Puzzelen met moleculaire bouwblokken: het ontwerp van nieuwe materialen met de computer
“I have not failed. I’ve just found 10 000 ways that won’t work.”
Thomas Edison
Metaal-organische roosters (MOF’s) vormen sedert enkele jaren een nieuwe klasse van materialen. Ze vertonen interessante eigenschappen die kunnen gebruikt worden in verscheidene toepassingen zoals katalysatoren in chemische processen. Deze materialen worden gevormd door verschillende moleculaire bouwstenen met elkaar te combineren. Dit kan echter op bijna een oneindig aantal manieren. Computersimulaties kunnen het onderzoek naar de beste materialen in de goede richting duwen.
Iedere dag zijn wetenschappers op zoek naar nieuwe en betere materialen voor praktische toepassingen. Decennialang werd dit gedaan door het beproefde concept van trial-and-error. Nieuwe materialen werden uitgeprobeerd om te beoordelen of ze voldoen aan alle productvereisten. Deze aanpak gaf aanleiding tot enkele bekende succesverhalen zoals het ontwerp van de gloeilamp. Na ettelijke mislukte pogingen om een geschikte gloeidraad te vinden, vond Thomas Edison het juiste materiaal. Deze manier van werken is echter tijdrovend en duur, en in het huidige economische klimaat niet wenselijk. De oplossing is het selecteren van een materiaal na het uitrekenen van zijn eigenschappen op de computer.
Een klasse van materialen waar deze computationele aanpak zich uitstekend toe leent zijn de metaal-organische roosters (MOF’s). Omstreeks de eeuwwisseling werden deze nanoporeuze kristallijne materialen voor het eerst gesynthetiseerd. Het ontwerpen van MOF’s wordt gezien als één van de grootste successen van de nanotechnologie omwille van hun exceptionele eigenschappen. Neem nu het volgende voorbeeld: het inwendig oppervlak van slechts één gram van sommige MOF's kan tot veertig tennisvelden groot zijn. Bovendien vertonen andere MOF’s een structurele flexibiliteit die aanleiding geeft tot ‘ademend’ gedrag (zie onderstaande figuur) onder invloed van bijvoorbeeld variërende temperatuur, concentratie van CO2 in de omgeving en druk. Deze eigenschappen zorgen ervoor dat MOF’s uitstekende kandidaten zijn voor een brede waaier aan toepassingen zoals katalysatoren in chemische processen en als detectoren op de nanoschaal.
MOF’s zijn opgebouwd uit twee types van moleculaire bouwblokken: anorganische metaalclusters en organische moleculen. De atypische opbouw van deze materialen is verantwoordelijk voor hun uitzonderlijke eigenschappen. De metaalclusters worden onderling verbonden door de organische moleculen die ook wel organische linkers worden genoemd. Dit alles gebeurt op de nanoschaal en geeft aanleiding tot een bijna ontelbaar aantal mogelijke MOF’s. Recentelijk werd dit geïllustreerd door een Amerikaanse onderzoeksgroep die op basis van slechts 102 van deze bouwblokken meer dan 130 000 hypothetische MOF’s hebben voorgesteld. Gedurende de afgelopen jaren zijn er duizenden nieuwe MOF’s geproduceerd. De ganse verzameling van hypothetische structuren maken en testen in het labo is niet mogelijk en zelfs voor een computationele aanpak is deze grote hoeveelheid een hele uitdaging.
In het Centrum voor Moleculaire Modellering werd gedurende dit onderzoek een nieuwe methodologie ontwikkeld die toelaat om de verzameling van hypothetische MOF’s op een efficiënte manier te doorzoeken naar waardevolle kandidaten voor verschillende toepassingen. Op basis van kwantummechanische computerberekeningen op de moleculaire bouwstenen wordt een model - een zogenaamd krachtveld - opgesteld voor iedere MOF. Met zo’n krachtveld kan de invloed van bijvoorbeeld temperatuur en druk op het materiaal worden onderzocht en kunnen eigenschappen zoals de sterkte van het materiaal bepaald worden op een accurate wijze via simulaties. Aangezien er slechts een beperkt aantal bouwblokken beschikbaar zijn, biedt deze aanpak een significant voordeel. Gedurende het onderzoek werd deze methodologie verfijnd en ze is nu klaar om toegepast te worden op de verzameling van hypothetische MOF’s.
Het selecteren en ontwerpen van nieuwe materialen voor praktische toepassingen is in het beste geval tijdrovend, maar vaak ook duur en beide zijn economisch niet wenselijk. Metaal-organische roosters, een nieuwe klasse van nanoporeuze kristallijne materialen, hebben exceptionele eigenschappen die potentieel interessant zijn voor een brede waaier aan toepassingen. Met slechts 102 bouwblokken werden recentelijk meer dan 130 000 hypothetische MOF’s voorgesteld. Met de ontwikkelde werkwijze wordt het mogelijk gemaakt om deze grote verzameling van veelbelovende materialen te karakteriseren vanop de computer. Dit alles brengt ons een stapje dichter bij het efficiënt ontwerpen van materialen.
Mijn bibliografie is enkel beschikbaar in latex en pdf-formaat. Onderstaande is gekopieerd van mijn thesis
(maar kan dus ook onderaan mijn scriptie gevonden worden).
[1] F. Salles, A. Ghou, G. Maurin, R. G. Bell, C. Mellot-Draznieks, and G. Ferey, \Molecular
Dynamics Simulations of Breathing MOFs: Structural Transitions of MIL-53(Cr) upon Thermal
Activation and CO2 Adsorption," Angew. Chem. Int. Ed., vol. 47, no. 44, pp. 8487{8491,
2008.
[2] S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, \The
High-Throughput Highway to Computational Materials Design," Nat. Mater., vol. 12, no. 3,
pp. 191{201, 2013.
[3] V. Pareto, Manuale di Economia Politica. Societa Editrice Libraria, 1906.
[4] T. Bligaard, G. H. Johannesson, A. V. Ruban, H. L. Skriver, K. W. Jacobsen, and J. K.
Nrskov, \Pareto-Optimal Alloys," Appl. Phys. Lett., vol. 83, no. 22, pp. 4527{4529, 2003.
[5] M. P. Andersson, T. Bligaard, A. Kustov, K. E. Larsen, J. Greeley, T. Johannessen, C. H.
Christensen, and J. K. J. K. Nrskov, \Toward Computational Screening in Heterogeneous
Catalysis: Pareto-Optimal Methanation Catalysts," J. Catal., vol. 239, no. 2, pp. 501{506,
2006.
[6] C. O'Mahony and N. Wilson, \Sorted Pareto Dominance: An Extension to Pareto Dominance
and Its Application in Soft Constraints," IEEE ICTAI, vol. 1, pp. 798{805, 2012.
[7] O. Aguirre and H. Taboada, \A Clustering Method Based on Dynamic Self Organizing Trees
for Post-Pareto Optimality Analysis," Procedia Comput. Sci., vol. 6, pp. 195{200, 2011.
[8] I. Das, \A Preference Ordering among Various Pareto Optimal Alternatives," Struct. Optim.,
vol. 18, no. 1, pp. 30{35, 1999.
[9] K. Lejaeghere, S. Cottenier, and V. V. Speybroeck, \Ranking the Stars: A Rened Pareto
Approach to Computational Materials Design," Phys. Rev. Lett., vol. 111, no. 7, p. 075501,
2013.
[10] H. Li, M. Eddaoudi, M. O'Keee, and O. M. Yaghi, \Design and Synthesis of an Exceptionally
Stable and Highly Porous Metal-Organic Framework," Nature, vol. 402, no. 6759, pp. 276{279,
1999.
[11] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keee, and O. M. Yaghi, \Systematic
Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in
Methane Storage," Science, vol. 295, no. 5554, pp. 469{472, 2002.
[12] C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, and G. Ferey, \Very
Large Breathing Eect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or
CrIII(OH) fO2C-C6H4-CO2g fHO2C-C6H4-CO2Hgx H2Oy," J. Am. Chem. Soc., vol. 124,
no. 45, pp. 13519{13526, 2002.
[13] K. S. Park, Z. Ni, A. P. C^ote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae,
M. O'Keee, and O. M. Yaghi, \Exceptional Chemical and Thermal Stability of Zeolitic
Imidazolate Frameworks," Proc. Natl. Acad. Sci., vol. 103, no. 27, pp. 10186{10191, 2006.
[14] L. Vanduyfhuys, T. Verstraelen, M. Vandichel, M. Waroquier, and V. Van Speybroeck, \Ab
Initio Parametrized Force Field for the Flexible Metal-Organic Framework MIL-53(Al)," J.
Chem. Theory Comput., vol. 8, no. 9, pp. 3217{3231, 2012.
[15] R. E. Morris and P. S. Wheatley, \Gas Storage in Nanoporous Materials," Angew. Chem. Int.
Ed., vol. 47, no. 27, pp. 4966{4981, 2008.
[16] S.-L. Li and Q. Xu, \Metal-Organic Frameworks as Platforms for Clean Energy," Energ.
Environ. Sci., vol. 6, no. 6, pp. 1656{1683, 2013.
[17] C. Rosler and R. A. Fischer, \Metal-Organic Frameworks as Hosts for Nanoparticles," Crys-
tEngComm, vol. 17, no. 2, pp. 199{217, 2014.
[18] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, \Metal-
Organic Framework Materials as Chemical Sensors," Chem. Rev., vol. 112, no. 2, pp. 1105{
1125, 2012.
[19] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, \Metal-Organic
Framework Materials as Catalysts," Chem. Soc. Rev., vol. 38, no. 5, p. 1450, 2009.
[20] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Ferey, R. E.
Morris, and C. Serre, \Metal-Organic Frameworks in Biomedicine," Chem. Rev., vol. 112,
no. 2, pp. 1232{1268, 2012.
[21] S. T. Meek, J. A. Greathouse, and M. D. Allendorf, \Metal-Organic Frameworks: A Rapidly
Growing Class of Versatile Nanoporous Materials," Adv. Mater., vol. 23, no. 2, pp. 249{267,
2011.
[22] M. Kurmoo, \Magnetic Metal-Organic Frameworks," Chem. Soc. Rev., vol. 38, no. 5, p. 1353,
2009.
[23] C. G. Silva, A. Corma, and H. Garca, \Metal-Organic Frameworks as Semiconductors," J.
Mater. Chem., vol. 20, no. 16, pp. 3141{3156, 2010.
[24] S. Horike, S. Shimomura, and S. Kitagawa, \Soft Porous Crystals," Nat. Chem., vol. 1, no. 9,
pp. 695{704, 2009.
[25] A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, and R. A. Fischer, \Flexible
Metal-Organic Frameworks," Chem. Soc. Rev., vol. 43, no. 16, pp. 6062{6096, 2014.
[26] C. R. Murdock, B. C. Hughes, Z. Lu, and D. M. Jenkins, \Approaches for Synthesizing Breathing
MOFs by Exploiting Dimensional Rigidity," Coord. Chem. Rev., vol. 258-259, pp. 119{136,
2014.
[27] Y. J. Colon and R. Q. Snurr, \High-Throughput Computational Screening of Metal-Organic
Frameworks," Chem. Soc. Rev., vol. 43, no. 16, pp. 5735{5749, 2014.
[28] H. Furukawa, K. E. Cordova, M. O'Keee, and O. M. Yaghi, \The chemistry and applications
of metal-organic frameworks," Science, vol. 341, no. 6149, p. 1230444, 2013.
[29] M. O'Keee, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi, \The Reticular Chemistry
Structure Resource (RCSR) Database Of, and Symbols For, Crystal Nets," Accts. Chem.
Res., vol. 41, no. 12, pp. 1782{1789, 2008.
[30] F. H. Allen, \The Cambridge Structural Database: A Quarter of a Million Crystal Structures
and Rising," Acta Crystallogr., Sect. B: Struct. Sci., vol. 58, pp. 380{388, 2002.
[31] Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim,
O. K. Farha, D. S. Sholl, and R. Q. Snurr, \Computation-Ready, Experimental Metal-Organic
Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals," Chem.
Mat., vol. 26, no. 21, pp. 6185{6192, 2014.
[32] C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, and R. Q. Snurr,
\Large-Scale Screening of Hypothetical Metal-Organic Frameworks," Nat. Chem., vol. 4, no. 2,
pp. 83{89, 2012.
[33] T. Watanabe and D. S. Sholl, \Accelerating Applications of Metal-Organic Frameworks for
Gas Adsorption and Separation by Computational Screening of Materials," Langmuir, vol. 28,
no. 40, pp. 14114{14128, 2012.
[34] M. Fernandez, P. G. Boyd, T. D. Da, M. Z. Aghaji, and T. K. Woo, \Rapid and Accurate
Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2
Capture," J. Phys. Chem. Lett., vol. 5, no. 17, pp. 3056{3060, 2014.
[35] C. E. Wilmer, O. K. Farha, Y.-S. Bae, J. T. Hupp, and R. Q. Snurr, \Structure-property
relationships of porous materials for carbon dioxide separation and capture," Energ. Environ.
Sci., vol. 5, no. 12, pp. 9849{9856, 2012.
[36] M. Fernandez, T. K. Woo, C. E. Wilmer, and R. Q. Snurr, \Large-Scale Quantitative
Structure-Property Relationship (QSPR) Analysis of Methane Storage in Metal-Organic
Frameworks," J. Phys. Chem. C, vol. 117, no. 15, pp. 7681{7689, 2013.
[37] D. A. Gomez, J. Toda, and G. Sastre, \Screening of Hypothetical Metal-Organic Frameworks
for H2 Storage," Phys. Chem. Chem. Phys., vol. 16, no. 35, pp. 19001{19010, 2014.
[38] Y. J. Colon, D. Fairen-Jimenez, C. E. Wilmer, and R. Q. Snurr, \High-Throughput Screening
of Porous Crystalline Materials for Hydrogen Storage Capacity Room Temperature," J. Phys.
Chem. C, vol. 118, no. 10, pp. 5383{5389, 2014.
[39] D. A. Gomez-Gualdron, C. E. Wilmer, O. K. Farha, J. T. Hupp, and R. Q. Snurr, \Exploring
the Limits of Methane Storage and Delivery in Nanoporous Materials," J. Phys. Chem. C,
vol. 118, no. 13, pp. 6941{6951, 2014.
[40] B. J. Sikora, R. Winnegar, D. M. Proserpio, and R. Q. Snurr, \Textural Properties of a Large
Collection of Computationally Constructed MOFs and Zeolites," Microporous and Mesoporous
Materials, vol. 186, pp. 207{213, 2014.
[41] B. J. Sikora, C. E. Wilmer, M. L. Greeneld, and R. Q. Snurr, \Thermodynamic Analysis
of Xe/Kr Selectivity in over 137000 Hypothetical Metal-organic Frameworks," Chem. Sci.,
vol. 3, no. 7, pp. 2217{2223, 2012.
[42] A. U. Ortiz, A. Boutin, A. H. Fuchs, and F.-X. Coudert, \Anisotropic Elastic Properties of
Flexible Metal-Organic Frameworks: How Soft Are Soft Porous Crystals?," Phys. Rev. Lett.,
vol. 109, no. 19, p. 195502, 2012.
[43] A. I. Skoulidas and D. S. Sholl, \Self-Diusion and Transport Diusion of Light Gases in
Metal-Organic Framework Materials Assessed Using Molecular Dynamics simulations," J.
Phys. Chem. B, vol. 109, no. 33, pp. 15760{15768, 2005.
[44] Q. Yang, C. Zhong, and J.-F. Chen, \Computational Study of CO2 Storage in Metal-Organic
Frameworks," J. Phys. Chem. C, vol. 112, no. 5, pp. 1562{1569, 2008.
[45] Q. Yang, D. Liu, C. Zhong, and J.-R. Li, \Development of Computational Methodologies
for Metal-Organic Frameworks and Their Application in Gas Separations," Chem. Soc. Rev.,
vol. 113, no. 10, pp. 8261{8323, 2013.
[46] S. Amirjalayer, M. Tapolsky, and R. Schmid, \Molecular Dynamics Simulation of Benzene
Diusion in MOF-5: Importance of Lattice Dynamics," Angew. Chem. Int. Ed., vol. 46, no. 3,
pp. 463{466, 2007.
[47] Y. Sun and H. Sun, \An All-Atom Force Field Developed for Zn4O(RCO2)6 Metal-Organic
Frameworks," J. Mol. Model., vol. 20, no. 3, p. 2146, 2014.
[48] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Ski, \UFF, a Full
Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations,"
J. Am. Chem. Soc., vol. 114, no. 25, pp. 10024{10035, 1992.
[49] S. L. Mayo, B. D. Olafson, and W. A. Goddard III, \DREIDING: A Generic Force Field for
Molecular Simulations," J. Phys. Chem., vol. 94, no. 26, pp. 8897{8909, 1990.
[50] N. L. Allinger, Y. H. Yuh, and J. H. Lii, \Molecular Mechanics. The MM3 Force Field for
Hydrocarbons. 1.," J. Am. Chem. Soc., vol. 111, no. 23, pp. 8551{8566, 1989.
[51] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C.
Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, \A Second Generation Force Field
for the Simulation of Proteins, Nucleic Acids, and Organic Molecules," J. Am. Chem. Soc.,
vol. 117, no. 19, pp. 5179{5197, 1995.
[52] P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wol, M. Genest, and A. T.
Hagler, \Structure and Energetics of Ligand Binding to Proteins: Escherichia Coli Dihydrofolate
Reductase-Trimethoprim, a Drug-Receptor System," Proteins: Struct., Funct., Bioinf.,
vol. 4, no. 1, pp. 31{47, 1988.
[53] J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, \Development and
Testing of a General Amber Force Field," J. Comput. Chem., vol. 25, no. 9, pp. 1157{1174,
2004.
[54] J. A. Greathouse and M. D. Allendorf, \Force Field Validation for Molecular Dynamics Simulations
of IRMOF-1 and Other Isoreticular Zinc Carboxylate Coordination Polymers," J.
Phys. Chem. C, vol. 112, no. 15, pp. 5795{5802, 2008.
[55] D. Dubbeldam, K. S. Walton, D. E. Ellis, and R. Q. Snurr, \Exceptional Negative Thermal
Expansion in Isoreticular Metal-Organic Frameworks," Angew. Chem. Int. Ed., vol. 46, no. 24,
pp. 4496{4499, 2007.
[56] M. Tapolsky, S. Amirjalayer, and R. Schmid, \Ab Initio Parameterized MM3 Force Field
for the Metal-Organic Framework MOF-5," J. Comput. Chem., vol. 28, no. 7, pp. 1169{1176,
2007.
[57] Z. Hu, L. Zhang, and J. Jiang, \Development of a Force Field for Zeolitic Imidazolate
Framework-8 with Structural Flexibility," J. Chem. Phys., vol. 136, no. 24, p. 244703, 2012.
[58] M. A. Addicoat, N. Vankova, I. F. F. Akter, and T. Heine, \Extension of the Universal Force
Field to Metal-Organic Frameworks," J. Chem. Theory Comput., vol. 10, no. 2, pp. 880{891,
2013.
[59] J. K. Bristow, D. Tiana, and A.Walsh, \Transferable Forceeld for Metal-Organic Frameworks
from First-Principles: BTW-FF," J. Chem. Theory Comput., vol. 10, no. 10, pp. 4644{4652,
2014.
[60] R. F. W. Bader, \Atoms in Molecules," Acc. Chem. Res., vol. 18, no. 1, pp. 9{15, 1985.
[61] M. Tapolsky and R. Schmid, \Systematic First Principles Parametrization of Force Fields
for Metal-Organic Frameworks Using a Genetic Algorithm Approach," J. Phys. Chem. B,
vol. 113, no. 5, pp. 1341{1352, 2009.
[62] B. H. Besler, K. M. Merz, and P. A. Kollman, \Atomic Charges Derived from Semi-Empirical
Methods," J. Comput. Chem., vol. 11, no. 4, pp. 431{439, 1990.
[63] M. Tapolsky, S. Amirjalayer, and R. Schmid, \First-Principles-Derived Force Field for Copper
Paddle-Wheel-Based Metal-Organic Frameworks," J. Phys. Chem. C, vol. 114, no. 34,
pp. 14402{14409, 2010.
[64] S. Bureekaew, S. Amirjalayer, M. Tapolsky, C. Spickermann, T. K. Roy, and R. Schmid,
\MOF-FF - A Flexible First-Principles Derived Force Field for Metal-Organic Frameworks,"
Phys. Status Solidi B, vol. 250, no. 6, pp. 1128{1141, 2013.
[65] S. Amirjalayer and R. Schmid, \Adsorption of Hydrocarbons in Metal-Organic Frameworks:
A Force Field Benchmark on the Example of Benzene in Metal-Organic Framework 5," J.
Phys. Chem. C, vol. 116, no. 29, pp. 15369{15377, 2012.
[66] S. Grimme, \A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules
and Condensed Phase Simulations," J. Chem. Theory Comput., vol. 10, no. 10, pp. 4497{4514,
2014.
[67] L. Vanduyfhuys, S. Vandenbrande, T. Verstraelen, R. Schmid, M. Waroquier, and V. Van
Speybroeck, \QuickFF: A Program for a Quick and Easy Derivation of Force Fields for Metal-
Organic Frameworks from Ab Initio Input," J. Comput. Chem., vol. 36, no. 13, pp. 1015{1027,
2015.
[68] J. S. Grosch and F. Paesani, \Molecular-Level Characterization of the Breathing Behavior
of the Jungle-Gym-Type DMOF-1 Metal-Organic Framework," J. Am. Chem. Soc., vol. 134,
no. 9, pp. 4207{4215, 2012.
[69] H. Wang, L. Zhao, W. Xu, S. Wang, Q. Ding, X. Lu, and W. Guo, \The Properties of the
Bonding Between CO and ZIF-8 Structures: a Density Functional Theory Study," Theor.
Chem. Acc., vol. 134, no. 3, pp. 1{9, 2015.
[70] S. K. Burger, P. W. Ayers, and J. Schoeld, \Ecient Parameterization of Torsional Terms
for Force Fields," J. Comput. Chem., vol. 35, no. 19, pp. 1438{1445, 2014.
[71] S. Hamad, S. R. G. Balestra, R. Bueno-Perez, S. Calero, and A. R. Ruiz-Salvador, \Atomic
Charges for Modeling Metal-Organic Frameworks: Why and How," J. Solid State Chemistry,
vol. 233, pp. 144{151, 2015.
[72] H. Hu, Z. Lu, and W. Yang, \Fitting Molecular Electrostatic Potentials from Quantum Mechanical
Calculations," J. Chem. Theory Comput., vol. 3, no. 3, pp. 1004{1013, 2007.
[73] P. Bultinck, C. V. Alsenoy, P. W. Ayers, and R. Carbo-Dorca, \Critical Analysis and Extension
of the Hirshfeld Atoms in Molecules," J. Chem. Phys., vol. 126, no. 14, p. 144111,
2007.
[74] F. L. Hirshfeld, \Bonded-Atom Fragments for Describing Molecular Charge Densities," Theor.
Chem. Acc., vol. 44, no. 2, pp. 129{138, 1977.
[75] T. Verstraelen, S. V. Sukhomlinov, V. Van Speybroeck, M. Waroquier, and K. S. Smirnov,
\Computation of Charge Distribution and Electrostatic Potential in Silicates with the Use of
Chemical Potential Equalization Models," J. Phys. Chem. C, vol. 116, no. 1, pp. 490{504,
2012.
[76] T. Verstraelen, P. W. Ayers, V. Van Speybroeck, and M.Waroquier, \Hirshfeld-E Partitioning:
AIM Charges with an Improved Trade-o between Robustness and Accurate Electrostatics,"
J. Chem. Theory Comput., vol. 9, no. 5, pp. 2221{2225, 2013.
[77] J. Chen and T. J. Martinez, \The dissociation catastrophe in
uctuating-charge models and its
implications for the concept of atomic electronegativity," in Advances in the Theory of Atomic
and Molecular Systems (P. Piecuch, J. Maruani, G. Delgado-Barrio, and S. Wilson, eds.),
vol. 19 of Progress in Theoretical Chemistry and Physics, pp. 397{415, Springer Netherlands,
2009.
[78] T. A. Halgren, \Merck Molecular Force Field. II. MMF94 van der Waals and Electrostatic
Parameters for Intermolecular Interactions," J. Comput. Chem., vol. 17, no. 5-6, pp. 520{552,
1996.
[79] A. M. Walker, B. Civalleri, B. Slater, C. Mellot-Draznieks, F. Cora, C. M. Zicovich-Wilson,
G. Roman-Perez, J. M. Soler, and J. D. Gale, \Flexibility in a Metal-Organic Framework
Material Controlled by Weak Dispersion Forces: The Bistability of MIL-53(Al)," Angew.
Chem. Int. Ed., vol. 49, no. 41, pp. 7501{7503, 2010.
[80] N. L. Allinger, X. Zhou, and J. Bergsma, \Molecular Mechanics Parameters," THEOCHEM,
vol. 312, no. 1, pp. 69{83, 1994.
[81] S. Grimme, \Semi-Empirical GGA-Type Density Functional Constructed with a Long-Range
Dispersion Correction," J. Comput. Chem., vol. 27, no. 15, pp. 1787{1799, 2006.
[82] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, \A Consistent and Accurate Ab Initio
Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements
H-Pu," J. Chem. Phys., vol. 132, no. 15, p. 154104, 2010.
[83] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, \Gaussian 09, Revision D.01,"
Gaussian, Inc., 2009.
[84] T. Verstraelen, V. Van Speybroeck, and M. Waroquier, \ZEOBUILDER: A GUI Toolkit for
the Construction of Complex Molecular Structures on the Nanoscale with Building Blocks,"
J. Chem. Inf. Model., vol. 48, no. 7, pp. 1530{1541, 2008.
[85] A. Becke, \Density-Functional Thermochemistry .3. the Role of Exact Exchange," J. Chem.
Phys., vol. 98, no. 7, pp. 5648{5652, 1993.
[86] M. J. Frisch, M. J. Pople, and J. S. Binkley, \Self-Consistent Molecular-Orbital Methods .25.
Supplementary Functions for Gaussian-Basis Sets," J. Chem. Phys., vol. 80, no. 7, pp. 3265{
3269, 1984.
[87] F. Furche and J. P. Perdew, \The Performance of Semilocal and Hybrid Density Functionals
in 3d Transition-Metal Chemistry," J. Chem. Phys., vol. 124, no. 4, p. 044103, 2006.
[88] T. Verstraelen, S. Vandenbrande, M. Chan, F. H. Zadeh, C. Gonzalez, and P. A. Limacher.
Horton 1.2.1, http://theochem.github.com/horton/.
[89] T. Verstraelen, L. Vanduyfhuys, S. Vandenbrande, and S. M. J. Rogge. Ya, yet another force
eld, http://molmod.ugent.be/software/.
[90] B. Civalleri, F. Napoli, Y. Noel, C. Roetti, and R. Dovesi, \Ab-initio Prediction of Materials
Properties with CRYSTAL: MOF-5 as a Case Study," CrystEngComm, vol. 8, no. 5, pp. 364{
371, 2006.
[91] D. F. Bahr, J. A. Reid, W. M. Mook, C. A. Bauer, R. Stumpf, A. J. Skulan, N. R. Moody,
B. A. Simmons, M. M. Shindel, and M. D. Allendorf, \Mechanical Properties of Cubic Zinc
Carboxylate IRMOF-1 Metal-Organic Framework Crystals," Phys. Rev. B, vol. 76, no. 18,
p. 184106, 2007.
[92] P. G. Yot, Q. Ma, J. Haines, Q. Yang, A. Ghou, T. Devic, C. Serre, V. Dimitriev, G. Ferey,
C. Zhong, and G. Maurin, \Large Breathing of the MOF MIL-47(V(IV)) under Mechanical
Pressure: A Joint Experimental-Modelling Exploration," Chem. Sci., vol. 3, no. 2, pp. 1100{
1104, 2012.
[93] Y. Liu, J.-H. Her, A. Dailly, A. J. Ramirez-Cuesta, D. A. Neumann, and C. M. Brown,
\Reversible Structural Transition in MIL-53 with Large Temperature Hysteresis," J. Am.
Chem. Soc., vol. 130, no. 35, pp. 11813{11818, 2008.
[94] J. P. S. Mowat, S. R. Miller, A. M. Z. Slawin, V. R. Seymour, S. E. Ashbrook, and P. A.
Wright, \Synthesis, Characterisation and Adsorption Properties of Microporous Scandium
Carboxylates with Rigid and Flexible Frameworks," Microporous Mesoporous Mater., vol. 142,
no. 1, pp. 322{333, 2011.
[95] C. Volkringer, T. Loiseau, N. Guillou, G. Ferey, E. Elkam, and A. Vimont, \XRD and IR
Structural Investigations of a Particular Breathing Eect in the MOF-Type Gallium Terephtalate
MIL-53(Ga)," Dalton Trans., no. 12, pp. 2241{2249, 2009.
[96] P. Serra-Crespo, E. Stavitski, F. Kapteijn, and J. Gascon, \High Compressibility of a Flexible
Metal-Organic Framework," R. Soc. Chem. Adv., vol. 2, no. 12, pp. 5051{5053, 2012.
[97] F. Millange, N. Guillou, R. I. Walton, J.-M. Greneche, I. Margiolaki, and G. Ferey, \Eect of
the Nature of the Metal on the Breathing Steps in MOFs with Dynamic Frameworks," Chem.
Commun., no. 39, pp. 4732{4734, 2008.
[98] P. J. Hay and W. R. Wadt, \Abinitio Eective Core Potentials for Molecular Calculations -
Potentials for the Transition-Metal Atoms Sc to Hg," J. Chem. Phys., vol. 82, no. 1, pp. 270{
283, 1985.
[99] I. Beurroies, M. Boulhout, P. L. Llewellyn, B. Kuchta, G. Ferey, C. Serre, and R. Denoyel,
\Using Pressure to Provoke the Structural Transition of Metal-Organic Frameworks," Angew.
Chem. Int. Ed., vol. 49, no. 41, pp. 7526{7529, 2010.
[100] A. V. Neimark, F.-X. Coudert, C. Triguero, A. Boutin, A. H. Fuchs, I. Beurroies, and R. Denoyel,
\Structural Transitions in MIL-53(Cr): View from Outside and Inside," Langmuir,
vol. 27, no. 8, pp. 4734{4741, 2011.
[101] J. P. S. Mowat, V. R. Seymour, J. M. Grin, S. P. Thompson, A. M. Z. Slawin, D. Fairen-
Jimenez, T. Duren, S. E. Ashbrook, and P. A. Wright, \A Novel Structural Form of MIL-53
Observed for the Scandium Analogue and Its Response to Temperature Variation and CO2
Adsorption," Dalton Trans., vol. 41, no. 14, pp. 3938{3941, 2012.
[102] H. Leclerc, T. Devic, S. Devautour-Vinot, P. Bazin, N. Audebrand, G. Ferey, M. Daturi,
A. Vimont, and G. Clet, \In
uence of the Oxidation State of the Metal Center on the Flexibility
and Adsorption Properties of a Porous Metal Organic Framework," J. Phys. Chem. C,
vol. 115, no. 40, pp. 19828{19840, 2011.
[103] A. Boutin, D. Bousquet, A. U. Ortiz, F.-X. Coudert, A. H. Fuchs, A. Ballandras, G. Weber,
I. Bezverkhyy, J.-P. Bellat, G. Ortiz, G. Chaplais, J.-L. Paillaud, C. Marichal, H. Nouali,
and J. Patarin, \Temperature-Induced Structural Transitions in the Gallium-Based MIL-53
Metal-Organic Framework," J. Phys. Chem. C, vol. 117, no. 16, pp. 8180{8188, 2013.
[104] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, and G. Ferey,
\A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon
Hydration," Chem. Eur. J., vol. 10, no. 6, pp. 1373{1382, 2004.
[105] A. U. Ortiz, Etude par simulation moleculaire de la
exibilite des materiaux nanoporeux:
proprietes structurales, mecaniques et thermodynamiques. PhD thesis, Universite Pierre et
Marie Curie - Paris VI, 2014.
[106] X. Wang, J. Eckert, L. Liu, and A. J. Jacobson, \Breathing and Twisting: An Investigation
of Framework Deformation and Guest Packing in Single Crystals of a Microporous Vanadium
Benzenedicarboxylate," Inorg. Chem., vol. 50, no. 5, pp. 2028{2036, 2011.
[107] R. S. Mulliken, \Electronic Population Analysis on LCAO-MO Molecular Wave Functions.
I," J. Chem. Phys., vol. 23, no. 10, pp. 1833{1840, 1955.
[108] D. E. P. Vanpoucke, J. W. Jaeken, S. De Baerdemacker, K. Lejaeghere, and V. Van Speybroeck,
\Quasi-1D Physics in Metal-Organic Frameworks: MIL-47(V) from First Principles,"
Beilstein J. Nanotechnol., no. 5, pp. 1738{1748, 2014.
[109] S. Biswas, D. E. P. Vanpoucke, T. Verstraelen, M. Vandichel, S. Couck, K. Leus, Y.-Y.
Liu, M. Waroquier, V. Van Speybroeck, J. F. M. Denayer, and P. V. D. Voort, \New Functionalized
Metal-Organic Frameworks MIL-47-X (X = -Cl, -Br, -CH3, -CF3, -OH, -OCH3):
Synthesis, Characterization, and CO2 Adsorption Properties," J. Phys. Chem. C, vol. 117,
no. 44, pp. 22784{22796, 2013.
[110] K. Barthelet, J. Marrot, D. Riou, and G. Ferey, \A Breathing Hybrid Organic-Inorganic Solid
with Very Large Pores and High Magnetic Characteristics," Angew. Chem. Int. Ed., vol. 41,
no. 2, pp. 281{284, 2002.
[111] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, \A Chemically
Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n," Science, vol. 283, no. 5405,
pp. 1148{1150, 1999.
[112] J. I. Feldblyum, M. Liu, D. W. Gidley, and A. J. Matzger, \Reconciling the Discrepancies
between Crystallographic Porosity and Guest Access As Exemplied by Zn-HKUST-1," J.
Am. Chem. Soc., vol. 133, no. 45, pp. 18257{18263, 2011.
[113] P. Maniam and N. Stock, \Investigation of Porous Ni-Based Metal-Organic Frameworks Containing
Paddle-Wheel Type Inorganic Building Units via High-Throughput Methods," Inorg.
Chem., vol. 50, no. 11, pp. 5085{5097, 2011.
[114] P. Ryan, I. Konstantinov, R. Q. Snurr, and L. J. Broadbelt, \DFT Investigation of Hydroperoxide
Decomposition over Copper and Cobalt Sites within Metal-Organic Frameworks," J.
Catal., vol. 286, pp. 95{102, 2012.
[115] B. Lukose, B. Supronowicz, P. S. Petkov, J. Frenzel, A. B. Kuc, G. Seifert, G. N. Vayssilov, and
T. Heine, \Structural properties of Metal-Organic Frameworks within the Density-Functional
Based Tight-Binding Method," Phys. Status Solidi B, vol. 249, no. 2, pp. 335{342, 2012.
[116] V. K. Peterson, Y. Liu, C. M. Brown, and C. J. Kepert, \Neutron Powder Diraction Study
of D2 Sorption in Cu3(1,3,5-benzenetricarboxylate)2," J. Am. Chem. Soc., vol. 128, no. 49,
pp. 15578{15579, 2006.
[117] S. Amirjalayer, M. Tapolsky, and R. Schmid, \Exploring Network Topologies of Copper
Paddle Wheel Based Metal-Organic Frameworks with a First-Principles Derived Force Field,"
J. Phys. Chem. C, vol. 115, no. 31, pp. 15133{15139, 2011.
[118] D. N. Dybtsev, H. Chun, and K. Kim, \Rigid and Flexible: A Highly Porous Metal-Organic
Framework with Unusual Guest-Dependent Dynamic Behavior," Angew. Chem. Int. Ed.,
vol. 43, no. 38, pp. 5033{5036, 2004.
[119] J.-C. Tan, B. Civalleri, C.-C. Lin, L. Valenzano, R. Galvelis, P.-F. Chen, T. D. Bennett,
C. Mellot-Draznieks, C. M. Zicovich-Wilson, and A. K. Cheetham, \Exceptionally Low Shear
Modulus in a Prototypical Imidazole-Based Metal-Organic Framework," Phys. Rev. Lett.,
vol. 108, no. 9, p. 095502, 2012.
[120] L. Sarkisov and J. Kim, \Computational Structure Characterization Tools for the Era of
Material Informatics," Chem. Eng. Sci., vol. 121, pp. 322{330, 2015.
[121] R. L. Martin, B. Smit, and M. Haranczyk, \Addressing Challenges of Identifying Geometrically
Diverse Sets of Crystalline Porous Materials," J. Chem. Inf. Comput. Sci., vol. 52, no. 2,
pp. 308{318, 2011.
[122] T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, \Algorithms and Tools
for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials," Microporous
Mesoporous Mater., vol. 149, pp. 134{141, 2012.
[123] M. Pinheiro, R. L. Martin, C. H. Rycroft, A. Jones, E. Iglesia, and M. Haranczyk, \Characterization
and Comparison of Pore Landscapes in Crystalline Porous Materials," J. Mol.
Graphics Modell., vol. 44, pp. 208{219, 2013.
[124] J.-C. Tan, T. D. Bennett, and A. K. Cheetham, \Chemical Structure, Network Topology,
and Porosity Eects on the Mechanical Properties on the Mechanical Properties of Zeolitic
Imidazolate Frameworks," Proc. Natl. Acad. Sci., vol. 107, no. 22, pp. 9938{9943, 2010.
[125] D. R. Gaskell, Introduction to the thermodynamics of materials. Tayler & Francis, 5th ed.,
2008.
[126] P. Canepa, K. Tan, Y. Du, H. Lu, Y. J. Chabal, and T. Thonhauser, \Structural, Elastic,
Thermal, and Electronic Response of Small-Molecule-Loaded Metal Organic Frameworks
Materials," J. Mater. Chem. A, vol. 3, no. 3, pp. 986{995, 2015.
[127] A. Ghysels, T. Verstraelen, K. Hemelsoet, M. Waroquier, and V. Van Speybroeck, \TAMkin:
A Versatile Package for Vibrational Analysis and Chemical Kinetics," J. Chem. Inf. Model.,
vol. 50, no. 9, pp. 1736{1750, 2010.
[128] S. Nose, \A molecular dynamics method for simulations in the canonical ensemble," Mol.
Phys., vol. 52, no. 2, pp. 255{268, 1984.
[129] W. G. Hoover, \Canonical Dynamics: Equilibrium Phase-Space Distributions," Phys. Rev.
A, vol. 31, no. 3, pp. 1695{1697, 1985.
[130] G. J. Martyna, M. L. Klein, and M. Tuckerman, \Nose-Hoover Chains - the Canonical Ensemble
Via Continuous Dynamics," J. Chem. Phys, vol. 97, no. 4, pp. 2635{2643, 1992.
[131] P. Langevin, \Sur la theorie du mouvement brownien," C. R. Acad. Sci., vol. 146, pp. 530{533,
1908.
[132] G. J. Martyna, D. J. Tobias, and M. L. Klein, \Constant-Pressure Molecular-Dynamics Algorithms,"
J. Chem. Phys., vol. 101, no. 5, pp. 4177{4189, 1994.
[133] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak,
\Molecular Dynamics with Coupling to an External Bath," J. Chem. Phys., vol. 81, pp. 3684{
3690, 1984.
[134] S. E. Feller, Y. H. Zhang, R. W. Pastor, and B. R. Brooks, \Constant-Pressure Molecular-
Dynamics Simulation - the Langevin Piston Method," J. Chem. Phys., vol. 103, no. 11,
pp. 4613{4621, 1995.
[135] B. Mu and K. S. Walton, \Thermal Analysis and Heat Capacity of Metal-Organic Frameworks,"
J. Phys. Chem. C., vol. 115, no. 46, pp. 22748{22754, 2011.
[136] J. Cao and G. A. Voth, \The Formulation of Quantum Statistical Mechanics Based on the
Feynman Path Centroid Density. I. Equilibrium Properties," J. Chem. Phys., vol. 100, no. 7,
pp. 5093{5105, 1994.
[137] J. Cao and G. A. Voth, \The Formulation of Quantum Statistical Mechanics Based on the
Feynman Path Centroid Density. II. Dynamical Properties," J. Chem. Phys., vol. 100, no. 7,
pp. 5106{5117, 1994.
[138] M. Ceriotti, D. E. Manolopoulos, and M. Parrinello, \Accelerating the convergence of path
integral dynamics with a generalized Langevin equation," J. Chem. Phys., vol. 134, p. 084104,
2011.
[139] M. Ceriotti, J. More, and D. E. Manolopoulos, \i-PI: A Python Interface for Ab Initio Path Integral
Molecular Dynamics Simulations," Comput. Phys. Commun., vol. 185, no. 3, pp. 1019{
1026, 2014.
[140] G. D. Barrera, J. a. O. Bruno, T. H. K. Barron, and N. L. Allan, \Negative thermal expansion,"
J. Phys.: Condens. Matter, vol. 17, no. 4, pp. R217{R252, 2005.
[141] C. Lind, \Two Decades of Negative Thermal Expansion Research: Where Do We Stand?,"
Materials, vol. 5, pp. 1125{1154, 2012.
[142] S. S. Han and W. A. Goddard, \Metal-Organic Frameworks Provide Large Negative Thermal
Expansion Behavior," J. Phys. Chem. C, vol. 111, no. 42, pp. 15185{15191, 2007.
[143] J. L. C. Rowsell, E. S. Spencer, J. Eckert, J. A. K. Howard, and O. M. Yaghi, \Gas Adsorption
Sites in a Large-Pore Metal-Organic Framework," Science, vol. 309, no. 5739, pp. 1350{1354,
2005.
[144] W. Zhou, H. Wu, T. Yildirim, J. R. Simpson, and A. R. H. Walker, \Origin of
the Exceptional Negative Thermal Expansion in Metal-Organic Framework-5 Zn4O(1,4-
benzenedicarboxylate)3," Phys. Rev. B, vol. 78, no. 5, p. 054114, 2008.
[145] N. Lock, Y. Wu, M. Christensen, L. J. Cameron, V. K. Peterson, A. J. Bridgeman, C. J.
Kepert, and B. B. Iversen, \Elucidating Negative Thermal Expansion in MOF-5," J. Phys.
Chem. C, vol. 114, no. 39, pp. 16181{16186, 2010.
[146] L. H. N. Rimmer, M. T. Dove, A. L. Goodwin, and D. C. Palmer, \Acoustic Phonons and
Negative Thermal Expansion in MOF-5," Phys. Chem. Chem. Phys., vol. 16, pp. 21144{21152,
2014.
[147] S. Henke, A. Schneemann, and R. A. Fischer, \Massive Anisotropic Thermal Expansion and
Thermo-Responsive Breathing in Metal-Organic Frameworks Modulated by Linker Functionalization,"
Adv. Funct. Mater., vol. 23, pp. 5990{5996, 2013.
[148] P. Lama, R. K. Das, V. J. Smith, and L. J. Barbour, \A Combined Stretching-Tilting Mechanism
Produces Negative, Zero and Positive Linear Thermal Expansion in a Semi-Flexible
Cd(II)-MOF," Chem. Commun., vol. 50, no. 49, pp. 6464{6467, 2014.
[149] Y.-S. Wei, K.-J. Chen, P.-Q. Liao, B.-Y. Zhu, R.-B. Lin, H.-L. Zhou, B.-Y. Wang, W. Xue,
J.-P. Zhang, and X.-M. Chen, \Turning on the Flexibility of Isoreticular Porous Coordination
Frameworks for Drastically Tunable Framework Breathing and Thermal Expansion," Chem.
Sci., vol. 4, pp. 1539{1546, 2013.
[150] I. Grobler, V. J. Smith, P. M. Bhatt, S. A. Herbert, and L. J. Barbour, \Tunable Anisotropic
Thermal Expansion of a Porous Zinc(II) Metal-Organic Framework," J. Am. Chem. Soc.,
vol. 135, no. 17, pp. 6411{6414, 2013.
[151] V. K. Peterson, G. J. Kearley, Y. Wu, A. J. Ramirez-Cuesta, E. Kemner, and C. J. Kepert,
\Local Vibrational Mechanism for Negative Thermal Expansion: A Combined Neutron Scattering
and First-Principles Study," Angew. Chem. Int. Ed., vol. 49, no. 3, pp. 585{588, 2010.
[152] K. W. Chapman, G. J. Halder, and P. J. Chupas, \Pressure-Induced Amorphization and
Porosity Modication in a Metal-Organic Framework," J. Am. Chem. Soc., vol. 131, no. 48,
pp. 17546{17547, 2009.
[153] J.-C. Tan and A. K. Cheetham, \Mechanical Properties of Hybrid Inorganic-Organic Framework
Materials: Establishing Fundamental Structure-property Relationships," Chem. Soc.
Rev., vol. 40, no. 2, pp. 1059{1080, 2011.
[154] H. Wu, T. Yildirim, and W. Zhou, \Exceptional Mechanical Stability of Highly Porous Zirconium
Metal-Organic Framework UiO-66 and Its Important Implications," J. Phys. Chem.
Lett., vol. 4, no. 6, pp. 925{930, 2013.
[155] W. Li, S. Henke, and A. K. Cheetham, \Research Update: Mechanical Properties of Metal-
Organic Frameworks - In
uence of Structure and Chemical Bonding," APL Mat., vol. 2,
no. 12, p. 123902, 2014.
[156] J.-C. Tan, B. Civalleri, A. Erba, and E. Albanese, \Quantum Mechanical Predictions to
Elucidate the Anisotropic Elastic Properties of Zeolitic Imidazolate Frameworks: ZIF-4 vs.
ZIF-Zni," CrystEngComm, vol. 17, no. 2, pp. 375{382, 2014.
[157] C. Kittel, Introduction to Solid State Physics. Wiley, 8th ed., 2004.
[158] J. J. Gilman, Electronic Basis of the Strength of Materials. Cambridge University Press, 2003.
[159] F. Mouhat and F.-X. Coudert, \Necessary and Sucient Elastic Stability Conditions in Various
Crystal Systems," Phys. Rev. B, vol. 90, no. 22, p. 224104, 2014.
[160] W. F. Perger, J. Criswell, B. Civalleri, and R. Dovesi, \Ab-Initio Calculation of Elastic Constants
of Crystalline Systems with the CRYSTAL Code," Comput. Phys. Commun., vol. 180,
no. 10, pp. 1753{1759, 2009.
[161] R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl, \ElaStic: A Tool for
Calculating Second-Order Elastic Constants from First Principles," Comput. Phys. Commun.,
vol. 184, no. 8, pp. 1861{1873, 2013.
[162] W. Zhou and T. Yildirim, \Lattice Dynamics of Metal-Organic Frameworks: Neutron Inelastic
Scattering and First-Principles Calculations," Phys. Rev. B, vol. 74, no. 18, p. 180301, 2006.
[163] M. Mattesini, J. M. Soler, and F. Yndurain, \Ab Initio Study of Metal-Organic Framework-5
Zn4O(1,4-benzenedicarboxylate): An Assessment of Mechanical and Spectroscopic Properties,"
Phys. Rev. B, vol. 73, no. 9, p. 094111, 2006.
[164] A. Samanta, T. Furuta, and J. Li, \Theoretical Assessment of the Elastic Constants and
Hydrogen Storage Capacity of Some Metal-Organic Framework Materials," J. Chem. Phys.,
vol. 125, no. 8, p. 084714, 2006.
[165] A. Kuc, A. Enyashin, and G. Seifert, \Metal-Organic Frameworks: Structural, Energetic,
Electronic, and Mechanical Properties," J. Phys. Chem. B, vol. 111, no. 28, pp. 8179{8186,
2007.
[166] A. U. Ortiz, A. Boutin, A. H. Fuchs, and F.-X. Coudert, \Metal-Organic Frameworks with
Wine-Rack Motif: What Determines Their Flexibility and Elastic Properties?," J. Chem.
Phys., vol. 138, no. 17, p. 174703, 2013.
[167] A. U. Ortiz, A. Boutin, K. J. Gagnon, A. Cleareld, and F.-X. Coudert, \Remarkable Pressure
Responses of Metal-Organic Frameworks: Proton Transfer and Linker Coiling in Zinc Alkyl
Gates," J. Am. Chem. Soc., vol. 136, no. 32, pp. 11540{11545, 2014.
[168] A. U. Ortiz, A. Boutin, and F.-X. Coudert, \Prediction of Flexibility of Metal-Organic Frameworks
CAU-13 and NOTT-300 by First Principles Molecular Simulations," Chem. Commun.,
vol. 50, no. 44, pp. 5867{5870, 2014.
[169] T. D. Bennett, J.-C. Tan, S. A. Moggach, R. Galvelis, C. Mellot-Draznieks, B. A. Reisner,
A. Thirumurugan, D. R. Alland, and A. K. Cheetham, \Mechanical Properties of Dense
Zeolitic Imidazolate Frameworks (ZIFs): A High-Pressure X-Ray Diraction, Nanoindentation
and Computational Study of the Zinc Framework Zn(Im)2, and Its Lithium-Boron Analogue,
LiB(Im)4," Chem. Eur. J., vol. 16, no. 35, pp. 10684{10690, 2010.
[170] T. D. Bennett, J. Sotelo, J.-C. Tan, and S. A. Moggach, \Mechanical Properties of Zeolitic
Metal-Organic Frameworks: Mechanically Flexible Topologies and Stabilization against Structural
Collapse," CrystEngComm, vol. 17, no. 2, pp. 286{289, 2014.
[171] H. Ledbetter, \Sound Velocities, Elastic Constants: Temperature Dependence," Mater. Sci.
Eng. A, vol. 442, no. 1-2, pp. 31{34, 2006.
[172] L. B. du Bourg, A. U. Ortiz, A. Boutin, and F.-X. Coudert, \Thermal and Mechanical Stability
of Zeolitic Imidazolate Frameworks Polymorphs," APL Mat., vol. 2, no. 12, p. 124110, 2014.
[173] Y. L. Page and P. Saxe, \Symmetry-General Least-Squares Extraction of Elastic Coecients
from Ab Initio Total Energy Calculations," Phys. Rev. B, vol. 63, no. 17, p. 174103, 2001.
[174] A. U. Ortiz, A. Boutin, A. H. Fuchs, and F.-X. Coudert, \Investigating the Pressure-Induced
Amorphization of Zeolitic Imidazolate Famework ZIF-8: Mechanical Instability Due to Shear
Mode Softening," J. Phys. Chem. Lett., vol. 4, no. 11, pp. 1861{1865, 2013.
[175] S. Henke, W. Li, and A. K. Cheetham, \Guest-Dependent Mechanical Anisotropy in Pillared-
Layered Soft Porous Crystals - a Nanoindentation Study," Chem. Sci., vol. 5, no. 6, pp. 2392{
2397, 2014.
[176] J.-C. Tan, P. Jain, and A. K. Cheetham, \In
uence of Ligand Field Stabilization Energy on
the Elastic Properties of Multiferroic MOFs with the Perovskite Architecture," Dalton Trans.,
vol. 41, no. 14, pp. 3949{3952, 2012.
[177] S.-L. Shang, H. Zhang, Y. Wang, and Z.-K. Liu, \Temperature-dependent elastic stiness
constants of -and -Al2O3 from rst-principles calculations," J. Phys.: Condens. Matter,
vol. 22, no. 37, p. 375403, 2010.
[178] M. J. Mehl, J. E. Osburn, D. A. Papaconstantopoulos, and B. M. Klein, \Structural Properties
of Ordered High-Melting-Temperature Intermetallic Alloys from First-Principles Total-Energy
Calculations," Phys. Rev. B, vol. 41, pp. 10311{10323, 1990.
[179] M. J. Mehl, B. M. Klein, and D. A. Papaconstantopoulos, First principles calculations of
elastic properties of metals, ch. 9, pp. 195{210. Intermetallic compounds, Chichester [etc.]
Wiley & Sons 1995-2002, 1995.
[180] Y. L. Page and P. Saxe, \Symmetry-General Least-Squares Extraction of Elastic Data for
Strained Materials from Ab Initio Calculations of Stress," Phys. Rev. B, vol. 65, no. 10,
p. 104104, 2002.
[181] S. Shang, Y. Wang, and Z.-K. Liu, \First-Principles Elastic Constants of - and -Al2O3,"
Appl. Phys. Lett., vol. 90, no. 10, p. 101909, 2007.
[182] R. Yu, J. Zhu, and H. Q. Ye, \Calculations of Single-Crystal Elastic Constants Made Simple,"
Comput. Phys. Commun., vol. 181, no. 3, pp. 671{675, 2010.
[183] M. J. Mehl, \Pressure Dependence of the Elastic Moduli in Aluminum-Rich Al-Li Compounds,"
Phys. Rev. B, vol. 47, no. 5, pp. 2493{2500, 1993.
[184] P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, \Density
Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application
to TiSi2," J. Appl. Phys., vol. 84, no. 9, pp. 4891{4904, 1998.
[185] W. Voigt, Lehrbuch der Kristallphysik, p. 962. Leipzig: Teubner, 2nd ed., 1928.
[186] A. Reuss, \Berechnung der Fliegrenze von Mischkristallen auf Grund der Plastizit
attsbediengung fur Einkristalle," Z. Angew. Math. Mech., vol. 9, no. 1, pp. 49{58, 1929.
[187] R. Hill, \The Elastic Behaviour of a Crystalline Aggregate," Proc. Phys. Soc. A, vol. 65, no. 5,
p. 349, 1952.
[188] A. Marmier, Z. A. D. Lethbridge, R. I. Walton, C. W. Smith, S. C. Parker, and K. E. Evans,
\ElAM: A Computer Program for the Analysis and Representation of Anisotropic Elastic
Properties," Comput. Phys. Commun., vol. 181, no. 12, pp. 2012{2015, 2010.
[189] F. D. Murnaghan, \The Compressibility of Media Under Extreme Pressures," Proc. Natl.
Acad. Sci. U.S.A., vol. 30, no. 9, pp. 244{247, 1947.
[190] P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, \Temperature Eects on the Universal
Equation of State of Solids," Phys. Rev. B, vol. 35, no. 4, pp. 1945{1953, 1987.
[191] G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, \Poisson's Ratio and Modern Materials,"
Nat. Mater., vol. 10, no. 11, pp. 823{837, 2011.
[192] L. Sarkisov, R. L. Martin, M. Haranczyk, and B. Smit, \On the Flexibility of Metal-Organic
Frameworks," J. Am. Chem. Soc., vol. 136, no. 6, pp. 2228{2231, 2014.
[193] P. Serra-Crespo, A. Dikhtriarenko, E. Stavitski, J. Juan-Alcaniz, F. Kapteijn, F.-X. Coudert,
and J. Gascon, \Experimental Evidence of Negative Linear Compressibility in the MIL-53
Metal-Organic Framework Family," CrystEngComm, vol. 17, no. 2, pp. 276{280, 2015.
[194] J.-C. Tan, J. D. Furman, and A. K. Cheetham, \Relating Mechanical Properties and Chemical
Bonding in an Inorganic-Organic Framework Material: A Single-Crystal Nanoindentation
Study," J. Am. Chem. Soc., vol. 131, no. 40, pp. 14252{14254, 2009.
[195] K. W. Chapman, G. J. Halder, and P. J. Chupas, \Guest-Dependent High Pressure Phenomena
in a Nanoporous Metal-Organic Framework Material," J. Am. Chem. Soc., vol. 130,
no. 32, pp. 10524{10526, 2008.