Predicted Motion Pressure - Using Machine Learning Algorithms to Metricize Pressure Created by Defensive Linemen in the NFL, as well as to Predict Their Motion to Evaluate the Players Performance and to Increase the Players Safety

Universiteit Hasselt
Data analytics has been a major part in American football to allow for evaluation of both player and team performances, with a significant amount of data being readily available. Here, a more in-depth analysis in the area of pass rushing and pass blocking will be done by using K-Nearest Neighbor (KNN) machine learning models to find a more precise metric of determining pressure created by the pass rush. Additionally, KNN would be used to predict the motion of a pass rusher, which would then be used to predict pressure created in that new location, allowing for the creation of an entirely new metric, by comparing the true pressure with the predicted one. An extensive analysis with these new metrics would then be conducted, giving American football players and coaches new insights into player and team performances, which can be used to improve the quality of the game, by the means of performance, while at the same time creating new ways of focusing on the safety of the Quarterback. Finally, a dashboard was build on an HTML-based webpage, visualizing the new metrics for a better understanding of its concepts.
Meer lezen