), e21678. DOI: https://doi.org/10.1002/arch.21678

 

He, L., Zhou, Y., Mo, Q., Huang, Y., & Tang, X. (2024). Spray-induced gene silencing in phytopathogen: Mechanisms, applications, and progress. Advanced Agrochem, 3(4), 289-297. DOI: https://
doi.org/10.1016/j.aac.2024.06.001

 

Hoang, B. T. L., Fletcher, S. J., Brosnan, C. A., Ghodke, A. B., Manzie, N., & Mitter, N. (2022). RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. International Journal of Molecular Sciences, 23(12), 6639. DOI: https://doi.org/10.3390/ijms23126639

 

Holden, M. H., Ellner, S. P., Lee, D.-H., Nyrop, J. P., & Sanderson, J. P. (2012). Designing an effective trap cropping strategy: the effects of attraction, retention and plant spatial distribution. Journal of Applied Ecology, 49(3), 715-722. DOI: https://doi.org/10.1111/j.1365-2664.2012.02137.x

 

Horwich, M. D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P., & Zamore, P. D. (2007). The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC. Current Biology, 17(14), 1265-1272. DOI: https://doi.org/10.1016/
j.cub.2007.06.030

 

Hsiao, T. H., & Fraenkel, G. (1968). Selection and Specificity of the Colorado Potato Beetle for Solanaceous and Nonsolanaceous Plants. Annals of the Entomological Society of America, 61(2), 493-503. DOI: https://doi.org/10.1093/aesa/61.2.493

 

Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D., Nentwig, W., Olenin, S., Panov, V., Pergl, J., Pyšek, P., Roques, A., Sol, D., Solarz, W., & Vilà, M. (2008). Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology, 45(2), 403-414. DOI: https://doi.org/10.1111/j.1365-2664.2007.01442.x

 

Huotari, J., & Helenius, A. (2011). Endosome maturation. The European Molecular Biology Organization Journal, 30, 3481-3500. DOI: https://doi.org/10.1038/emboj.2011.286

 

Ito, H. (2013). Small RNAs and regulation of transposons in plants. Genes & Genetic Systems, 88(1), 3-7. DOI: https://doi.org/10.1266/ggs.88.3

 

Iwakawa, H.-O., & Tomari, Y. (2022). Life of RISC: Formation, action, and degradation of RNA-induced silencing complex. Molecular Cell, 82(1), 30-43. DOI: https://doi.org/10.1016/
j.molcel.2021.11.026

 

Jeffers, A. H., & Chong, J.-H. (2021). Biological Control Strategies in Integrated Pest Management (IPM) Programs. Clemson University Cooperative Extension. URL: https://lgpress.clemson.edu/
publication/biological-control-strategies-in-integrated-pest-management-ipm-programs/

 

Johnson, S. J. (1987). Migration and the Life History Strategy of the Fall Armyworm, Spodoptera Frugiperda in the Western Hemisphere. International Journal of Tropical Insect Science, 8, 543-549. DOI: https://doi.org/10.1017/S1742758400022591

 

Jood, S., & Kapoor, A. C. (1992). Effect of storage and insect infestation on protein and starch digestibility of cereal grains. Food Chemistry, 44(3), 209-212. DOI: https://doi.org/10.1016/0308-8146(92)90189-9

 

Jood, S., Kapoor, A. C., & Singh, R. (1992). Mineral contents of cereal grains as affected by storage and insect infestation. Journal of Stored Products Research, 28(3), 147-151. DOI: https://doi.org/10.1016/0022-474X(92)90033-M

 

Jood, S., Kapoor, A. C., & Singh, R. (1993a). Available carbohydrates of cereal grains as affected by storage and insect infestation. Plant Foods for Human Nutrition, 43, 45-54. DOI: https://doi.org/10.1007/BF01088095

 

Jood, S., Kapoor, A. C., & Singh, R. (1993b). Effect of insect infestation on the organoleptic characteristics of stored cereals. Postharvest Biology and Technology, 2(4), 341-348. DOI: https://doi.org/10.1016/0925-5214(93)90038-5

 

Jood, S., Kapoor, A. C., & Singh, R. (1995). Amino acid composition and chemical evaluation of protein quality of cereals as affected by insect infestation. Plant Foods for Human Nutrition, 48, 159-167. DOI: https://doi.org/10.1007/BF01088312

 

Jood, S., Kapoor, A. C., & Singh, R. (1996). Effect of Insect Infestation and Storage on Lipids of Cereal Grains. Journal of Agricultural and Food Chemistry, 44(6), 1502-1506. DOI: https://doi.org/10.1021/jf950270e

 

Karimi, H. Z., & Innes, R. W. (2022). Molecular mechanisms underlying host-induced gene silencing. The Plant Cell, 34(9), 3183-3199. DOI: https://doi.org/10.1093/plcell/koac165

 

Karlikow, M., Goic, B., Mongelli, V., Salles, A., Schmitt, C., Bonne, I., Zurzolo, C., & Saleh, M.-C. (2016). Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Scientific Reports, 6, 27085. DOI: https://doi.org/10.1038/srep27085

 

Kebede, M., & Fite, T. (2022). RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Frontiers in Molecular Biosciences, 9, 944774. DOI: https://doi.org/10.3389/
fmolb.2022.944774

 

Khan, I., Al-Hasani, A., Khan, M. H., Khan, A. N., Alam, F. E., Sadozai, S. K., Elhissi, A., Khan, J., & Yousaf, S. (2023). Impact of dispersion media and carrier type on spray-dried proliposome powder formulations loaded with beclomethasone dipropionate for their pulmonary drug delivery via a next generation impactor. Public Library of Science, 18(3), e0281860. DOI: https://doi.org/
10.1371/journal.pone.0281860

 

Koch, A., & Wassenegger, M. (2021). Host‐induced gene silencing – mechanisms and applications. New Phytologist, 231(1), 54-59. DOI: https://doi.org/10.1111/nph.17364

 

Kolge, H., Kadam, K., & Ghormade, V. (2023). Chitosan nanocarriers mediated dsRNA delivery in gene silencing for Helicoverpa armigera biocontrol. Pesticide Biochemistry and Physiology, 189, 105292. DOI: https://doi.org/10.1016/j.pestbp.2022.105292

 

Knorr, E., Fishilevich, E., Tenbusch, L., Frey, M. L. F., Rangasamy, M., Billion, A., Worden, S. E., Gandra, P., Arora, K., Lo, W., Schulenberg, G., Valverde-Garcia, P., Vilcinskas, A., & Narva, K. E. (2018). Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Scientific Reports, 8, 2061. DOI: https://doi.org/10.1038/s41598-018-20416-y

 

Lam, J. K. W., Chow, M. Y. T., Zhang, Y., & Leung, S. W. S. (2015). siRNA Versus miRNA as Therapeutics for Gene Silencing. Molecular Therapy Nucleic Acids, 4(9), e252. DOI: https://doi.org/10.1038/
mtna.2015.23

 

Lee, Y., Kim, M., Han, J., Yeom, K.-H., Lee, S., Baek, S. H., & Kim, V. N. (2004a). MicroRNA genes are transcribed by RNA polymerase II. The European Molecular Biology Organization Journal, 23(20), 4051-4060. DOI: https://doi.org/10.1038/sj.emboj.7600385

 

Lee, Y. S., Nakahara, K., Pham, J. W., Kim, K., He, Z., Sontheimer, E. J., & Carthew, R. W. (2004b). Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways. Cell, 117(1), 69-81. DOI: https://doi.org/10.1016/S0092-8674(04)00261-2

 

Leggewie, M., & Schnettler, E. (2018). RNAi-mediated antiviral immunity in insects and their possible application. Current Opinion in Virology, 32, 108-114. DOI: https://doi.org/10.1016/
j.coviro.2018.10.004

 

Lehmann, P., Ammunét, T., Barton, M., Battisti, A., Eigenbrode S. D., Jepsen, J. U., Kalinkat, G., Neuvonen, S., Niemelä, P., Terblanche, J. S., Økland, B., & Björkman, C. (2020). Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 18(3), 141-150. DOI: https://doi.org/10.1002/fee.2160

 

Lin, Y.-H., Huang, J.-H., Liu, Y., Belles, X., & Lee, H.-J. (2017). Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. Pest Management Science, 73(5), 960-966. DOI: https://doi.org/10.1002/ps.4407

 

Logan, P. A., Casagrande, R. A., Faubert, H. H., & Drummond, F. A. (1985). Temperature-dependent Development and Feeding of Immature Colorado Potato Beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Environmental Entomology, 14(3), 275-283. DOI: https://doi.org/10.1093/ee/14.3.275

 

Lv, H., Zhang, S., Wang, B., Cui, S., & Yan, J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release, 114(1), 100-109. DOI: https://doi.org/10.1016/
j.jconrel.2006.04.014

 

Maggi, F., Tang, F. H. M., & Tubiello, F. N. (2023). Agricultural pesticide land budget and river discharge to oceans. Nature, 620, 1013-1017. DOI: https://doi.org/10.1038/s41586-023-06296-x

 

Maillard, P. V., Ciaudo, C., Marchais, A., Li, Y., Jay, F., Ding, S. W., & Voinnet, O. (2013). Antiviral RNA Interference in Mammalian Cells. Science, 342(6155), 235-238. DOI: https://doi.org/10.1126/
science.1241930

 

Marques, J. T., Kim, K., Wu, P.-H., Alleyne, T. M., Jafari, N., & Carthew, R. W. (2010). Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nature Structural & Molecular Biology, 17, 24-30. DOI: https://doi.org/10.1038/nsmb.1735

 

Marvel, K., Su, W., Delgado, R., Aarons, S., Chatterjee, A., Garcia, M. E., Hausfather, Z., Hayhoe, K., Hence, D. A., Jewett, E. B., Robel, A., Singh, D., Tripati, A., & Vose, R. S. (2023). Chapter 2: Climate Trends. In A. R. Crimmins, C. W. Avery, D. R. Easterling, K. E. Kunkel, B. C. Stewart, & T. K. Maycock (Eds.), Fifth National Climate Assessment. United States Global Change Research Program. DOI: https://doi.org/10.7930/nca5.2023.ch2

 

McBride, K. E., Svab, Z., Schaaf, D. J., Hogan, P. S., Stalker, D. M., & Maliga, P. (1995). Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Nature Biotechnology, 13, 362-365. DOI: https://doi.org/10.1038/nbt0495-362

 

McGraw, E., Roberts, J. D., Kunte, N., Westerfield, M., Streety, X., Held, D., & Avila, L. A. (2022). Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut. American Chemical Society Omega, 7(13), 10933-10943. DOI: https://
doi.org/10.1021/acsomega.1c06638

 

McKinlay, C. J., Waymouth, R. M., & Wender, P. A. (2016). Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery. Journal of the American Chemical Society, 138(10), 3510-3517. DOI: https://doi.org/
10.1021/jacs.5b13452

 

Mingels, L., Wynant, N., Santos, D., Peeters, P., Gansemans, Y., Billen, J., Van Nieuwerburgh, F., & Vanden Broeck, J. (2020). Extracellular vesicles spread the RNA interference signal of Tribolium castaneum TcA cells. Insect Biochemistry and Molecular Biology, 122, 103377. DOI: https://
doi.org/10.1016/j.ibmb.2020.103377

 

Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q. M., & Xu, Z. P. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3, 16207. DOI: https://doi.org/10.1038/nplants.2016.207

 

Miyata, K., Ramaseshadri, P., Zhang, Y., Segers, G., Bolognesi, R., & Tomoyasu, Y. (2014). Establishing an In Vivo Assay System to Identify Components Involved in Environmental RNA Interference in the Western Corn Rootworm. Public Library of Science One, 9(7), e101661. DOI: https://doi.org/
10.1371/journal.pone.0101661

 

Miyoshi, K., Okada, T. N., Siomi, H., Siomi, & M. C. (2009). Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA, 15(7), 1282-1291. DOI: https://doi.org/10.1261/rna.1541209

 

Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H., & Siomi, M. C. (2005). Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes & Development, 19(23), 2837-2848. DOI: https://doi.org/10.1101/gad.1370605

 

Mohammadi Sharif, M., Hejazi, M. J., Mohammadi, A., & Rashidi, M. R. (2007). Resistance status of the Colorado potato beetle, Leptinotarsa decemlineata, to endosulfan in East Azarbaijan and Ardabil provinces of Iran. Journal of Insect Science, 7(1), 31. DOI: https://doi.org/10.1673/
031.007.3101

 

Mongelli, V., & Saleh, M.-C. (2016). Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects. Annual Review of Virology, 3, 573-589. DOI: https://doi.org/10.1146/
annurev-virology-110615-042447

 

Montezano, D. G., Sosa-Gómez, D. R., Specht, A., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V., Peterson, J. A., & Hunt, T. E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera : Noctuidae) in the Americas. African Entomology, 26(2), 286-300. DOI: https://doi.org/
10.4001/003.026.0286

 

Moosavian, S. A., Bianconi, V., Pirro, M., & Sahebkar, A. (2021). Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Seminars in Cancer Biology, 69, 337-348. DOI: https://doi.org/10.1016/j.semcancer.2019.09.025

 

Muhammad, T., Zhang, F., Zhang, Y., & Liang, Y. (2019). RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells, 8(1), 38. DOI: https://doi.org/10.3390/
cells8010038

 

Nagoshi, R. N., Koffi, D., Agboka, K., Tounou, K. A., Banerjee, R., Jurat-Fuentes, J. L., & Meagher, R. L. (2017). Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. Public Library of Science One, 12(7), e0181982. DOI: https://doi.org/10.1371/journal.pone.0181982

 

Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant Cell, 2(4), 279-289. DOI: https://doi.org/10.2307/3869076

 

New Zealand Government. (2023). Pesticide maximum residue level legislation around the world. URL: https://www.mpi.govt.nz/agriculture/plant-products-requirements-and-pesticide-levels/
pesticide-maximum-residue-levels-mrls-for-plant-based-food-for-nz-and-other-countries/
pesticide-maximum-residue-level-legislation-around-the-world/

 

Nishimasu, H., Ishizu, H., Saito, K., Fukuhara, S., Kamatani, M. K., Bonnefond, L., Matsumoto, N., Nishizawa, T., Nakanaga, K., Aoki, J., Ishitani, R., Siomi, H., Siomi, M. C., & Nureki, O. (2012). Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature, 491, 284-287. DOI: https://doi.org/10.1038/nature11509

 

Nivya, V. M., & Shah, J. M. (2023). Recalcitrance to transformation, a hindrance for genome editing of legumes. Frontiers in Genome Editing, 5, 1247815. DOI: https://doi.org/10.3389/
fgeed.2023.1247815

 

Oguh, C. E., Okpaka, C. O., Ubani, C. S., Okekeaji, U., Joseph, P. S., & Amadi, E. U. (2019). Natural Pesticides (Biopesticides) and Uses in Pest Management- A Critical Review. Asian Journal of Biotechnology and Genetic Engineering, 2(2), 126-143. URL: https://journalajbge.com/
index.php/AJBGE/article/view/37

 

Okamura, K., Balla, S., Martin, R., Liu, N., & Lai, E. C. (2008a). Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nature Structural & Molecular Biology, 15, 581-590. DOI: https://doi.org/10.1038/nsmb.1438

 

Okamura, K., Chung, W.-J., Ruby, J. G., Guo, H., Bartel, D. P., & Lai, E. C. (2008b). The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature, 453, 803-806. DOI: https://doi.org/10.1038/nature07015

 

Olivieri, D., Senti, K.-A., Subramanian, S., Sachidanandam, R., & Brennecke, J. (2012). The Cochaperone Shutdown Defines a Group of Biogenesis Factors Essential for All piRNA Populations in Drosophila. Molecular Cell, 47(6), 954-969. DOI: https://doi.org/10.1016/j.molcel.2012.07.021

 

Ortolá, B., Daròs, J.-A. (2024). RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. Biology, 13(3), 137. DOI: https://doi.org/10.3390/biology13030137

 

Pallis, S., Alyokhin, A., Manley, B., Rodrigues, T., Barnes, E., & Narva, K. (2023). Effects of Low Doses of a Novel dsRNA-based Biopesticide (Calantha) on the Colorado Potato Beetle. Journal of Economic Entomology, 116(2), 456-461. DOI: https://doi.org/10.1093/jee/toad034

 

Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology, 13, 962619. DOI: https://doi.org/10.3389/fmicb.2022.962619

 

Peng, Y., Wang, K., Fu, W., Sheng, C., & Han, Z. (2018). Biochemical Comparison of dsRNA Degrading Nucleases in Four Different Insects. Frontiers in Physiology, 9, 624. DOI: https://doi.org/
10.3389/fphys.2018.00624

 

Peng, Y., Wang, K., Zhu, G., Han, Q., Chen, J., Elzaki, M. E. A., Sheng, C., Zhao, C., Palli, S. R., & Han, Z. (2020). Identification and characterization of multiple dsRNases from a lepidopteran insect, the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 162, 86-95. DOI: https://doi.org/10.1016/j.pestbp.2019.09.011

 

Pitre, H. N., & Hogg, D. B. (1983). Development of the fall armyworm on cotton, soybean and corn. Journal of the Georgia Entomological Society, 18, 187-194. URL: https://
api.semanticscholar.org/CorpusID:91046688

 

Poveda, K., Gómez, M. I., & Martínez, E. (2008). Diversification practices: their effect on pest regulation and production. Revista Colombiana De Entomología, 34(2), 131-144. DOI: https://doi.org/
10.25100/socolen.v34i2.9269

Prasanna, B., Huesing, J., Eddy, R., & Peschke, V. (2018). Fall armyworm in Africa: a guide for integrated pest management. Feed the future. URL: https://repository.cimmyt.org/server/api/core/
bitstreams/5f933e59-ad3a-4643-a91e-377f9d913370/content

 

Rivera-Vega, L. J., Acevedo, F. E., & Felton, G. W. (2017). Genomics of Lepidoptera saliva reveals function in herbivory. Current Opinion in Insect Science, 19, 61-69. DOI: https://doi.org/
10.1016/j.cois.2017.01.002

 

Rodrigues, T. B., Mishra, S. K., Sridharan, K., Barnes, E. R., Alyokhin, A., Tuttle, R., Kokulapalan, W., Garby, D., Skizim, N. J., Tang, Y., Manley, B., Aulisa, L., Flannagan, R. D., Cobb, C., & Narva, K. E. (2021). First Sprayable Double-Stranded RNA-Based Biopesticide Product Targets Proteasome Subunit Beta Type-5 in Colorado Potato Beetle (Leptinotarsa decemlineata). Frontiers in Plant Science, 12, 728652. DOI: https://doi.org/10.3389/fpls.2021.728652

 

Romeis, J., & Widmer, F. (2020). Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. Frontiers in Plant Science, 11, 679. DOI: https://doi.org/10.3389/
fpls.2020.00679

 

Rössner, C., Lotz, D., & Becker, A. (2022). VIGS Goes Viral: How VIGS Transforms Our Understanding of Plant Science. Annual Review of Plant Biology, 73, 703-728. DOI: https://doi.org/10.1146/
annurev-arplant-102820-020542

 

Rothbard, J. B., Jessop, T. C., Lewis, R. S., Murray, B. A., & Wender, P. A. (2004). Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. Journal of the American Chemical Society, 126(31), 9506-9507. DOI: https://doi.org/10.1021/ja0482536

 

Rozov, S. M., Sidorchuk, Y. V., & Deineko, E. V. (2022). Transplastomic Plants: Problems of Production and Their Solution. Russian Journal of Plant Physiology, 69, 20. DOI: https://doi.org/10.1134/
S1021443722020157

 

Rwomushana, I. (2019). Spodoptera frugiperda (fall armyworm). Centre for Agriculture and Bioscience International Compendium. DOI: https://doi.org/10.1079/cabicompendium.29810

 

Rwomushana, I. (2025). Spodoptera frugiperda (fall armyworm): Distribution Table. Centre for Agriculture and Bioscience International Compendium. DOI: https://doi.org/10.1079/
cabicompendium.29810

 

Sallam, M. N., & Mejia, D. (2000). INSECT DAMAGE: Damage on Post-harvest. International Centre of Insect Physiology and Ecology. URL: https://openknowledge.fao.org/handle/20.500.14283/
av013e

 

Say, T. (1824). Descriptions of Coleopterous insects collected in the late expedition to the Rocky Mountains, performed by order of Mr. Calhoun, Secretary of War, under the command of Major Long. Journal of the Academy of Natural Sciences of Philadelphia, 3(2), 403-462. URL: https://babel.hathitrust.org/cgi/pt?id=uc1.b4268076&view=1up&seq=502

 

Schott, D., Yanai, I., & Hunter, C. P. (2014). Natural RNA interference directs a heritable response to the environment. Scientific Reports, 4, 7387. DOI: https://doi.org/10.1038/srep07387

 

Shabalina, S. A., & Koonin, E. V. (2008). Origins and evolution of eukaryotic RNA interference. Trends in Ecology & Evolution, 23(10), 578-587. DOI: https://doi.org/10.1016/j.tree.2008.06.005

 

Sharma, S., Sharma, P. L., Verma, S. C., Sharma, D., Devi, M., Sharma, N., Sharma, P., Thakur, S., & Sharma, P. (2024). Linking demography and food consumption to project population growth and damage potential of Spodoptera frugiperda in India. Agricultural and Forest Entomology, 26(4), 555-571. DOI: https://doi.org/10.1111/afe.12648

 

Shih, J. D., & Hunter, C. P. (2011). SID-1 is a dsRNA-selective dsRNA-gated channel. RNA, 17, 1057-1065. DOI: https://doi.org/10.1261/rna.2596511

 

Shukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Fishilevich, E., Singh, S., Mogilicherla, K., & Palli, S. R. (2016). Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biology, 13(7), 656-669. DOI: https://doi.org/10.1080/
15476286.2016.1191728

 

Siddiqui, J. A., Fan, R., Naz, H., Bamisile, B. S., Hafeez, M., Ghani, M. I., Wei, Y., Xu, Y., & Chen, X. (2023). Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Frontiers in Physiology, 13. DOI: https://doi.org/10.3389/fphys.2022.1112278

 

Sijen, T., & Plasterk, H. A. P. (2003). Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature, 426, 310-314. DOI: https://doi.org/10.1038/nature02107

 

Singh, A., Shraogi, N., Verma, R., Saji, J., Kar, A. K., Tehlan, S., Ghosh, D., & Patnaik, S. (2024). Challenges in current pest management practices: Navigating problems and a way forward by integrating controlled release system approach. Chemical Engineering Journal, 498, 154989. DOI: https://doi.org/10.1016/j.cej.2024.154989

 

Siomi, M. C., Sato, K., Pezic, D., & Aravin, A. A. (2007). PIWI-interacting small RNAs: the vanguard of genome defence. Nature Reviews Molecular Cell Biology, 12, 246-258. DOI: https://doi.org/
10.1038/nrm3089

 

Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., Barbosa-Filho, J. M., & Cebrián-Torrejón, G. (2021). Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications and Challenges. Molecules, 26(16), 4835. DOI: https://doi.org/10.3390/molecules26164835

 

Spit, J., Philips, A., Wynant, N., Santos, D., Plaetinck, G., & Vanden Broeck, J. (2017). Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 81, 103-116. DOI: https://doi.org/10.1016/j.ibmb.2017.01.004

 

Subedi, B., Poudel, A., & Aryal, S. (2023). The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agricultural and Food Research, 14, 100733. DOI: https://doi.org/
10.1016/j.jafr.2023.100733

 

Stathas, I. G., Sakellaridis, A. C., Papadelli, M., Kapolos, J., Papadimitriou, K., & Stathas, G. J. (2023). The Effects of Insect Infestation on Stored Agricultural Products and the Quality of Food. Foods, 12(10), 2046. DOI: https://doi.org/10.3390/foods12102046

 

Stenberg, J. A., Sundh, I., Becher, P. G., Björkman, C., Dubey, M., Egan, P. A., Friberg, H., Gil, J. F., Jensen, D. F., Jonsson, M., Karlsson, M., Khalil, S., Ninkovic, V., Rehermann, G., Vetukuri, R. R., & Viketoft, M. (2021). When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 94, 665-676. DOI: https://doi.org/10.1007/s10340-021-01354-7

 

Tassetto, M., Kunitomi, M., & Andino, R. (2017). Circulating Immune Cells Mediate a Systemic RNAi-Based Adaptive Antiviral Response in Drosophila. Cell, 169(2), 314-325. DOI: https://doi.org/
10.1016/j.cell.2017.03.033

 

Thompson, K. L., Read, E. S., & Armes, S. P. (2008). Chemical degradation of poly(2-aminoethyl methacrylate). Polymer Degradation and Stability, 93(8), 1460-1466. DOI: https://doi.org/
10.1016/j.polymdegradstab.2008.05.013

 

Tomoyasu, Y., Miller, S. C., Tomita, S., Schoppmeier, M., Grossmann, D., & Bucher, G. (2008). Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biology, 9, R10. DOI: https://doi.org/10.1186/gb-2008-9-1-r10

 

Tóth, K. F., Pezic, D., Stuwe, E., & Webster, A. (2016). The piRNA Pathway Guards the Germline Genome Against Transposable Elements. In D. Wilhelm, & P. Bernard (Eds.), Non-coding RNA and the Reproductive System (51-77). Springer. DOI: https://doi.org/10.1007/978-94-017-7417-8_4

 

Tower, W. L. (1906). An investigation of evolution in chrysomelid beetles of the genus Leptinotarsa. Carnegie Institution of Washington. URL: https://www.biodiversitylibrary.org/item/109794

 

Ulvila, J., Parikka, M., Kleino, A., Sormunen, R., Ezekowitz, R. A., Kocks, C., & Rämet, M. (2006). Double-stranded RNA Is Internalized by Scavenger Receptor-mediated Endocytosis in Drosophila S2 Cells. Journal of Biological Chemistry, 281(20), 14370-14375. DOI: https://doi.org/10.1074/
jbc.M513868200

 

United States Environmental Protection Agency. (2024). Integrated Pest Management (IPM) Principles. URL: https://www.epa.gov/safepestcontrol/integrated-pest-management-ipm-principles

 

Upadhyay, S. K., Chandrashekar, K., Thakur, N., Verma, P. C., Borgio, J. F., Singh, P. K., & Tuli, R. (2011). RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. Journal of Biosciences, 36, 153-161. DOI: https://doi.org/10.1007/s12038-011-9009-1

 

Van Daele, L., Amer Cid, Í., Vereecken, S., Neyts, K., Strubbe, F., & Dubruel, P. (2023). Single-particle electrophoresis to study the adsorption of polyplexes onto anionic particles: A model system for investigating polyplex-cell interactions. European Polymer Journal, 200, 112537. DOI: https://doi.org/10.1016/j.eurpolymj.2023.112537

 

Vaistij, F. E., & Jones, L. (2009). Compromised Virus-Induced Gene Silencing in RDR6-Deficient Plants. Plant Physiology, 149(3), 1399-1407. DOI: https://doi.org/10.1104/pp.108.132688

 

Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20, 515-524. DOI: https://doi.org/
10.1101/gad.1399806

 

Verma, N. K., Moore, E., Blau, W., Volkov, Y., & Babu, P. R. (2012). Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. Journal of Nanoparticle Research, 14, 1137. DOI: https://doi.org/10.1007/s11051-012-1137-5

 

Varkouhi, A. K., Scholte, M., Storm, G., & Haisma, H. J. (2010). Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 151(3), 220-228. DOI: https://doi.org/10.1016/
j.jconrel.2010.11.004

 

Vinokurov, K. S., Elpidina, E. N., Oppert, B., Prabhakar, S., Zhuzhikov, D. P., Dunaevsky, Y. E., & Belozersky, M. A. (2006). Diversity of digestive proteinases in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 145(2), 126-137. DOI: https://doi.org/10.1016/j.cbpb.2006.05.005

 

Walrant, A., Bechara, C., Alves, I. D., & Sagan, S. (2012). Molecular Partners for Interaction and Cell Internalization of Cell-Penetrating Peptides: How Identical Are They?. Nanomedicine, 7(1), 133-143. DOI: https://doi.org/10.2217/nnm.11.165

 

Wang, J., Huang, Y., Huang, L., Dong, Y., Huang, W., Ma, H., Zhang, H., Zhang, X., Chen, X., & Xu, Y. (2023). Migration risk of fall armyworm (Spodoptera frugiperda) from North Africa to Southern Europe. Frontiers in Plant Science, 14, 1141470. DOI: https://doi.org/10.3389/
fpls.2023.1141470

 

Wang, W., Han, B. W., Tipping, C., Ge, D. T., Zhang, Z., Weng, Z., & Zamore, P. D. (2015). Slicing and Binding by Ago3 or Aub Trigger Piwi-Bound piRNA Production by Distinct Mechanisms. Molecular Cell, 59(5), 81-830. DOI: https://doi.org/10.1016/j.molcel.2015.08.007

 

Wang, X., Xu, X., Ma, Z., Huo, Y., Xiao, Z., Li, Y., & Wang, Y. (2011). Dynamic mechanisms for pre-miRNA binding and export by Exportin-5. RNA, 17(8), 1511-1528. DOI: https://doi.org/10.1261/
rna.2732611

 

Weiss, A. M., Lopez II, M. A., Rawe, B. W., Manna, S., Chen, Q., Mulder, E. J., Rowan, S. J., & Esser-Kahn, A. P. (2023). Understanding How Cationic Polymers’ Properties Inform Toxic or Immunogenic Responses via Parametric Analysis. Macromolecules, 56(18), 7286-7299. DOI: https://doi.org/10.1021/acs.macromol.3c01223

 

Wender, P. A., Galliher, W. C., Goun, E. A., Jones, L. R., Pillow, T. H. (2008). The design of guanidinium-rich transporters and their internalization mechanisms. Advanced Drug Delivery Reviews, 60(4‑5), 452-472. DOI: https://doi.org/10.1016/j.addr.2007.10.016

 

Westbrook, J., Fleischer, S., Jairam, S., Meagher, R., & Nagoshi, R. (2019). Multigenerational migration of fall armyworm, a pest insect. Ecosphere, 10(11), e02919. DOI: https://doi.org/
10.1002/ecs2.2919

 

Whyard, S., Singh, A. D., & Wong, S. (2009). Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology, 39(11), 824-832. DOI: https://doi.org/
10.1016/j.ibmb.2009.09.007

 

Winston, W. M., Molodowitch, C., & Hunter, C. P. (2002). Systemic RNAi in C. elegans Requires the Putative Transmembrane Protein SID-1. Science, 295(5564), 2456-2459. DOI: https://doi.org/
10.1126/science.1068836

Worrall, E. A., Hamid, A., Mody, K. T., Mitter, N., & Pappu, H. R. (2018). Nanotechnology for Plant Disease Management. Agronomy, 8(12), 285. DOI: https://doi.org/10.3390/agronomy8120285

 

Wynants, N., Duressa, T. F., Santos, D., Van Duppen, J., Proost, P., Huybrechts, R., & Vanden Broeck, J. (2014). Lipophorins can adhere to dsRNA, bacteria and fungi present in the hemolymph of the desert locust: A role as general scavenger for pathogens in the open body cavity. Journal of Insect Physiology, 64, 7-13. DOI: https://doi.org/10.1016/j.jinsphys.2014.02.010

 

Wytinck, N., Manchur, C. L., Li, V. H., Whyard, S., & Belmonte M. F. (2020). dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology. Plants, 9(12), 1780. DOI: https://doi.org/10.3390/plants9121780

 

Xu, H.-J., Chen, T., Ma, X.-F., Xue, J., Pan, P.-L., Zhang, X.-C., Cheng, J.-A., & Zhang, C.-X. (2013). Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Molecular Biology, 22(6), 635-647. DOI: https://doi.org/10.1111/imb.12051

 

Yamaguchi, S., Naganuma, M., Nishizawa, T., Kusakizako, T., Tomari, Y., Nishimasu, H., & Nureki, O. (2022). Structure of the Dicer-2–R2D2 heterodimer bound to a small RNA duplex. Nature, 607, 393-398. DOI: https://doi.org/10.1038/s41586-022-04790-2

 

Yao, Y., Lin, D.-J., Cai, X.-Y., Wang, R., Hou, Y.-M., Hu, C.-H., Gao, S.-J., & Wang, J.-D. (2022). Multiple dsRNases Involved in Exogenous dsRNA Degradation of Fall Armyworm Spodoptera frugiperda. Frontiers in Physiology, 13, 850022. DOI: https://doi.org/10.3389/fphys.2022.850022

 

Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R., & Anderson, D. G. (2014). Non-viral vectors for gene-based therapy. Nature Reviews Genetics, 15, 541-555. DOI: https://doi.org/
10.1038/nrg3763

 

Yong, J., Zhang, R., Bi, S., Li, P., Sun, L., Mitter, N., Carroll, B. J., & Xu, Z. P. (2021). Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene. Plant Physiology, 187(2), 886-899. DOI: https://doi.org/10.1093/plphys/kiab303

 

Yoon, J.-S., Kim, K., & Palli, S. R. (2020). Double-stranded RNA in exosomes: Potential systemic RNA interference pathway in the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Asia-Pacific Entomology, 23(4), 1160-1164. DOI: https://doi.org/10.1016/j.aspen.2020.09.012

 

Yoon, J.-S., Shukla, J. N., Gong, Z. J., Mogilicherla, K., & Palli, S. R. (2016). RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. Insect Biochemistry and Molecular Biology, 78, 78-88. DOI: https://doi.org/10.1016/
j.ibmb.2016.09.002

 

Zhang, C., & Ruvkun, G. (2012). New insights into siRNA amplification and RNAi. RNA Biology, 9(8), 1045-1049. DOI: https://doi.org/10.4161/rna.21246

 

Zhang, H., Zhao, Y., & Zhu, J-K. (2020). Thriving under Stress: How Plants Balance Growth and the Stress Response. Development Cell, 55(5), 529-543. DOI: https://doi.org/10.1016/
j.devcel.2020.10.012

 

Zhang, J., Khan, S. A., Hasse, C., & Ruf, S. (2015). Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science, 347(6225), 991-994. DOI: https://doi.org/
10.1126/science.1261680

 

Zhu, F., Xu, J., Palli, R., Ferguson, J., & Palli, S. R. (2011). Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Management Science, 67(2), 175-182. DOI: https://doi.org/10.1002/ps.2048

 

Zhu, K. Y., & Palli, S. R. (2020). Mechanisms, Applications, and Challenges of Insect RNA Interference. Annual Review of Entomology, 65, 293-311. DOI: https://doi.org/10.1146/annurev-ento-011019-025224

Download scriptie (12.98 KB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2025
Promotor(en)
Kristof De Schutter