Hoe antilichamen leiden tot nieuwe ontdekkingen in de wetenschap
Een defect enzym in ons bloed, ADAMTS13 genaamd, kan de dodelijke ziekte trombotische trombocytopenische purpura (TTP) veroorzaken. Via de ontwikkeling van antilichamen willen we ontdekken hoe ADAMTS13 werkt in ons bloed. Alleen als we weten hoe het enzym werkt, kunnen we manieren ontwikkelen om de werking van het defect enzym te herstellen. Zo kunnen we patiënten die lijden aan de ziekte TTP beter behandelen. Dankzij de nieuwe antilichamen die we ontwikkeld hebben, konden we voor het eerst aantonen dat de activiteit van ADAMTS13 verhoogd kan worden door toevoeging van antilichamen die binden aan de staart van ADAMTS13. Dit doet vermoeden dat de staart van ADAMTS13 zijn eigen activiteit kan temperen. In aanwezigheid van de antilichamen die aan de staart binden was bovendien een verhoogde binding van ADAMTS13 aan de von Willebrand factor waar te nemen. Indien we het gedrag van de staart van ADAMTS13 kunnen veranderen, kunnen we misschien defecten in dit enzym corrigeren.
ADAMTS13, klinkt jou waarschijnlijk net zo ongekend in de oren als toen ik een jaar geleden aan mijn eindwerk begon. Nochtans onbekend betekent niet onbemind, want zonder het enzym ADAMTS13 ziet het leven er veel minder rooskleurig uit. ADAMTS13 is van essentieel belang in onze bloedsomloop en zorgt ervoor dat er geen spontane bloedklonters gevormd worden. Een beschadigd bloedvat zal het eiwit VWF (von Willebrand factor) vrijzetten. Onder invloed van de bloedstroom zullen deze zeer grote VWF linten ontvouwen en bloedplaatjes binden om een bloedklonter te vormen. Het vormen van zo’n prop mag echter niet plaatsvinden in afwezigheid van een verwonding en wordt daarom tegengegaan door ADAMTS13, die de zeer grote VWF linten knipt in kleinere delen die niet meer gevaarlijk zijn. Deze kleinere VWF fragmenten vouwen zich immers op, waardoor ze niet meer spontaan bloedplaatjes kunnen binden en ook niet meer geknipt worden door ADAMTS13.
Ieder jaar worden een aantal mensen gevonden waarbij ADAMTS13 niet goed meer werkt. Deze mensen lijden aan trombotische trombocytopenische purpura (TTP). Deze aandoening houdt in dat een defect in ADAMTS13 zorgt voor een groot aantal bloedklonters in de bloedbaan. Hierdoor ontstaat er een tekort aan bloedplaatjes om de voortdurend optredende verwondingen in de bloedbaan te kunnen stelpen. Patiënten krijgen daardoor een groot aantal onderhuidse paarse vlekken (Figuur 1). Bovendien krijgen deze mensen te kampen met nierfalen en neurologische problemen, zoals geheugenstoornissen. Het defect in ADAMTS13 kan ontstaan door een mutatie in het ADAMTS13 gen of kan ontstaan door de ontwikkeling van antilichamen tegen het lichaamseigen ADAMTS13 en kan dus net als diabetes type 1 of multiple sclerose (MS) gezien worden als een auto-immuunziekte.
De huidige therapie, die voornamelijk bestaat uit plasma uitwisselingen en het onderdrukken van het immuunsysteem, is helemaal niet optimaal en vaak hervallen patiënten met trombotische trombocytopenische purpura. Vandaar dat onderzoek naar ADAMTS13 van fundamenteel belang is om op lange termijn deze mensen een betere therapie te kunnen aanbieden en zo hun overlevingskansen te verhogen.
Het werkingsmechanisme van ADAMTS13 en zijn interactie met VWF is nog niet volledig opgehelderd. Via de ontwikkeling van antilichamen tegen ADAMTS13 probeerden we hier meer inzicht in te verwerven. ADAMTS13 bestaat uit heel wat domeinen, maar kan hoofdzakelijk ingedeeld worden in een kopdeel en een staartdeel (Figuur 2). Er is reeds geweten dat het kopdeel een cruciale rol speelt in de herkenning en juiste positionering van ADAMTS13 ten opzichte van VWF, zodat het VWF geknipt kan worden. Over de rol van het staartdeel zijn er nog geen eenduidige experimentele resultaten te vinden.
Antilichamen worden door het immuunsysteem van ons lichaam gevormd wanneer bacteriën ons lichaam binnendringen. De antilichamen zorgen voor genezing door te helpen met het verwijderen van deze bacteriën uit ons lichaam. Om de antilichamen tegen ADAMTS13 te kunnen ontwikkelen werden muizen, die genetische gemodificeerd werden en bijgevolg geen ADAMTS13 in hun bloed hebben, met ADAMTS13 geïnjecteerd. De muizen beschouwen dit ADAMTS13 als een vreemde indringer, waardoor hun immuunsysteem antilichamen tegen ADAMTS13 aanmaakte. Het zijn de B-cellen van het immuunsysteem die verantwoordelijk zijn voor het leveren van deze antilichamen. Deze cellen bevinden zich vooral in de milt. Daarom werd de milt van de muis samengevoegd met kankercellen, omdat deze ervoor zorgen dat de cellen blijvend antilichamen produceren. De cellen konden dan verder opgekweekt worden in het labo, waarna de antilichamen uit het groeimedium werden opgezuiverd. De ontwikkelde antilichamen werden in heel wat experimenten getest om te kijken of deze een bepaalde invloed uitoefenen op de werking en activiteit van ADAMTS13. Zo werd er bepaald aan welk deel van ADAMTS13 de ontwikkelde antilichamen binden en dit bleek vooral aan de staart van ADAMTS13 te zijn (Figuur 2). Het toevoegen van deze staart antilichamen stimuleert de binding van ADAMTS13 aan VWF en ze kunnen bovendien de activiteit van ADAMTS13 verhogen. Dit geeft aanleiding tot het vermoeden dat de staart van ADAMTS13 de activiteit van ADAMTS13 kan temperen en dat de staart bovendien een rol speelt bij de initiële binding van ADAMTS13 aan VWF.
Door de ontwikkeling van antilichamen die gericht zijn tegen de staart van ADAMTS13 staan we weer een stap dichter in de moeilijke zoektocht naar het werkingsmechanisme van ADAMTS13. Het is een debuut in dit onderzoeksdomein dat de toevoeging van staart antilichamen de activiteit van ADAMTS13 kan verhogen. Dit uniek gegeven is echter een klein stukje van de puzzel om het volledige werkingsmechanisme van ADAMTS13 te kunnen ontrafelen. Verder onderzoek is dus noodzakelijk om niet enkel de werking van ADAMTS13 beter te begrijpen, maar ook om mensen die lijden aan trombotische trombocytopenische purpura een betere levenskwaliteit te kunnen garanderen.
Ai, J., Smith, P., Wang, S., Zhang, P., and Zheng, X. L. (2005). The proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity and are all required for cleavage of von Willebrand factor. J Biol Chem 280, 29428-34.
Akiyama, M., Takeda, S., Kokame, K., Takagi, J., and Miyata, T. (2009). Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci U S A 106, 19274-9.
Banno, F., Chauhan, A. K., Kokame, K., Yang, J., Miyata, S., Wagner, D. D., and Miyata, T. (2009). The distal carboxyl-terminal domains of ADAMTS13 are required for regulation of in vivo thrombus formation. Blood 113, 5323-9.
Batty, P., and Smith, J. G. (2010). Haemostasis. Surgery (Oxford) 28, 530-535.
Bergmeier, W., Piffath, C. L., Goerge, T., Cifuni, S. M., Ruggeri, Z. M., Ware, J., and Wagner, D. D. (2006). The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci U S A 103, 16900-5.
Billiau, A., and Matthys, P. (2001). Modes of action of Freund's adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70, 849-60.
Bode, W., Gomis-Ruth, F. X., and Stockler, W. (1993). Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett 331, 134-40.
Bongers, T. N., de Maat, M. P., van Goor, M. L., Bhagwanbali, V., van Vliet, H. H., Gomez Garcia, E. B., Dippel, D. W., and Leebeek, F. W. (2006). High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke 37, 2672-7.
Breitenstein, A., Tanner, F. C., and Luscher, T. F. (2010). Tissue factor and cardiovascular disease: quo vadis? Circ J 74, 3-12.
Camilleri, R. S., Cohen, H., Mackie, I. J., Scully, M., Starke, R. D., Crawley, J. T., Lane, D. A., and Machin, S. J. (2008). Prevalence of the ADAMTS-13 missense mutation R1060W in late onset adult thrombotic thrombocytopenic purpura. J Thromb Haemost 6, 331-8.
Coppo, P., and Veyradier, A. (2012). Current management and therapeutical perspectives in thrombotic thrombocytopenic purpura. Presse Med 41, e163-76.
Corash, L., Costa, J. L., Shafer, B., Donlon, J. A., and Murphy, D. (1984). Heterogeneity of human whole blood platelet subpopulations. III. Density-dependent differences in subcellular constituents. Blood 64, 185-93.
Cramer, E. M., Harrison, P., Savidge, G. F., Wilbourn, B., Debili, N., Vainchenker, W., and Breton-Gorius, J. (1990). Uncoordinated expression of alpha-granule proteins in human megakaryocytes. Prog Clin Biol Res 356, 131-42.
Crawley, J. T., de Groot, R., and Luken, B. M. (2009). Circulating ADAMTS-13-von Willebrand factor complexes: an enzyme on demand. J Thromb Haemost 7, 2085-7.
Crawley, J. T., de Groot, R., Xiang, Y., Luken, B. M., and Lane, D. A. (2011). Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 118, 3212-21.
Crawley, J. T., Lam, J. K., Rance, J. B., Mollica, L. R., O'Donnell, J. S., and Lane, D. A. (2005). Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood 105, 1085-93.
De Ceunynck, K., De Meyer, S. F., and Vanhoorelbeke, K. (2013). Unwinding the von Willebrand factor strings puzzle. Blood 121, 270-7.
de Groot, R., Bardhan, A., Ramroop, N., Lane, D. A., and Crawley, J. T. (2009). Essential role of the disintegrin-like domain in ADAMTS13 function. Blood 113, 5609-16.
De Maeyer, B. (2011). VWF processing by ADAMTS13 : unravelling its mode of action. dissertation, Leuven : K.U.Leuven. Faculteit Wetenschappen, 2011, Leuven.
De Maeyer, B., De Meyer, S. F., Feys, H. B., Pareyn, I., Vandeputte, N., Deckmyn, H., and Vanhoorelbeke, K. (2010). The distal carboxyterminal domains of murine ADAMTS13 influence proteolysis of platelet-decorated VWF strings in vivo. J Thromb Haemost 8, 2305-12.
De Meyer, S. F., Deckmyn, H., and Vanhoorelbeke, K. (2009). von Willebrand factor to the rescue. Blood 113, 5049-57.
Denis, C. V., and Lenting, P. J. (2012). von Willebrand factor: at the crossroads of bleeding and thrombosis. Int J Hematol 95, 353-61.
Dent, J. A., Berkowitz, S. D., Ware, J., Kasper, C. K., and Ruggeri, Z. M. (1990). Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci U S A 87, 6306-10.
Dong, J. F., Moake, J. L., Bernardo, A., Fujikawa, K., Ball, C., Nolasco, L., Lopez, J. A., and Cruz, M. A. (2003). ADAMTS-13 metalloprotease interacts with the endothelial cell-derived ultra-large von Willebrand factor. J Biol Chem 278, 29633-9.
Dong, J. F., Moake, J. L., Nolasco, L., Bernardo, A., Arceneaux, W., Shrimpton, C. N., Schade, A. J., McIntire, L. V., Fujikawa, K., and Lopez, J. A. (2002). ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 100, 4033-9.
Eyre, L., Gamlin, F., Eyre, L., and Gamlin, F. (2010). Haemostasis, blood platelets and coagulation. Anaesthesia & Intensive Care Medicine 11, 244-246.
Feys, H. (2006). Insights into thrombotic thrombocytopenic purpura by monoclonal antibody-based analysis of the Von Willebrand factor cleaving protease, ADAMTS-13. dissertation, Kortrijk : K.U.Leuven. Faculteit Wetenschappen, 2006, Kortrijk.
Feys, H. B., Anderson, P. J., Vanhoorelbeke, K., Majerus, E. M., and Sadler, J. E. (2009). Multi-step binding of ADAMTS-13 to von Willebrand factor. J Thromb Haemost 7, 2088-95.
Feys, H. B., Roodt, J., Vandeputte, N., Pareyn, I., Lamprecht, S., van Rensburg, W. J., Anderson, P. J., Budde, U., Louw, V. J., Badenhorst, P. N., Deckmyn, H., and Vanhoorelbeke, K. (2010). Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood 116, 2005-10.
Flood, V. H., Lederman, C. A., Wren, J. S., Christopherson, P. A., Friedman, K. D., Hoffmann, R. G., and Montgomery, R. R. (2010). Absent collagen binding in a VWF A3 domain mutant: utility of the VWF:CB in diagnosis of VWD. J Thromb Haemost 8, 1431-3.
Fujikawa, K., Suzuki, H., McMullen, B., and Chung, D. (2001). Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 98, 1662-6.
Furlan, M., Robles, R., and Lammle, B. (1996). Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 87, 4223-34.
Galbusera, M., Noris, M., and Remuzzi, G. (2006). Thrombotic thrombocytopenic purpura--then and now. Semin Thromb Hemost 32, 81-9.
Gao, W., Zhu, J., Westfield, L. A., Tuley, E. A., Anderson, P. J., and Sadler, J. E. (2012). Rearranging exosites in noncatalytic domains can redirect the substrate specificity of ADAMTS proteases. J Biol Chem 287, 26944-52.
Gardner, M. D., Chion, C. K., de Groot, R., Shah, A., Crawley, J. T., and Lane, D. A. (2009). A functional calcium-binding site in the metalloprotease domain of ADAMTS13. Blood 113, 1149-57.
George, J. N. (2000). Platelets. Lancet 355, 1531-9.
Gerke, V. (2011). Von Willebrand factor folds into a bouquet. EMBO J 30, 3880-1.
Giblin, J. P., Hewlett, L. J., and Hannah, M. J. (2008). Basal secretion of von Willebrand factor from human endothelial cells. Blood 112, 957-64.
Ginsburg, D., Handin, R. I., Bonthron, D. T., Donlon, T. A., Bruns, G. A., Latt, S. A., and Orkin, S. H. (1985). Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science 228, 1401-6.
Groot, E., de Groot, P. G., Fijnheer, R., and Lenting, P. J. (2007). The presence of active von Willebrand factor under various pathological conditions. Curr Opin Hematol 14, 284-9.
Hamasaki, N., and Okubo, K. (1996). Band 3 protein: physiology, function and structure. Cell Mol Biol (Noisy-le-grand) 42, 1025-39.
Hanson, S. R., and Sakariassen, K. S. (1998). Blood flow and antithrombotic drug effects. Am Heart J 135, S132-45.
Harlow, E., Lane, D., Harlow, E., and Lane, D. (1988). "Antibodies : a laboratory manual," Cold Spring Harbor : Cold Spring Harbor laboratory, 1988, Cold Spring Harbor.
Hofsteenge, J., Huwiler, K. G., Macek, B., Hess, D., Lawler, J., Mosher, D. F., and Peter-Katalinic, J. (2001). C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem 276, 6485-98.
Igari, A., Nakagawa, T., Moriki, T., Yamaguchi, Y., Matsumoto, M., Fujimura, Y., Soejima, K., and Murata, M. (2012). Identification of epitopes on ADAMTS13 recognized by a panel of monoclonal antibodies with functional or non-functional effects on catalytic activity. Thromb Res 130, e79-83.
Italiano, J. E., Jr. (2013). Unraveling mechanisms that control platelet production. Semin Thromb Hemost 39, 15-24.
Jacobsen, L. B., Calvin, S. A., Colvin, K. E., and Wright, M. (2004). FuGENE 6 Transfection Reagent: the gentle power. Methods 33, 104-12.
Katsumi, A., Tuley, E. A., Bodo, I., and Sadler, J. E. (2000). Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. J Biol Chem 275, 25585-94.
Kim, J., Zhang, C. Z., Zhang, X., and Springer, T. A. (2010). A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466, 992-5.
Klaus, C., Plaimauer, B., Studt, J. D., Dorner, F., Lammle, B., Mannucci, P. M., and Scheiflinger, F. (2004). Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. Blood 103, 4514-9.
Köhler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495-7.
Kokame, K., Nobe, Y., Kokubo, Y., Okayama, A., and Miyata, T. (2005). FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol 129, 93-100.
Koutts, J., Walsh, P. N., Plow, E. F., Fenton, J. W., 2nd, Bouma, B. N., and Zimmerman, T. S. (1978). Active release of human platelet factor VIII-related antigen by adenosine diphosphate, collagen, and thrombin. J Clin Invest 62, 1255-63.
Kremer Hovinga, J. A., and Lammle, B. (2012). Role of ADAMTS13 in the pathogenesis, diagnosis, and treatment of thrombotic thrombocytopenic purpura. Hematology Am Soc Hematol Educ Program 2012, 610-6.
Kumar, R. A., Moake, J. L., Nolasco, L., Bergeron, A. L., Sun, C., Dong, J. F., and McIntire, L. V. (2006). Enhanced platelet adhesion and aggregation by endothelial cell-derived unusually large multimers of von Willebrand factor. Biorheology 43, 681-91.
Kwaan, H. C. (1987). Clinicopathologic features of thrombotic thrombocytopenic purpura. Semin Hematol 24, 71-81.
Lankhof, H., Wu, Y. P., Vink, T., Schiphorst, M. E., Zerwes, H. G., de Groot, P. G., and Sixma, J. J. (1995). Role of the glycoprotein Ib-binding A1 repeat and the RGD sequence in platelet adhesion to human recombinant von Willebrand factor. Blood 86, 1035-42.
Leger, A. J., Covic, L., and Kuliopulos, A. (2006). Protease-activated receptors in cardiovascular diseases. Circulation 114, 1070-7.
Lenting, P. J., CJ, V. A. N. S., and Denis, C. V. (2007). Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost 5, 1353-60.
Levy, G. G., Nichols, W. C., Lian, E. C., Foroud, T., McClintick, J. N., McGee, B. M., Yang, A. Y., Siemieniak, D. R., Stark, K. R., Gruppo, R., Sarode, R., Shurin, S. B., Chandrasekaran, V., Stabler, S. P., Sabio, H., Bouhassira, E. E., Upshaw, J. D., Jr., Ginsburg, D., and Tsai, H. M. (2001). Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413, 488-94.
Lisman, T., Weeterings, C., and de Groot, P. G. (2005). Platelet aggregation: involvement of thrombin and fibrin(ogen). Front Biosci 10, 2504-17.
Loirat, C., Veyradier, A., Girma, J. P., Ribba, A. S., and Meyer, D. (2006). Thrombotic thrombocytopenic purpura associated with von Willebrand factor-cleaving protease (ADAMTS13) deficiency in children. Semin Thromb Hemost 32, 90-7.
Luo, G. P., Ni, B., Yang, X., and Wu, Y. Z. (2012). von Willebrand factor: more than a regulator of hemostasis and thrombosis. Acta Haematol 128, 158-69.
Majerus, E. M., Anderson, P. J., and Sadler, J. E. (2005). Binding of ADAMTS13 to von Willebrand factor. J Biol Chem 280, 21773-8.
Manea, M., and Karpman, D. (2009). Molecular basis of ADAMTS13 dysfunction in thrombotic thrombocytopenic purpura. Pediatr Nephrol 24, 447-58.
Mannucci, P. M., and Franchini, M. (2012). Advantages and limits of ADAMTS13 testing in the prognostic assessment of thrombotic thrombocytopenic purpura. Presse Med 41, e157-62.
Mayadas, T. N., and Wagner, D. D. (1992). Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly. Proc Natl Acad Sci U S A 89, 3531-5.
McKinnon, T. A., Chion, A. C., Millington, A. J., Lane, D. A., and Laffan, M. A. (2008). N-linked glycosylation of VWF modulates its interaction with ADAMTS13. Blood 111, 3042-9.
McKinnon, T. A., Goode, E. C., Birdsey, G. M., Nowak, A. A., Chan, A. C., Lane, D. A., and Laffan, M. A. (2010). Specific N-linked glycosylation sites modulate synthesis and secretion of von Willebrand factor. Blood 116, 640-8.
Metcalf, D. J., Nightingale, T. D., Zenner, H. L., Lui-Roberts, W. W., and Cutler, D. F. (2008). Formation and function of Weibel-Palade bodies. J Cell Sci 121, 19-27.
Michaux, G., Pullen, T. J., Haberichter, S. L., and Cutler, D. F. (2006). P-selectin binds to the D'-D3 domains of von Willebrand factor in Weibel-Palade bodies. Blood 107, 3922-4.
Miura, S., Li, C. Q., Cao, Z., Wang, H., Wardell, M. R., and Sadler, J. E. (2000). Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ibalpha-(1-289). Slow intrinsic binding kinetics mediate rapid platelet adhesion. J Biol Chem 275, 7539-46.
Moake, J. L., Rudy, C. K., Troll, J. H., Weinstein, M. J., Colannino, N. M., Azocar, J., Seder, R. H., Hong, S. L., and Deykin, D. (1982). Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 307, 1432-5.
Monagle, P., and Massicotte, P. (2011). Developmental haemostasis: secondary haemostasis. Semin Fetal Neonatal Med 16, 294-300.
Monroe, D. M., and Hoffman, M. (2006). What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol 26, 41-8.
Murrin, R. J., and Murray, J. A. (2006). Thrombotic thrombocytopenic purpura: aetiology, pathophysiology and treatment. Blood Rev 20, 51-60.
Padilla, A., Moake, J. L., Bernardo, A., Ball, C., Wang, Y., Arya, M., Nolasco, L., Turner, N., Berndt, M. C., Anvari, B., Lopez, J. A., and Dong, J. F. (2004). P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. Blood 103, 2150-6.
Patel, S. R., Hartwig, J. H., and Italiano, J. E., Jr. (2005). The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest 115, 3348-54.
Peyvandi, F., Lavoretano, S., Palla, R., Feys, H. B., Vanhoorelbeke, K., Battaglioli, T., Valsecchi, C., Canciani, M. T., Fabris, F., Zver, S., Reti, M., Mikovic, D., Karimi, M., Giuffrida, G., Laurenti, L., and Mannucci, P. M. (2008). ADAMTS13 and anti-ADAMTS13 antibodies as markers for recurrence of acquired thrombotic thrombocytopenic purpura during remission. Haematologica 93, 232-9.
Pimanda, J. E., Ganderton, T., Maekawa, A., Yap, C. L., Lawler, J., Kershaw, G., Chesterman, C. N., and Hogg, P. J. (2004). Role of thrombospondin-1 in control of von Willebrand factor multimer size in mice. J Biol Chem 279, 21439-48.
Plaimauer, B., Kremer Hovinga, J. A., Juno, C., Wolfsegger, M. J., Skalicky, S., Schmidt, M., Grillberger, L., Hasslacher, M., Knobl, P., Ehrlich, H., and Scheiflinger, F. (2011). Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost 9, 936-44.
Pos, W., Crawley, J. T., Fijnheer, R., Voorberg, J., Lane, D. A., and Luken, B. M. (2010). An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood 115, 1640-9.
Pos, W., Luken, B. M., Sorvillo, N., Kremer Hovinga, J. A., and Voorberg, J. (2011). Humoral immune response to ADAMTS13 in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 9, 1285-91.
Pruss, C. M., Notley, C. R., Hegadorn, C. A., O'Brien, L. A., and Lillicrap, D. (2008). ADAMTS13 cleavage efficiency is altered by mutagenic and, to a lesser extent, polymorphic sequence changes in the A1 and A2 domains of von Willebrand factor. Br J Haematol 143, 552-8.
Pugh, N., Simpson, A. M., Smethurst, P. A., de Groot, P. G., Raynal, N., and Farndale, R. W. (2010). Synergism between platelet collagen receptors defined using receptor-specific collagen-mimetic peptide substrata in flowing blood. Blood 115, 5069-79.
Raven, P., Johnson, G., Losos, J., and Singer, S. (2008). "Biology," eighth, international edition/Ed. Boston : McGraw-Hill, 2008, Boston.
Reininger, A. J. (2008). Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia 14 Suppl 5, 11-26.
Ribba, A. S., Loisel, I., Lavergne, J. M., Juhan-Vague, I., Obert, B., Cherel, G., Meyer, D., and Girma, J. P. (2001). Ser968Thr mutation within the A3 domain of von Willebrand factor (VWF) in two related patients leads to a defective binding of VWF to collagen. Thromb Haemost 86, 848-54.
Riddell, A. F., Gomez, K., Millar, C. M., Mellars, G., Gill, S., Brown, S. A., Sutherland, M., Laffan, M. A., and McKinnon, T. A. (2009). Characterization of W1745C and S1783A: 2 novel mutations causing defective collagen binding in the A3 domain of von Willebrand factor. Blood 114, 3489-96.
Romani de Wit, T., Rondaij, M., van Mourik, J., Romani de Wit, T., Rondaij, M., and van Mourik, J. (2004). Weibel-Palade-lichaampjes : unieke secretieorganellen in endotheelcellen.
Ruggeri, Z. M. (2007). Von Willebrand factor: looking back and looking forward. Thromb Haemost 98, 55-62.
Sadler, J. E. (1998). Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67, 395-424.
Sadler, J. E. (2008). Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood 112, 11-8.
Savage, B., Almus-Jacobs, F., and Ruggeri, Z. M. (1998). Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94, 657-66.
Schneider, S. W., Nuschele, S., Wixforth, A., Gorzelanny, C., Alexander-Katz, A., Netz, R. R., and Schneider, M. F. (2007). Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A 104, 7899-903.
Schneppenheim, R., Budde, U., Hassenpflug, W., and Obser, T. (2004). Severe ADAMTS-13 deficiency in childhood. Semin Hematol 41, 83-9.
Schoolmeester, A., Vanhoorelbeke, K., Katsutani, S., Depraetere, H., Feys, H. B., Heemskerk, J. M., Hoylaerts, M. F., and Deckmyn, H. (2004). Monoclonal antibody IAC-1 is specific for activated alpha2beta1 and binds to amino acids 199 to 201 of the integrin alpha2 I-domain. Blood 104, 390-6.
Slager, C. J., Wentzel, J. J., Gijsen, F. J., Schuurbiers, J. C., van der Wal, A. C., van der Steen, A. F., and Serruys, P. W. (2005). The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med 2, 401-7.
Soejima, K., Matsumoto, M., Kokame, K., Yagi, H., Ishizashi, H., Maeda, H., Nozaki, C., Miyata, T., Fujimura, Y., and Nakagaki, T. (2003). ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage. Blood 102, 3232-7.
Soejima, K., Mimura, N., Hirashima, M., Maeda, H., Hamamoto, T., Nakagaki, T., and Nozaki, C. (2001). A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? J Biochem 130, 475-80.
Soejima, K., Nakamura, H., Hirashima, M., Morikawa, W., Nozaki, C., and Nakagaki, T. (2006). Analysis on the molecular species and concentration of circulating ADAMTS13 in Blood. J Biochem 139, 147-54.
Sporn, L. A., Chavin, S. I., Marder, V. J., and Wagner, D. D. (1985). Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest 76, 1102-6.
Sporn, L. A., Marder, V. J., and Wagner, D. D. (1986). Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 46, 185-90.
Studt, J. D., Kremer Hovinga, J. A., Antoine, G., Hermann, M., Rieger, M., Scheiflinger, F., and Lammle, B. (2005). Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS13 inhibitor: in vitro inhibition of ADAMTS13 activity by hemoglobin. Blood 105, 542-4.
Tao, Z., Peng, Y., Nolasco, L., Cal, S., Lopez-Otin, C., Li, R., Moake, J. L., Lopez, J. A., and Dong, J. F. (2005a). Recombinant CUB-1 domain polypeptide inhibits the cleavage of ULVWF strings by ADAMTS13 under flow conditions. Blood 106, 4139-45.
Tao, Z., Wang, Y., Choi, H., Bernardo, A., Nishio, K., Sadler, J. E., Lopez, J. A., and Dong, J. F. (2005b). Cleavage of ultralarge multimers of von Willebrand factor by C-terminal-truncated mutants of ADAMTS-13 under flow. Blood 106, 141-3.
Taylor, R. P., and Lindorfer, M. A. (2007). Drug insight: the mechanism of action of rituximab in autoimmune disease--the immune complex decoy hypothesis. Nat Clin Pract Rheumatol 3, 86-95.
Teillet, F., Gaboriaud, C., Lacroix, M., Martin, L., Arlaud, G. J., and Thielens, N. M. (2008). Crystal structure of the CUB1-EGF-CUB2 domain of human MASP-1/3 and identification of its interaction sites with mannan-binding lectin and ficolins. J Biol Chem 283, 25715-24.
Tsai, H. M. (1996). Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 87, 4235-44.
Turner, N., Nolasco, L., Tao, Z., Dong, J. F., and Moake, J. (2006). Human endothelial cells synthesize and release ADAMTS-13. J Thromb Haemost 4, 1396-404.
Uemura, M., Tatsumi, K., Matsumoto, M., Fujimoto, M., Matsuyama, T., Ishikawa, M., Iwamoto, T. A., Mori, T., Wanaka, A., Fukui, H., and Fujimura, Y. (2005). Localization of ADAMTS13 to the stellate cells of human liver. Blood 106, 922-4.
Van de Walle, G. R., Vanhoorelbeke, K., Majer, Z., Illyes, E., Baert, J., Pareyn, I., and Deckmyn, H. (2005). Two functional active conformations of the integrin {alpha}2{beta}1, depending on activation condition and cell type. J Biol Chem 280, 36873-82.
Versteeg, H. H., Heemskerk, J. W., Levi, M., and Reitsma, P. H. (2013). New fundamentals in hemostasis. Physiol Rev 93, 327-58.
Vicic, W. J., and Weiss, H. J. (1983). Evidence that platelet alpha-granules are a major determinant of platelet density: studies in storage pool deficiency. Thromb Haemost 50, 878-80.
Wagner, D. D., and Marder, V. J. (1984). Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol 99, 2123-30.
Wagner, D. D., Olmsted, J. B., and Marder, V. J. (1982). Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 95, 355-60.
Wagner, D. D., Saffaripour, S., Bonfanti, R., Sadler, J. E., Cramer, E. M., Chapman, B., and Mayadas, T. N. (1991). Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell 64, 403-13.
Weibel, E. R. (2012). Fifty years of Weibel-Palade bodies: the discovery and early history of an enigmatic organelle of endothelial cells. J Thromb Haemost 10, 979-84.
Weibel, E. R., and Palade, G. E. (1964). New Cytoplasmic Components in Arterial Endothelia. J Cell Biol 23, 101-12.
Willoughby, S., Holmes, A., and Loscalzo, J. (2002). Platelets and cardiovascular disease. Eur J Cardiovasc Nurs 1, 273-88.
Wise, R. J., Pittman, D. D., Handin, R. I., Kaufman, R. J., and Orkin, S. H. (1988). The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers. Cell 52, 229-36.
Xiang, Y., de Groot, R., Crawley, J. T., and Lane, D. A. (2011). Mechanism of von Willebrand factor scissile bond cleavage by a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13). Proc Natl Acad Sci U S A 108, 11602-7.
Xiao, J., Jin, S. Y., Xue, J., Sorvillo, N., Voorberg, J., and Zheng, X. L. (2011). Essential domains of a disintegrin and metalloprotease with thrombospondin type 1 repeats-13 metalloprotease required for modulation of arterial thrombosis. Arterioscler Thromb Vasc Biol 31, 2261-9.
Zanardelli, S., Chion, A. C., Groot, E., Lenting, P. J., McKinnon, T. A., Laffan, M. A., Tseng, M., and Lane, D. A. (2009). A novel binding site for ADAMTS13 constitutively exposed on the surface of globular VWF. Blood 114, 2819-28.
Zanardelli, S., Crawley, J. T., Chion, C. K., Lam, J. K., Preston, R. J., and Lane, D. A. (2006). ADAMTS13 substrate recognition of von Willebrand factor A2 domain. J Biol Chem 281, 1555-63.
Zhang, P., Pan, W., Rux, A. H., Sachais, B. S., and Zheng, X. L. (2007). The cooperative activity between the carboxyl-terminal TSP1 repeats and the CUB domains of ADAMTS13 is crucial for recognition of von Willebrand factor under flow. Blood 110, 1887-94.
Zhang, Q., Zhou, Y. F., Zhang, C. Z., Zhang, X., Lu, C., and Springer, T. A. (2009a). Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor. Proc Natl Acad Sci U S A 106, 9226-31.
Zhang, X., Halvorsen, K., Zhang, C. Z., Wong, W. P., and Springer, T. A. (2009b). Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324, 1330-4.
Zheng, X., Chung, D., Takayama, T. K., Majerus, E. M., Sadler, J. E., and Fujikawa, K. (2001). Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 276, 41059-63.
Zheng, X., Nishio, K., Majerus, E. M., and Sadler, J. E. (2003). Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease ADAMTS13. J Biol Chem 278, 30136-41.
Zheng, X. L., and Sadler, J. E. (2008). Pathogenesis of thrombotic microangiopathies. Annu Rev Pathol 3, 249-77.
Zhou, Y. F., Eng, E. T., Zhu, J., Lu, C., Walz, T., and Springer, T. A. (2012). Sequence and structure relationships within von Willebrand factor. Blood 120, 449-58.