Biofouling in membrane bioreactors: Nexus between polyacrylonitrile surface charge and community composition

Marie-Aline
Hernalsteens

Hoe bacteriën onze nieuwe waterzuivering bedreigen: back to the origins.

“Yo listen up here's a story
About a little guy that lives in a blue world
And all day and all night and everything he sees
Is just blue like him inside and outside […]”

Met deze woorden veroverde de Italiaanse dance-act Eiffel 65 de hitparade in de zomer 1999. En hoewel vandaag niemand meer de pretentie heeft te verkondigen dat onze wereld nog uit zuiver blauw bestaat, hebben deze drie zangers de vinger gezet op een onderwerp dat nu essentiëler is dan ooit. Hun bedoeling was het nochtans waarschijnlijk niet, toch?

Water in de kleuren van de regenboog
Water. Dat als koosnaampje ook wel ‘het blauwe goud’ krijgt. Maar water is niet zomaar water. Wetenschappers maken een onderscheid tussen groen, blauw of grijs water. Typisch valt regenwater als groen water neer op het aardoppervlak. Het voedt hierbij de grondwaterlagen en oppervlaktestromen. Dit zogenaamde blauw water wordt na het oppompen voor menselijke doeleinden, voor ons, tenslotte omgetoverd tot grijs water, vervuild water. Hoewel ‘omgetoverd’ wel een slecht gekozen werkwoord is.

En hier komt het. Dat vervuild water wordt in gigantische hoeveelheden geproduceerd, veel sneller dan dat het wordt gezuiverd. Onze watervoetafdruk is de laatste jaren dramatisch toegenomen door een globale industriële vooruitgang, geïntensiveerde landbouw en een verhoogde levensstandaard. De polluenten die het water ten aanval nemen, zijn nog nooit zo talrijk geweest en de Europese normen nog nooit zo streng. Op middellange termijn dreigen zuiver en zelfs drinkbaar water op te raken, net als aardolie vandaag. Stel u de consequenties even voor…

De conventionele waterzuiveringtechnieken, waarbij het vervuilde water deels gezuiverd wordt via bezinking van vaste deeltjes, hebben voorbije jaren hun nut bewezen, maar geraken stilaan achterhaald. Onder meer problemen omtrent hun hoge milieuvoetafdruk, hun onredelijke operationele kosten en de variabele kwaliteit van het gezuiverde water, hebben wetenschappers aangezet tot onderzoek naar vernieuwende technieken sinds de jaren 1960.

Net een koffiefilter op maat
De techniek die momenteel letterlijk het hoofd boven water steekt, maakt onder meer gebruik van membranen gesynthetiseerd uit polymeren. Deze zijn filters met poriën kleiner dan partikels en zelfs bacteriën, waarlangs het vervuilde water haar weg baant en zo gezuiverd wordt. De membranen worden in grote hoeveelheden gegroepeerd tot een zogenaamde membraanbioreactor. Ze bieden uiteindelijk niet te onderschatten voordelen ten opzichte van de conventionele waterzuiveringtechnieken, waaronder compactheid en stabiel waterkwaliteit.

Maar net zoals koffiefilters bij gebruik langzaam verstopt raken met koffiedik, zo raken membranen bedekt met partikels en bacteriën aanwezig in het vervuilde water. Op termijn kan geen druppel meer de barrière overbruggen. De gevolgen hiervan zijn niet te onderschatten voor de sector. Kosten lopen op door energieverbruik omdat hoge drukken dienen aangelegd te worden, door gebruik van chemicaliën om de membranen te reinigen of uiteindelijk door vervanging van de membranen. En hoewel dit probleem inherent is aan filtratieprocessen, vormt het een fundamenteel obstakel voor de ontwikkeling van een breed inzetbare, economische en vooral duurzame waterzuivering.

Over bacteriën gesproken?
‘Het kind met het badwater weggooien’ luidt het gezegde. Hoewel bacteriën een deel van het probleem vormen, is dit geen reden om membraanbioreactoren af te keuren. Bacteriën zelf zijn ónmisbaar in het waterzuiveringproces. Ze zijn bijvoorbeeld in staat nitraten en fosfaten uit het water te verwijderen, twee nutriënten die in grote mate via de landbouw in oppervlaktestromen terechtkomen en ecosystemen grondig aantasten. Oplossingen moeten dus gezocht worden in de wijze waarop bacteriën interageren met membranen. Indien wetenschappers bacteriën beletten de membraanporiën op termijn te blokkeren – in wetenschappelijke termen foulen genoemd, hoeven ze deze vernieuwende waterzuiveringtechniek niet af te schrijven.

Hoe bacteriën zich vasthechten aan een oppervlak en het vervolgens koloniseren tot volwaardige, slijmerige biofilms, is vandaag grotendeels geweten. Biofilms? Net als het uiterst gladde laagje rond rivierstenen. Uit onderzoek zijn reeds talrijke fysische en chemische technieken ontwikkeld om bacteriële vasthechting te beperken en zelfs te voorkomen. Denk bijvoorbeeld aan het voordelig effect van turbulenties in het water langs een oppervlak of het gebruik van detergenten als reinigingsmiddel. Maar een gebrek aan meer specifieke inzichten in de intieme (biochemische) membraan-bacterie relatie ondermijnt überhaupt de ontwikkeling van meer doelgerichte en duurzame strategieën.

Neem nu volgende concrete vraagstelling:

Wat zou er gebeuren indien de gebruikte membranen een oppervlaktelading dragen? Wetende dat bacteriën zelf meestal negatief geladen zijn, zullen ze zich dan kunnen vasthechten op positief of negatief geladen membraanoppervlakken? En in geval van ongeladen oppervlakken? Maar ook, hoe zou de kolonie evolueren met de tijd nadat de pioniersbacteriën zijn neergestreken? En zullen alle bacteriën zich kunnen vasthechten, of slechts een beperkte groep?

Veel beekjes maken een groot water
Bovenvermelde vraagstelling vergt een tijdrovende maar boeiende en technisch gezien rijke wetenschappelijke benadering. Want niet enkel dienen de bacteriën en hun koloniale historie nauwkeurig opgevolgd te worden in de tijd, maar vooreerst moeten de membranen met de gewenste eigenschappen aangemaakt en opgemeten worden. Hierbij niet te vergeten, mogen de membranen slechts in één opzicht van elkaar verschillen: hun oppervlaktelading.

Het onderzoeksantwoord is uiteindelijk alom onverwacht. Niet enkel blijken bacteriën in staat zowel positief, negatief als ongeladen oppervlakken te koloniseren, maar het draait ook uit plaats te grijpen in gelijke mate. Bovendien verandert de samenstelling van de bacteriële populatie met de tijd, onafhankelijk van de oppervlaktelading van de beschouwde membranen. Kortom, de lokale eigenschappen van de geteste membranen (hier: oppervlaktelading) blijken op het eerste zicht niet bepalend in de selectieprocedure van key foulants op middellange tot lange termijn.

Niettemin is de zaak uiterst complex, en tientallen vragen blijven onbeantwoord, zoals de vraag of allen versus een beperkte groep bacteriën in staat zijn als werkelijke pionier op te treden in de allereerste fase van het kolonisatieproces. Gelukkig weet een wetenschapper dat het goed vissen is in troebel water…

Hoewel het antwoord op de bovenvermelde vragen uiteindelijk slechts een tipje van de sluier oplicht, gaat het onderzoek hier om de meest fundamentele verhouding tussen bacteriën en membraanoppervlakken in de waterzuivering, de genesis. Indien het antwoord eenduidig kan geformuleerd worden, met de bijdrage van parallelle en vervolgonderzoeken, zal de weg hoogstwaarschijnlijk openliggen voor the Blue Gold Rush.

Bibliografie

[1]         N. Abdel-Raouf, a a Al-Homaidan, and I. B. M. Ibraheem, “Microalgae and wastewater treatment.,” Saudi J. Biol. Sci., vol. 19, pp. 257–275, Jul. 2012.

[2]         P. Grelier, S. Rosenberger, and A. Tazi-Pain, “Influence of sludge retention time on membrane bioreactor hydraulic performance.,” Desalination, vol. 192, pp. 10–17, May 2006.

[3]         L.-N. Huang, H. De Wever, and L. Diels, “Diverse and Distinct Bacterial Communities Induced Biofilm Fouling in Membrane Bioreactors Operated under Different Conditions.,” Environ. Sci. Technol., vol. 42, pp. 8360–8366, Nov. 2008.

[4]         S. Judd, “The status of membrane bioreactor technology.,” Trends Biotechnol., vol. 26, pp. 109–116, Feb. 2008.

[5]         P. Le-Clech, “Membrane bioreactors and their uses in wastewater treatments.,” Appl. Microbiol. Biotechnol., vol. 88, pp. 1253–1260, 2010.

[6]         A. Piasecka, C. Souffreau, K. Vandepitte, L. Vanysacker, R. M. Bilad, T. De Bie, B. Hellemans, L. De Meester, X. Yan, P. Declerck, and I. F. J. Vankelecom, “Analysis of the microbial community structure in a membrane bioreactor during initial stages of filtration.,” Biofouling, vol. 28, pp. 225–38, Jan. 2012.

[7]         J. Zhang, H. C. Chua, J. Zhou, and A. G. Fane, “Factors affecting the membrane performance in submerged membrane bioreactors.,” J. Memb. Sci., vol. 284, pp. 54–66, Nov. 2006.

[8]         M. Madigan, J. Martinko, D. Stahl, and D. Clark, Brock. Biology of Microorganisms., 13th ed. San Fransisco: Pearson Education, p. 1150.

[9]         B. Van der Bruggen, “Cursustekst - I0S80A Waste Water Treatment Technology. Part 1: Legislation in Flanders and Primary Waste Water Technology.,” Acco, Acco - Leuven. 3rd edition., 2012.

[10]       P. M. Armenante, “Characterization of Industrial Wastewaters.”

[11]       I. Smets, “Cursustekst - I0S80A Waterzuivering en -hergebruik. Deel 2: Secundaire afvalwaterzuiveringstechnieken.,” Acco, Acco Leuven. 4th edition., 2012.

[12]       D. Springael, “Cursustekst - I0N96A Milieutechnische Microbiologie.,” Katholieke Universiteit Leuven, Leuven, 2012.

[13]       H. Waheed, I. Hashmi, A. K. Naveed, and S. J. Khan, “Molecular detection of microbial community in a nitrifying–denitrifying activated sludge system.,” Int. Biodeterior. Biodegradation, vol. 85, pp. 527–532, Nov. 2013.

[14]       S. J. Khan, F. Parveen, A. Ahmad, I. Hashmi, and N. Hankins, “Performance evaluation and bacterial characterization of membrane bioreactors.,” Bioresour. Technol., vol. 141, pp. 2–7, Aug. 2013.

[15]       “Titel ll van het VLAREM Bijlagen. Bijlagen bij het besluit van de Vlaamse Regering van 1 juni 1995 houdende algemene en sectorale bepalingen inzake milieuhygiëne.,” Departement Leefmilieu, Natuur en Energie, 1998. [Online]. Available: http://www.lne.be/themas/vergunningen/bestand/regelgeving/titel-ii-van-…ëne. [Accessed: 03-Jan-2015].

[16]       L. Vanysacker, B. Boerjan, P. Declerck, and I. F. J. Vankelecom, “Biofouling ecology as a means to better understand membrane biofouling.,” Appl. Microbiol. Biotechnol., vol. 98, pp. 8047–72, Oct. 2014.

[17]       E. Vaiopoulou, P. Melidis, and A. Aivasidis, “An activated sludge treatment plant for integrated removal of carbon, nitrogen and phosphorus.,” Desalination, vol. 211, pp. 192–199, Jun. 2007.

[18]       S. Milia, G. Cappai, M. Perra, and A. Carucci, “Biological treatment of nitrogen-rich refinery wastewater by partial nitritation (SHARON) process.,” Environ. Technol., vol. 33, no. 13, pp. 1477–1483, 2012.

[19]       Y. Peng and G. Zhu, “Biological nitrogen removal with nitrification and denitrification via nitrite pathway.,” Appl. Microbiol. Biotechnol., vol. 73, pp. 15–26, Nov. 2006.

[20]       B. Kartal, J. G. Kuenen, and M. C. M. van Loosdrecht, “Sewage Treatment with Anammox.,” Science (80-. )., vol. 328, pp. 702–703, 2010.

[21]       L. Zhang, P. Zheng, C. Tang, and R. Jin, “Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters.,” J. Zhejiang Univ. Sci. B, vol. 9, no. 5, pp. 416–426, May 2008.

[22]       P. Xinhong, Y. Hongbing, W. Libo, A. Lina, and F. Lixia, “CANON Process for Nitrogen Removal from Effluents of Municipal Sewage Treatment Plants.,” Trans. Tianjin Univ., vol. 19, no. 4, pp. 255–259, 2013.

[23]       K. A. Third, A. O. Sliekers, J. G. Kuenen, and M. S. M. Jetten, “The CANON System ( Completely Autotrophic Nitrogen-removal Over Nitrite ) under Ammonium Limitation : Interaction and Competition between three groups of Bacteria.,” Syst. Appl. Microbiol., vol. 24, pp. 588–596, 2001.

[24]       F. Meng, B. Liao, S. Liang, F. Yang, H. Zhang, and L. Song, “Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs).,” J. Memb. Sci., vol. 361, pp. 1–14, Sep. 2010.

[25]       T.-Y. Jeong, G.-C. Cha, I.-K. Yoo, and D.-J. Kim, “Characteristics of bio-fouling in a submerged MBR.,” Desalination, vol. 207, pp. 107–113, Mar. 2007.

[26]       D. L. Seman, “Activated Sludge Microbiology.,” City of Youngstown, 2013. [Online]. Available: http://www.ohiowea.org/docs/Activated_Sludge_Microbiology_Seman.pdf. [Accessed: 26-Dec-2014].

[27]       J. Wu, P. Le-Clech, R. M. Stuetz, A. G. Fane, and V. Chen, “Effects of relaxation and backwashing conditions on fouling in membrane bioreactor.,” J. Memb. Sci., vol. 324, pp. 26–32, Oct. 2008.

[28]       D. H. Eikelboom, Process Control of Activated Sludge Plants by Microscopic Investigation., 1st ed. Zutphen: IWA Publishing, 2000, p. 170.

[29]       T. R. Ramothokang, G. D. Drysdale, and F. Bux, “Isolation and cultivation of filamentous bacteria implicated in activated sludge bulking.,” Water SA, vol. 29, pp. 405–410, 2003.

[30]       L. Metcalf and H. P. Eddy, Wastewater engineering: collection, treatment, disposal. New-York: McGraw-Hill Book Company, 1972.

[31]       F. Meng, B. Shi, F. Yang, and H. Zhang, “Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors.,” Bioprocess Biosyst. Eng., vol. 30, pp. 359–367, Sep. 2007.

[32]       G. Gaval and J.-J. Pernelle, “Impact of the repetition of oxygen deficiencies on the filamentous bacteria proliferation in activated sludge.,” Water Res., vol. 37, pp. 1991–2000, May 2003.

[33]       H. Lin, W. Peng, M. Zhang, J. Chen, H. Hong, and Y. Zhang, “A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives.,” Desalination, vol. 314, pp. 169–188, Apr. 2013.

[34]       B.-Q. Liao, J. T. Kraemer, and D. M. Bagley, “Anaerobic Membrane Bioreactors: Applications and Research Directions.,” Crit. Rev. Environ. Sci. Technol., vol. 36, pp. 489–530, Dec. 2006.

[35]       K. C. Perez, “General overview. Anaerobic Wastewater Treatment.,” Katholieke Universiteit Leuven, Leuven, 2013.

[36]       B. Van der Bruggen, “Cursustekst - I0S80A Waste Water Treatment Technology. Part 3: Tertiary Waste Water Treatment.,” Acco, Acco - Leuven. 3rd edition., 2012.

[37]       I. F. J. Vankelecom, “Cursustekst - I0P35A Membraantechnologie.,” Katholieke Universiteit Leuven, Leuven, 2013.

[38]       M. Mulder, Basic principles of membrane technology., 2nd ed. Dordrecht: Kluwer Academic Publishers, 2003, p. 564.

[39]       S. S. Madaeni, A. G. Fane, and D. E. Wiley, “Factors influencing critical flux in membrane filtration of activated sludge.,” J. Chem. Technol. Biotechnol., vol. 74, pp. 539–543, 1999.

[40]       M. A. Kader, “A review of membrane bioreactor (MBR) technology and their applications in the wastewater treatment systems.,” in Eleventh International Water Technology Conference, IWTC11, 2007, pp. 269–279.

[41]       K. A. Mason, J. B. Losos, S. R. Singer, P. H. Raven, and G. B. Johnson, Biology., 9th ed. New-York: McGraw-Hill Book Company, p. 1279.

[42]       D. C. Stuckey, “Recent developments in anaerobic membrane reactors.,” Bioresour. Technol., vol. 122, pp. 137–148, Oct. 2012.

[43]       A. Ramesh, D. J. Lee, M. L. Wang, J. P. Hsu, R. S. Juang, K. J. Hwang, J. C. Liu, and S. J. Tseng, “Biofouling in Membrane Bioreactor.,” Sep. Sci. Technol., vol. 41, no. 7, pp. 1345–1370, Jun. 2006.

[44]       A. K. Fritzsche, A. R. Arevalo, M. D. Moore, and C. O’Hara, “The surface structure and morphology of polyacrylonitrile membranes by atomic force microscopy.,” J. Memb. Sci., vol. 81, pp. 109–120, 1993.

[45]       J. Wang, Z. Yue, and J. Economy, “Solvent Resistant Hydrolyzed Polyacrylonitrile Membranes.,” Sep. Sci. Technol., vol. 44, pp. 2827–2839, Aug. 2009.

[46]       L. Defrance and M. Y. Jaffrin, “Reversibility of fouling formed in activated sludge filtration.,” J. Memb. Sci., vol. 157, pp. 73–84, 1999.

[47]       S. Zhang, Y. Qu, Y. Liu, F. Yang, X. Zhang, K. Furukawa, and Y. Yamada, “Experimental study of domestic sewage treatment with a metal membrane bioreactor.,” Desalination, vol. 177, pp. 83–93, Jun. 2005.

[48]       F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, and F. Yang, “Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material.,” Water Res., vol. 43, pp. 1489–1512, Apr. 2009.

[49]       P. K. Krzeminski, “Activated sludge filterability and full-scale membrane bioreactor operation.,” Technische Universiteit Delft, 2013.

[50]       B. Gunder and K. Krauth, “Replacement of secondary clarification by membrane separation - results with plate and hollow fibre modules.,” Water Sci. Technol., vol. 38, no. 4–5, pp. 383–393, 1998.

[51]       S. Judd, “Submerged Membrane Bioreactors : Flat Plate or Hollow Fibre ?,” Filtr. Sep., vol. 39, no. 5, pp. 30–31, 2002.

[52]       M. L. Ferreira, “Wastewater Treatment.,” Delft University of Technology, 2012. [Online]. Available: http://ocw.tudelft.nl/en/courses/watermanagement/wastewater-treatment/l…. [Accessed: 16-Jan-2015].

[53]       F. Meng, H. Zhang, F. Yang, S. Zhang, Y. Li, and X. Zhang, “Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors.,” Sep. Purif. Technol., vol. 51, pp. 95–103, Aug. 2006.

[54]       R. W. Field, D. Wu, J. A. Howell, and B. B. Gupta, “Critical flux concept for microfiltration fouling.,” J. Memb. Sci., vol. 100, pp. 259–272, Apr. 1995.

[55]       Y. Ye, P. Le-Clech, V. Chen, and A. G. Fane, “Evolution of fouling during crossflow filtration of model EPS solutions.,” J. Memb. Sci., vol. 264, pp. 190–199, Nov. 2005.

[56]       L. Defrance and M. Y. Jaffrin, “Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment.,” J. Memb. Sci., vol. 152, pp. 203–210, 1999.

[57]       F. Martínez, A. Martín, P. Prádanos, J. Calvo, L. Palacio, and A. Hernández, “Protein Adsorption and Deposition onto Microfiltration Membranes: The Role of Solute-Solid Interactions.,” J. Colloid Interface Sci., vol. 221, pp. 254–261, Jan. 2000.

[58]       S. Ognier, C. Wisniewski, and A. Grasmick, “Influence of macromolecule adsorption during filtration of a membrane bioreactor mixed liquor suspension.,” J. Memb. Sci., vol. 209, pp. 27–37, Nov. 2002.

[59]       P. Le Clech, B. Jefferson, I.-S. Chang, and S. Judd, “Critical flux determination by the flux-step method in a submerged membrane bioreactor.,” J. Memb. Sci., vol. 227, pp. 81–93, Dec. 2003.

[60]       P. van der Marel, A. Zwijnenburg, A. Kemperman, M. Wessling, H. Temmink, and W. van der Meer, “An improved flux-step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor.,” J. Memb. Sci., vol. 332, pp. 24–29, Apr. 2009.

[61]       A. Pollice, A. Brookes, B. Jefferson, and S. Judd, “Sub-critical flux fouling in membrane bioreactors — a review of recent literature.,” Desalination, vol. 174, pp. 221–230, Apr. 2005.

[62]       W. Yang, N. Cicek, and J. Ilg, “State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America.,” J. Memb. Sci., vol. 270, pp. 201–211, Feb. 2006.

[63]       B. Lesjean and E. H. Huisjes, “Survey of the European MBR market: trends and perspectives.,” Desalination, vol. 231, pp. 71–81, Oct. 2008.

[64]       C.-Y. Wan, H. De Wever, L. Diels, C. Thoeye, J.-B. Liang, and L.-N. Huang, “Biodiversity and population dynamics of microorganisms in a full-scale membrane bioreactor for municipal wastewater treatment.,” Water Res., vol. 45, pp. 1129–1138, Jan. 2011.

[65]       Frost&Sullivan, “Global Membrane Bioreactor (MBR) Market. Soaring Demand in Developing Markets Fuels Growth Momentum .,” 2013. [Online]. Available: http://www.frost.com/sublib/display-report.do?id=M7E2-01-00-00-00&bdata…. [Accessed: 15-Jan-2015].

[66]       F. Royan, “Membrane Multiplier: MBR set for Global Growth.,” 2014. [Online]. Available: http://www.waterworld.com/articles/wwi/print/volume-27/issue-2/regulars…. [Accessed: 15-Jan-2015].

[67]       J. R. Pan, Y. Su, and C. Huang, “Characteristics of soluble microbial products in membrane bioreactor and its effect on membrane fouling.,” Desalination, vol. 250, pp. 778–780, Jan. 2010.

[68]       K. Yamamoto, M. Hiasa, T. Mahmood, and T. Matsuo, “Direct solid liquid separations using hollow fiber membranes in activated sludge aeration tank.,” Water Sci. Technol., vol. 21, no. 4–5, pp. 43–54, 1989.

[69]       “Membraanbioreactor.,” Energie- en Milieu-informatiesysteem voor het Vlaamse Gewest (EMIS), 2010. [Online]. Available: http://emis.vito.be/techniekfiche/membraanbioreactor. [Accessed: 17-Jan-2015].

[70]       A. Massé, M. Spérandio, and C. Cabassud, “Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time.,” Water Res., vol. 40, pp. 2405–2415, Jul. 2006.

[71]       S. Liang, L. Song, G. Tao, K. A. Kekre, and H. Seah, “A Modeling Study of Fouling Development in Membrane Bioreactors for Wastewater Treatment.,” Water Environ. Res., vol. 78, pp. 857–863, 2005.

[72]       S. Rosenberger and M. Kraume, “Filterability of activated sludge in membrane bioreactors.,” Desalination, vol. 151, pp. 195–200, Sep. 2002.

[73]       X. Huang, R. Liu, and Y. Qian, “Behaviour of soluble microbial products in a membrane bioreactor.,” Process Biochem., vol. 36, pp. 401–406, Dec. 2000.

[74]       “Actief slib systemen.,” Energie- en Milieu-informatiesysteem voor het Vlaamse Gewest (EMIS), 2010. [Online]. Available: http://emis.vito.be/techniekfiche/actief-slib-systemen. [Accessed: 17-Jan-2015].

[75]       V. Jacquemet, G. Gaval, S. Rosenberger, B. Lesjean, and J.-C. Schrotter, “Towards a better characterisation and understanding of membrane fouling in water treatment.,” Desalination, vol. 178, pp. 13–20, Jul. 2005.

[76]       F. Meng, H. Zhang, F. Yang, and L. Liu, “Characterization of Cake Layer in Submerged Membrane Bioreactor.,” Environ. Sci. Technol., vol. 41, pp. 4065–4070, Jun. 2007.

[77]       L. Vanysacker, P. Declerck, R. M. Bilad, and I. F. J. Vankelecom, “Biofouling on microfiltration membranes in MBRs: Role of membrane type and microbial community.,” J. Memb. Sci., vol. 453, pp. 394–401, Mar. 2014.

[78]       G. N. B. Baroña, B. J. Cha, and B. Jung, “Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation.,” J. Memb. Sci., vol. 290, pp. 46–54, Mar. 2007.

[79]       K. Akamatsu, M. Okuyama, K. Mitsumori, A. Yoshino, A. Nakao, and S. Nakao, “Effect of the composition of the copolymer of carboxybetaine and n-butylmethacrylate on low-fouling property of dynamically formed membrane.,” Sep. Purif. Technol., vol. 118, pp. 463–469, Oct. 2013.

[80]       X. Li, F. Gao, Z. Hua, G. Du, and J. Chen, “Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling.,” Sep. Purif. Technol., vol. 46, pp. 19–25, Nov. 2005.

[81]       Z. Wang, J. Ma, C. Y. Tang, K. Kimura, Q. Wang, and X. Han, “Membrane cleaning in membrane bioreactors: A review.,” J. Memb. Sci., vol. 468, pp. 276–307, Oct. 2014.

[82]       U. Metzger, P. Le-Clech, R. M. Stuetz, F. H. Frimmel, and V. Chen, “Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes.,” J. Memb. Sci., vol. 301, pp. 180–189, Sep. 2007.

[83]       J. Lee, W.-Y. Ahn, and C.-H. Lee, “Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor.,” Water Res., vol. 35, pp. 2435–2445, Jul. 2001.

[84]       Y. Marselina, P. Le-Clech, R. M. Stuetz, V. Chen, and Lifia, “Characterisation of membrane fouling deposition and removal by direct observation technique.,” J. Memb. Sci., vol. 341, pp. 163–171, Sep. 2009.

[85]       D. Spettmann, S. Eppmann, H.-C. Flemming, and J. Wingender, “Visualization of membrane cleaning using confocal laser scanning microscopy.,” Desalination, vol. 224, pp. 195–200, Apr. 2008.

[86]       H. Yamamura, K. Kimura, T. Okajima, H. Tokumoto, and Y. Watanabe, “Affinity of Functional Groups for Membrane Surfaces: Implications for Physically Irreversible Fouling.,” Environ. Sci. Technol., vol. 42, pp. 5310–5315, Jul. 2008.

[87]       S. Ognier, C. Wisniewski, and A. Grasmick, “Characterisation and modelling of fouling in membrane bioreactors.,” Desalination, vol. 146, pp. 141–147, Sep. 2002.

[88]       D. Wu, J. A. Howell, and R. W. Field, “Critical flux measurement for model colloids.,” J. Memb. Sci., vol. 152, pp. 89–98, 1999.

[89]       K. Zhang, H. Choi, D. D. Dionysiou, G. A. Sorial, and D. B. Oerther, “Identifying pioneer bacterial species responsible for biofouling membrane bioreactors.,” Environ. Microbiol., vol. 8, no. 3, pp. 433–440, Mar. 2006.

[90]       Y. Miura, Y. Watanabe, and S. Okabe, “Membrane Biofouling in Pilot-Scale Membrane Bioreactors ( MBRs ) Treating Municipal Wastewater : Impact of Biofilm Formation.,” Environ. Sci. Technol., vol. 41, pp. 632–638, Jan. 2007.

[91]       P. Jinhua, K. Fukushi, and K. Yamamoto, “Bacterial Community Structure on Membrane Surface and Characteristics of Strains Isolated from Membrane Surface in Submerged Membrane Bioreactor.,” Sep. Sci. Technol., vol. 41, no. 7, pp. 1527–1549, Jun. 2006.

[92]       J. S. Baker and L. Y. Dudley, “Biofouling in membrane systems — A review.,” Desalination, vol. 118, pp. 81–90, Sep. 1998.

[93]       C. L. Chen, W. T. Liu, M. L. Chong, M. T. Wong, S. L. Ong, H. Seah, and W. J. Ng, “Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach.,” Appl. Microbiol. Biotechnol., vol. 63, pp. 466–473, Jan. 2004.

[94]       P. Hörsch, A. Gorenflo, C. Fuder, A. Deleage, and F. H. Frimmel, “Biofouling of ultra- and nanofiltration membranes fordrinking water treatment characterized by fluorescence in situ hybridization (FISH).,” Desalination, vol. 172, pp. 41–52, Feb. 2005.

[95]       P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities.,” Annu. Rev. Microbiol., vol. 56, pp. 187–209, Jan. 2002.

[96]       M. Pasmore, P. Todd, S. Smith, D. Baker, J. Silverstein, D. Coons, and C. N. Bowman, “Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling.,” J. Memb. Sci., vol. 194, pp. 15–32, Nov. 2001.

[97]       B. A. Jucker, H. Harms, and A. J. B. Zehnder, “Adhesion of the Positively Charged Bacterium Stenotrophomonas (Xanthomonas ) maltophilia 70401 to Glass and Teflon.,” J. Bacteriol., vol. 178, no. 18, pp. 5472–5479, 1996.

[98]       B. Tansel, J. Sager, J. Garland, S. Xu, L. Levine, and P. Bisbee, “Biofouling affinity of membrane surfaces under quiescent conditions.,” Desalination, vol. 227, pp. 264–273, Jul. 2008.

[99]       B. . Cho and A. G. Fane, “Fouling transients in nominally sub-critical flux operation of a membrane bioreactor.,” J. Memb. Sci., vol. 209, pp. 391–403, Nov. 2002.

[100]     G. Zhang, S. Ji, X. Gao, and Z. Liu, “Adsorptive fouling of extracellular polymeric substances with polymeric ultrafiltration membranes.,” J. Memb. Sci., vol. 309, pp. 28–35, Feb. 2008.

[101]     M. Chen, D. Lee, and J. H. Tay, “Extracellular Polymeric Substances in Fouling Layer.,” Sep. Sci. Technol., vol. 41, pp. 1467–1474, Jun. 2006.

[102]     K. Milferstedt, M.-N. Pons, and E. Morgenroth, “Textural fingerprints: a comprehensive descriptor for biofilm structure development.,” Biotechnol. Bioeng., vol. 100, pp. 889–901, Aug. 2008.

[103]     X. J. Fan, V. Urbain, Y. Qian, and J. Manem, “Ultrafiltration of activated sludge with ceramic membranes in a cross-flow membrane bioreactor process.,” Water Sci. Technol., vol. 41, pp. 243–250, 2000.

[104]     K.-M. Yeon, W.-S. Cheong, H.-S. Oh, W.-N. Lee, B.-K. Hwang, C.-H. Lee, H. Beyenal, and Z. Lewandowski, “Quorum Sensing: A New Biofouling Control Paradigm in a Membrane Bioreactor for Advanced Wastewater Treatment.,” Environ. Sci. Technol., vol. 43, pp. 380–385, Jan. 2009.

[105]     V. Naddeo, V. Belgiorno, L. Borea, M. F. N. Secondes, and F. Ballesteros, “Control of fouling formation in membrane ultrafiltration by ultrasound irradiation.,” Environ. Technol., Dec. 2014.

[106]     W.-N. Lee, I.-S. Chang, B.-K. Hwang, P.-K. Park, C.-H. Lee, and X. Huang, “Changes in biofilm architecture with addition of membrane fouling reducer in a membrane bioreactor.,” Process Biochem., vol. 42, pp. 655–661, Apr. 2007.

[107]     C. Huyskens, H. De Wever, Y. Fovet, U. Wegmann, L. Diels, and S. Lenaerts, “Screening of novel MBR fouling reducers: Benchmarking with known fouling reducers and evaluation of their mechanism of action.,” Sep. Purif. Technol., vol. 95, pp. 49–57, Jul. 2012.

[108]     K. Bernaerts, “Reactor Engineering. Part b: Bioreactor Engineering.,” Katholieke Universiteit Leuven, Leuven, 2012.

[109]     C. X. Liu, D. R. Zhang, Y. He, X. S. Zhao, and R. Bai, “Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches.,” J. Memb. Sci., vol. 346, pp. 121–130, Jan. 2010.

[110]     L. Zou, I. Vidalis, D. Steele, A. Michelmore, S. P. Low, and J. Q. J. C. Verberk, “Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling.,” J. Memb. Sci., vol. 369, pp. 420–428, Mar. 2011.

[111]     F. Liu, B.-K. Zhu, and Y.-Y. Xu, “Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers.,” Appl. Surf. Sci., vol. 253, pp. 2096–2101, Dec. 2006.

[112]     G. Kang, M. Liu, B. Lin, Y. Cao, and Q. Yuan, “A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol).,” Polymer (Guildf)., vol. 48, pp. 1165–1170, Feb. 2007.

[113]     H. Yu, Y. Xie, M. Hu, J. Wang, S. Wang, and Z. Xu, “Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment.,” J. Memb. Sci., vol. 254, pp. 219–227, Jun. 2005.

[114]     H.-Y. Yu, L.-Q. Liu, Z.-Q. Tang, M.-G. Yan, J.-S. Gu, and X.-W. Wei, “Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: Air plasma treatment.,” J. Memb. Sci., vol. 311, pp. 216–224, Mar. 2008.

[115]     J. Schaep and C. Vandecasteele, “Evaluating the charge of nanofiltration membranes.,” J. Memb. Sci., vol. 188, pp. 129–136, 2001.

[116]     A. Roosjen, W. Norde, H. C. van der Mei, and H. J. Busscher, “The Use of Positively Charged or Low Surface Free Energy Coatings versus Polymer Brushes in Controlling Biofilm Formation.,” Prog. Colloid Polym. Sci., vol. 132, pp. 138–144, 2006.

[117]     B. Gottenbos, D. W. Grijpma, H. C. van der Mei, J. Feijen, and H. J. Busscher, “Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria.,” J. Antimicrob. Chemother., vol. 48, pp. 7–13, 2001.

[118]     K. Bazaka, M. V. Jacob, R. J. Crawford, and E. P. Ivanova, “Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms.,” Appl. Microbiol. Biotechnol., vol. 95, pp. 299–311, Jul. 2012.

[119]     Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez, “Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications.,” Water Res., vol. 42, pp. 4591–4602, Nov. 2008.

[120]     R. S. Trussell, R. P. Merlo, S. W. Hermanowicz, and D. Jenkins, “The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater.,” Water Res., vol. 40, pp. 2675–2683, Aug. 2006.

[121]     S. R. Panda and S. De, “Preparation, characterization and antifouling properties of polyacrylonitrile/polyurethane blend membranes for water purification.,” R. Soc. Chem. Adv., vol. 5, pp. 23599–23612, 2015.

[122]     N. Scharnagl and H. Buschatz, “Polyacrylonitrile (PAN) membranes for ultra- and microfiltration.,” Desalination, vol. 139, pp. 191–198, 2001.

[123]     Z.-G. Wang, L.-S. Wan, and Z.-K. Xu, “Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview.,” J. Memb. Sci., vol. 304, pp. 8–23, Nov. 2007.

[124]     S. G. Ding, X. Q. Cheng, Z. X. Jiang, Y. P. Bai, and L. Shao, “Pore morphology control and hydrophilicity of polyacrylonitrile ultrafiltration membranes.,” J. Appl. Polym. Sci., vol. 132, no. 20, p. n/a–n/a, May 2015.

[125]     X. Li, S. De Feyter, D. Chen, S. Aldea, P. Vandezande, F. Du Prez, and I. F. J. Vankelecom, “Solvent-Resistant Nanofiltration Membranes Based on Multilayered Polyelectrolyte Complexes.,” Chem. Mater., vol. 20, pp. 3876–3883, Jun. 2008.

[126]     W. Bao, Z. Xu, and H. Yang, “Electrokinetic and permeation characterization of hydrolyzed polyacrylonitrile (PAN) hollow fiber ultrafiltration membrane.,” Sci. China Ser. B Chem., vol. 52, no. 5, pp. 683–689, May 2009.

[127]     M. Fang, C. H. Kim, G. B. Saupe, H.-N. Kim, C. C. Waraksa, T. Miwa, A. Fujishima, and T. E. Mallouk, “Layer-by-Layer Growth and Condensation Reactions of Niobate and Titanoniobate Thin Films.,” Chem. Mater., vol. 11, no. 6, pp. 1526–1532, Jun. 1999.

[128]     S. E. Burke and C. J. Barrett, “Acid - Base Equilibria of Weak Polyelectrolytes in Multilayer Thin Films.,” Langmuir, vol. 19, no. 8, pp. 3297–3303, 2003.

[129]     K. F. Tjipangandjara and P. Somasundaran, “Effects of the conformation of poly acrylic acid on the dispersion-flocculation of alumina and kaolinite fines.,” Adv. Powder Technol., vol. 3, no. 2, pp. 119–127, 1992.

[130]     M. R. Bilad, P. Declerck, A. Piasecka, L. Vanysacker, X. Yan, and I. F. J. Vankelecom, “Treatment of molasses wastewater in a membrane bioreactor: Influence of membrane pore size.,” Sep. Purif. Technol., vol. 78, pp. 105–112, Dec. 2010.

[131]     M. R. Bilad, P. Declerck, A. Piasecka, L. Vanysacker, X. Yan, and I. F. J. Vankelecom, “Development and validation of a high-throughput membrane bioreactor (HT-MBR).,” J. Memb. Sci., vol. 379, pp. 146–153, Sep. 2011.

[132]     Y. Elbahloul, K. Frey, J. Sanders, and A. Steinbüchel, “Protamylasse, a Residual Compound of Industrial Starch Production , Provides a Suitable Medium for Large-Scale Cyanophycin Production.,” Appl. Environ. Microbiol., vol. 71, pp. 7759–7767, 2005.

[133]     D. De Vos, “Cursustekst - I0O02a Kolloïdchemie.,” Katholieke Universiteit Leuven - Cursusdienst LBK vzw, Leuven, 2012.

[134]     W. Richard Bowen, N. Hilal, R. W. Lovitt, and C. . Wright, “Characterisation of membrane surfaces: direct measurement of biological adhesion using an atomic force microscope.,” J. Memb. Sci., vol. 154, pp. 205–212, Mar. 1999.

[135]     N. Hilal, W. R. Bowen, L. Alkhatib, and O. Ogunbiyi, “A Review of Atomic Force Microscopy Applied to Cell Interactions with Membranes.,” Chem. Eng. Res. Des., vol. 84, no. A4, pp. 282–292, Apr. 2006.

[136]     H. Zhao, X. Wu, W. Tian, and S. Ren, “Synthesis and Thermal Property of Poly(Allylamine Hydrochloride).,” Adv. Mater. Res., vol. 150–151, pp. 1480–1483, Oct. 2011.

[137]     D. Cho, S. Lee, and M. W. Frey, “Characterizing zeta potential of functional nanofibers in a microfluidic device.,” J. Colloid Interface Sci., vol. 372, pp. 252–260, Apr. 2012.

[138]     Z. Kolská, Z. Makajová, K. Kolářová, N. K. Slepičková, S. Trostová, A. Řezníčková, J. Siegel, and V. Švorčík, “Electrokinetic Potential and Other Surface Properties of Polymer Foils and Their Modifications.,” Polym. Sci., pp. 203–228, 2013.

[139]     A. Lin and P. Liu, “Electrokinetic Property of Modified Polyacrylonitrile Membranes in the Haemodialysis.,” in 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009, pp. 1–5.

[140]     A. Szymczyk, Y. I. Dirir, M. Picot, I. Nicolas, and F. Barrière, “Advanced electrokinetic characterization of composite porous membranes.,” J. Memb. Sci., vol. 429, pp. 44–51, Feb. 2013.

[141]     F. Fan, H. Zhou, and H. Husain, “Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes.,” Water Res., vol. 40, pp. 205–212, Jan. 2006.

[142]     R. Blodgett, “BAM Appendix 2: Most Probable Number from Serial Dilutions,” U.S. Food and Drug Administration, 2010. [Online]. Available: http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm109656…. [Accessed: 30-Apr-2015].

[143]     G. Muyzer and K. Smalla, “Application of denaturing gradient gel electrophoresis ( DGGE ) and temperature gradient gel electrophoresis ( TGGE ) in microbial ecology.,” Antonie Van Leeuwenhoek, vol. 73, pp. 127–141, 1998.

[144]     M. Wagner, R. Amann, and H. Lemmer, “Probing Activated Sludge with Oligonucleotides Specific for Proteobacteria : Inadequacy of Culture-Dependent Methods for Describing Microbial Community Structure.,” Appl. Environ. Microbiol., vol. 59, no. 5, pp. 1520–1525, 1993.

[145]     M. Wagner, R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K. Schleifer, “Development of an rRNA-Targeted Oligonucleotide Probe Specific for the Genus Acinetobacter and Its Application for In Situ Monitoring in Activated Sludge.,” Appl. Environ. Microbiol., vol. 60, no. 3, pp. 792–800, 1994.

[146]     M. H. Larsen, K. Biermann, S. Tandberg, T. Hsu, and W. R. Jacobs, “Genetic Manipulation of Mycobacterium tuberculosis.,” in Current Protocols in Microbiology, John Wiley & Sons, Inc., 2007, p. Unit 10A.2.

[147]     P. Breugelmans, M. Uytebroek, J. Dijk, and K. Bers, “Protocol for Polymerase Chain Reaction (PCR).,” Leuven, 2009.

[148]     K. Cheyns, J. Mertens, and P. Breugelmans, “Protocol for Denaturing Gradient Gel Electrophoresis (DGGE).,” Leuven, 2010.

[149]     A. K. Goodhead, I. M. Head, J. R. Snape, and R. J. Davenport, “Standard inocula preparations reduce the bacterial diversity and reliability of regulatory biodegradation tests.,” Environ. Sci. Pollut. Res., vol. 21, pp. 9511–9521, Aug. 2014.

[150]     S. Ruyters, “Protocol for Making a DGGE ladder.,” 2010.

[151]     N. Boon, W. De Windt, W. Verstraete, and E. M. Top, “Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis ) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants.,” FEMS Microbiol. Ecol., vol. 39, pp. 101–112, 2002.

[152]     M. Ferrando, A. Rozek, M. Zator, F. Lopez, and C. Guell, “An approach to membrane fouling characterization by confocal scanning laser microscopy.,” J. Memb. Sci., vol. 250, pp. 283–293, Mar. 2005.

[153]     “SYTO Red Fluorescent Nucleic Acid Stains,” 2001.

[154]     APHA, “Standard Methods for the Examination of Water and Wastewater. Part 9000 Microbiological Examination.,” 1999.

[155]     M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li, Applied Linear Statistical Models., Fifth. McGraw-Hill Book Company, 2005, p. 1396.

[156]     L. J. Kirwan, P. D. Fawell, and W. van Bronswijk, “In Situ FTIR-ATR Examination of Poly(acrylic acid) Adsorbed onto Hematite at Low pH.,” Langmuir, vol. 19, pp. 5802–5807, Jul. 2003.

[157]     S. Moya, L. Dähne, A. Voigt, S. Leporatti, E. Donath, and H. Möhwald, “Polyelectrolyte multilayer capsules templated on biological cells: core oxidation influences layer chemistry.,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 183–185, pp. 27–40, 2001.

[158]     M. A. Moharram, S. M. Rabie, and H. M. El-Gendy, “Infrared Spectra of gamma-Irradiated Poly(acrylic acid)-Polyacrylamide Complex.,” J. Appl. Polym. Sci., vol. 85, pp. 1619–1623, Aug. 2002.

[159]     S. S. Shiratori and M. F. Rubner, “pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes.,” Macromolecules, vol. 33, no. 11, pp. 4213–4219, May 2000.

[160]     O. Mermut and C. J. Barrett, “Effects of Charge Density and Counterions on the Assembly of Polyelectrolyte Multilayers.,” J. Phys. Chem. B, vol. 107, no. 11, pp. 2525–2530, Mar. 2003.

[161]     Lenntech, “Deionized/Demineralized Water.” [Online]. Available: http://www.lenntech.com/applications/process/demineralised/deionised-de…. [Accessed: 29-Apr-2015].

[162]     A. Schulze, M. F. Maitz, R. Zimmermann, B. Marquardt, M. Fischer, C. Werner, M. Went, and I. Thomas, “Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes.,” RSC Adv., vol. 3, pp. 22518–22526, 2013.

[163]     D. Bhattacharyya, T. Schäfer, S. R. Wickramasinghe, and S. Daunert, Eds., Responsive Membranes and Materials, First. John Wiley & Sons, Ltd, 2013, p. 432.

[164]     H. Ivnitsky, I. Katz, D. Minz, G. Volvovic, E. Shimoni, E. Kesselman, R. Semiat, and C. G. Dosoretz, “Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment.,” Water Res., vol. 41, pp. 3924–3935, Sep. 2007.

[165]     T. Falcioni, A. Manti, P. Boi, B. Canonico, M. Balsamo, and S. Papa, “Comparison of Disruption Procedures for Enumeration of Activated Sludge Floc Bacteria by Flow Cytometry.,” Cytom. Part B (Clinical Cytom., vol. 70B, pp. 149–153, 2006.

[166]     A. Bruns, H. Hoffelner, and J. Overmann, “A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria.,” FEMS Microbiol. Ecol., vol. 45, pp. 161–171, Jul. 2003.

[167]     R. Ghai, K. D. McMahon, and F. Rodriguez-Valera, “Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC.,” Environ. Microbiol. Rep., vol. 4, no. 1, pp. 29–35, Feb. 2012.

[168]     M. Ventura, C. Canchaya, A. Tauch, G. Chandra, G. F. Fitzgerald, K. F. Chater, and D. van Sinderen, “Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum.,” Microbiol. Mol. Biol. Rev., vol. 71, no. 3, pp. 495–548, Sep. 2007.

[169]     S. J. McIlroy, R. Kristiansen, M. Albertsen, S. M. Karst, S. Rossetti, J. L. Nielsen, V. Tandoi, R. J. Seviour, and P. H. Nielsen, “Metabolic model for the filamentous ‘Candidatus Microthrix parvicella’ based on genomic and metagenomic analyses.,” ISME J., vol. 7, pp. 1161–1172, Jun. 2013.

[170]     K. Zhang, H. Choi, M. Wu, G. a. Sorial, D. Dionysiou, and D. B. Oerther, “An ecology-based analysis of irreversible biofouling in membrane bioreactors.,” Water Sci. Technol., vol. 55, no. 8–9, pp. 395–402, May 2007.

[171]     A. C. Martiny, T. M. Jørgensen, H.-J. Albrechtsen, E. Arvin, and S. Molin, “Long-Term Succession of Structure and Diversity of a Biofilm Formed in a Model Drinking Water Distribution System.,” Appl. Environ. Microbiol., vol. 69, no. 11, pp. 6899–6907, 2003.

[172]     A. Piasecka, R. Bernstein, F. Ollevier, F. Meersman, C. Souffreau, R. M. Bilad, K. Cottenie, L. Vanysacker, C. Denis, and I. Vankelecom, “Study of biofilms on PVDF membranes after chemical cleaning by sodium hypochlorite.,” Sep. Purif. Technol., vol. 141, pp. 314–321, Feb. 2015.

[173]     D. Springael, “Cursustekst - I0N90A Biochemische analysetechnieken.,” Leuven, 2012.

[174]     A. Jabs, “Determination of Secondary Structure in Proteins by Fourier Transfrom Infrared Spectroscopy (FTIR).,” Jena Library of Biological Macromolecules. [Online]. Available: http://jenalib.fli-leibniz.de/ImgLibDoc/ftir/IMAGE_FTIR.html. [Accessed: 01-May-2015].

[175]     A. S. Landa, H. C. Van Der Mei, and H. J. Busscher, “Detachment of Linking Film Bacteria From Enamel Surfaces by Oral Rinses and Penetration of Sodium Lauryl Sulphate Through an Artificial Oral Biofilm.,” Adv. Dent. Res., vol. 11, no. 4, pp. 528–538, Nov. 1997.

[176]     K. J. Howe, K. P. Ishida, and M. M. Clark, “Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters.,” Desalination, vol. 147, pp. 251–255, Sep. 2002.

[177]     V. M. Siqueira and N. Lima, “Biofilm Formation by Filamentous Fungi Recovered from a Water System.,” J. Mycol., pp. 1–9, 2013.

[178]     M. W. Harding, L. L. R. Marques, R. J. Howard, and M. E. Olson, “Can filamentous fungi form biofilms?,” Trends Microbiol., vol. 17, no. 11, pp. 475–480, Nov. 2009.

[179]     S. Ishii, T. Shimoyama, Y. Hotta, and K. Watanabe, “Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell.,” BMC Microbiol., vol. 8, no. 6, Jan. 2008.

[180]     H. Lin, S. L. Ong, W. J. Ng, and E. Khan, “Monitoring of Bacterial Morphology for Controlling Filamentous Overgrowth in an Ultracompact Biofilm Reactor.,” Water Environ. Res., vol. 76, pp. 413–424, 2004.

[181]     Bernardo, E. C., Egashira, R., & Kawasaki, J. (1997). Decolorization of molasses’ wastewater using activated carbon prepared from cane bagasse. Carbon, 35(9), 1217–1221.

[182]     Santal, A. R., & Singh, N. P. (2013). Biodegradation of Melanoidin from Distillery Effluent : Role of Microbes and Their Potential Enzymes. In R. Chamy & F. Rosenkranz (Eds.), Biodegradation of Hazardous and Special Products (pp. 71–104). doi:10.5772/56252

[183]     Puspitasari, V., Granville, A., Le-Clech, P., & Chen, V. (2010). Cleaning and ageing effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane. Separation and Purification Technology, 72, 301–308. doi:10.1016/j.seppur.2010.03.001

[184]     Rouaix, S., Causserand, C., & Aimar, P. (2006). Experimental study of the effects of hypochlorite on polysulfone membrane properties. Journal of Membrane Science, 277(1-2), 137–147. doi:10.1016/j.memsci.2005.10.040

 

Download scriptie (7.23 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2015