Testing of chloride penetration and carbonation of concrete with superabsorbent polymers

Laurence De Meyst
Persbericht

Zelfhelend beton: oplossing voor Brusselse tunnelproblematiek?

Beton is vandaag de dag het meest gebruikte bouwmateriaal ter wereld. Huizen, kantoorgebouwen, fabrieksgebouwen maar ook tunnels, bruggen en wegen worden gemaakt uit dit sterke, maar tevens brosse materiaal. De treksterkte van beton is immers tien keer kleiner dan de druksterkte, wat beton zeer gevoelig maakt voor scheurvorming. Via deze scheuren kunnen water, schadelijke stoffen (zoals chlorides aanwezig in zeewater of strooizout) en gassen (zoals CO2 aanwezig in de lucht) het beton binnendringen en zo tot een versnelde corrosie van de wapening leiden. De gevolgen hiervan zijn niet te onderschatten: naast een verminderde duurzaamheid en structurele integriteit van het bouwwerk, kunnen onderhouds- en reparatiekosten zeer hoog oplopen. Ook de indirecte kosten die hieruit volgen - denk aan  het sluiten van de tunnels in Brussel en de hiermee gepaard gaande files of de erbarmelijke staat van sommige wegen die leidt tot schade aan voertuigen en ongevallen - swingen de laatste jaren danig de pan uit.

Oplossingen uit het verleden zoals extra wapening plaatsen of scheuren manueel dichten zijn vaak duur en arbeidsintensief. Idealiter herstelt het beton zichtzelf wanneer een scheur gevormd wordt, vergelijkbaar met het genezen van een snee in het menselijk lichaam. Beton bezit de intrinsieke eigenschap om scheuren te herstellen, de zogenaamde autogene heling, mits het om zeer fijne scheuren (< 30 µm) in de aanwezigheid van water gaat. Dit water is van groot belang aangezien het zal reageren met cementpartikels (de zogenaamde hydratatie-reactie) en alzo beton zal vormen. In realiteit komen echter frequent grotere scheuren voor en is water niet altijd voor handen. Daarom wordt er de laatste jaren veel onderzoek verricht naar mechanismen die in staat zijn grote scheuren in beton te dichten, zelfs in afwezigheid van water. Een veelbelovende oplossing is het gebruik van superabsorberende polymeren (SAPs) in beton.

Superabsorberende polymeren kunnen tot maar liefst 500 keer hun eigen gewicht in vloeistof absorberen, met een gezwollen hydrogel als resultaat. Hedendaagse toepassingen van SAPs zijn talrijk: de hygiëne-industrie (luiers), de medische industrie (intelligente pillen), de agrarische industrie (irrigatie-alternatief)… Ook in de bouwnijverheid hebben SAPs recent hun intrede gemaakt als hulpstof in zelfhelend beton. Voor deze toepassing worden SAPs in poedervorm bij de andere bestanddelen van beton (zijnde cement, zand, granulaten en water) gemengd. Wanneer SAPs vervolgens in contact komen met water dat via een scheur het beton binnendringt, zwellen ze en vullen alzo de scheur. In een later stadium geven de SAPs hun geabsorbeerd water af aan het omringende beton. Dit leidt tot een verdergaande hydratatie van ongehydrateerde cementpartikels en stimuleert de vorming van calciumcarbonaatkristallen. Deze laatste worden gevormd door de reactie van calcium aanwezig in het beton met CO2 opgelost in water. Het gecombineerde effect van de verdergaande hydratatie en de calciumcarbonaatkristallen kunnen scheuren tot 100 µm volledig herstellen. Figuur 1 toont een scheur van 112 µm breed die na 28 dagen volledig hersteld is door toevoeging van SAPs. De vorming van witte calciumcarbonaatkristallen zorgt ervoor dat de scheur sluit en de dichtheid van het beton herwonnen wordt. Hierdoor wordt de indringing van schadelijke stoffen in het beton via de scheur afgeremd of zelfs helemaal gestopt, met een aanzienlijke daling van wapeningscorrosie als resultaat.

Image removed.

Figuur 1: Volledige heling van een 112 µm scheur na 28 dagen door de toevoeging van superabsorberende polymeren (SAPs) aan beton. De getallen in de rechterbenedenhoek geven de ouderdom van het beton in dagen.

De volgende fase van dit onderzoek focust op de invloed van de toevoeging van SAPs op de weerstand van beton tegen chloride-indring en carbonatatie. Wanneer chlorides het beton binnendringen en de wapening bereiken, tasten zij de beschermingslaag van de wapening aan met chloride-geïnduceerde corrosie tot gevolg. De belangrijkste bronnen van chlorides in beton zijn zeewater en dooizouten. Carbonatatie-geïnduceerde corrosie doet zich voor wanneer door de reactie van koolstofdioxide (CO2) uit de lucht de wapening begint te roesten. Beide types corrosie doen de duurzaamheid van het beton drastisch dalen en kunnen op termijn zelfs tot falen van de constructie leiden. Corrosie is immers een expansieve reactie die het beton (verder) doet scheuren en afschilferen en tot een gereduceerde wapeningsdoorsnede en verminderde hechting tussen wapening en beton leidt.

Wanneer SAPs toegevoegd worden aan vers beton, zullen ze een deel van het mengwater absorberen en zwellen. In verhard beton geven de SAPs het geabsorbeerde water af aan het beton en kunnen scheuren geheeld worden. Bij deze waterafgave zullen de SAPs echter krimpen en lege macro-poriën achterlaten in het beton. De toevoeging van SAPs verhoogt dus de porositeit van het beton. Deze verhoogde porositeit heeft een negatief effect op zowel de chloride-indringsweerstand als de carbonatatieweerstand, aangezien chlorides en CO2 makkelijker en dieper kunnen penetreren in poreus beton. Wapeningscorrosie zal bijgevolg sneller optreden wanneer SAPs worden toegevoegd aan beton.

Dit negatieve effect van SAPs op chloride-indringing en carbonatatie kan echter tegengegaan worden door het gebruik van pH-responsieve SAPs. Dit type SAP zwelt weinig bij hoge pH, zoals tijdens het mixen en verharden van het beton (pH 12,8) zodat een minder poreus beton wordt gevormd. Wanneer er echter een scheur optreedt, zal de pH dalen naar 9 à 10, bijvoorbeeld door de indringing van CO2 of chloriden. PH-responsieve SAPs zullen bij deze lage pH wel veel water absorberen en zwellen, wat ideaal is voor het opvullen en herstellen van scheuren.

PH-responsieve superabsorberende polymeren stimuleren de zelfhelende eigenschappen van beton zonder in te boeten op chloride- en carbonatatieweerstand, met een hogere duurzaamheid, minder onderhoud en verlaagde kost van betonnen constructies tot gevolg.

Bibliografie

ADDIN Mendeley Bibliography CSL_BIBLIOGRAPHY [1]     Kitchenham, B. and Charters, S., “Guidelines for performing Systematic Literature Reviews in Software Engineering,” Engineering, vol. 2, 2007, p. 1051.

[2]     Snoeck, D., Steuperaert, S., Van Tittelboom, K., Dubruel, P., and De Belie, N., “Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography,” Cement and Concrete Research, vol. 42, no. 8, Aug. 2012, pp. 1113–1121.

[3]     Win, P. P., Watanabe, M., and Machida, A., “Penetration profile of chloride ion in cracked reinforced concrete,” Cement and Concrete Research, vol. 34, no. 7, Jul. 2004, pp. 1073–1079.

[4]     Gruyaert, E., Van den Heede, P., and De Belie, N., “Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure,” Cement and Concrete Composites, vol. 35, no. 1, Jan. 2013, pp. 39–48.

[5]     Ismail, M., Toumi, a., François, R., and Gagné, R., “Effect of crack opening on the local diffusion of chloride in cracked mortar samples,” Cement and Concrete Research, vol. 38, no. 8–9, Aug. 2008, pp. 1106–1111.

[6]     Jacobsen, S., Marchand, J., and Boisvert, L., “Effect of cracking and healing on chloride transport in OPC concrete,” Cement and Concrete Research, vol. 26, no. 6, 1996, pp. 869–881.

[7]     Jin, W. L., Yan, Y. D., and Wang, H. L., “Chloride diffusion in the cracked concrete,” in Proceedings of FraMCoS-7, May 23-28, 2010, 2010.

[8]     Maes, M., Gruyaert, E., and De Belie, N., “Resistance of concrete with blast-furnace slag against chlorides, investigated by comparing chloride profiles after migration and diffusion,” Materials and Structures, vol. 46, no. 1–2, Jul. 2012, pp. 89–103.

[9]     Maes, M., Van Tittelboom, K., and De Belie, N., “The efficiency of self-healing cementitious materials by means of encapsulated polyurethane in chloride containing environments,” Construction and Building Materials, vol. 71, Nov. 2014, pp. 528–537.

[10]    Šavija, B. and Schlangen, E., “Chloride ingress in cracked concrete - a literature review,” in Advances in Modeling Concrete Service Life: Proceedings of 4th International RILEM PhD Workshop held in Madrid, Spain, November 19, 2010, 2012, pp. 133–142.

[11]    Snoeck, D., Jensen, O. M., and De Belie, N., “The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials,” Cement and Concrete Research, vol. 74, no. September, Aug. 2015, pp. 59–67.

[12]    Snoeck, D., Schaubroeck, D., Dubruel, P., and De Belie, N., “Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50,” Construction and Building Materials, vol. 72, no. September 2015, Dec. 2014, pp. 148–157.

[13]    Snoeck, D., Van Tittelboom, K., Steuperaert, S., Dubruel, P., and De Belie, N., “Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers,” Journal of Intelligent Material Systems and Structures, vol. 25, no. 1, Mar. 2012, pp. 13–24.

[14]    Snoeck, D., Dubruel, P., and De Belie, N., “How to seal and heal cracks in cementitious materials by using superabsorbent polymers,” in Application of Superabsorbent Polymers and Other New Admixtures in Concrete Construction, 2014, pp. 375–384.

[15]    Snoeck, D., Dubruel, P., and De Belie, N., “Superabsorbent polymers to prevent water movement in cementitious materials,” International Journal of 3R’s, 2012.

[16]    Jensen, O. M., “Use of superabsorbent polymers in construction materials,” 1st International Conference on Microstructure Related Durability of Cementitious Composites 13-15 October, no. October, 2008, pp. 757–764.

[17]    Jensen, O. M., “Water absorption of superabsorbent polymers in a cementitious environment,” International RILEM Conference on Advances in Construction Materials Through Science and Engineering, no. September, 2011, pp. 22–35.

[18]    Jensen, O. M. and Hansen, P. F., “Water-entrained cement-based materials,” Cement and Concrete Research, vol. 32, no. 6, 2002, pp. 973–978.

[19]    Zohuriaan-Mehr, M. J. and Kabiri, K., “Superabsorbent Polymer Materials: A Review,” Iranian Polymer Journal, vol. 17, no. 6, 2008, pp. 451–477.

[20]    Audenaert, K., Marsavina, L., and De Schutter, G., “Influence of Cracks on the Service Life of Concrete Structures in a Marine Environment,” Key Engineering Materials, vol. 399, no. August, 2009, pp. 153–160.

[21]    Gu, C., “A review of the chloride transport properties of cracked concrete: experiments and simulations,” Journal of Zhejiang University Science A, vol. 16, no. 2, 2015, pp. 81–92.

[22]    Rodriguez, O. G. and Hooton, R. D., “Influence of cracks on chloride ingress into concrete,” ACI Materials Journal, vol. 100, no. 2, 2003, pp. 120–126.

[23]    Van den Heede, P., Maes, M., and De Belie, N., “Influence of active crack width control on the chloride penetration resistance and global warming potential of slabs made with fly ash + silica fume concrete,” Construction and Building Materials, vol. 67, 2013, pp. 74–80.

[24]    Maes, M. and Belie, N. De, “Resistance of cracked concrete to chloride attack,” in Third International Conference on Sustainable Construction Materials and Technologies, 2013, pp. 1–10.

[25]    Marsavina, L., Audenaert, K., De Schutter, G., Faur, N., and Marsavina, D., “Experimental and numerical determination of the chloride penetration in cracked concrete,” Construction and Building Materials, vol. 23, no. 1, 2009, pp. 264–274.

[26]    Mu, S., De Schutter, G., and Ma, B., “Non-steady state chloride diffusion in concrete with different crack densities,” Materials and Structures, no. September, 2012, pp. 123–133.

[27]    Djerbi, a., Bonnet, S., Khelidj, a., and Baroghel-bouny, V., “Influence of traversing crack on chloride diffusion into concrete,” Cement and Concrete Research, vol. 38, no. 6, 2008, pp. 877–883.

[28]    Schlangen, E., Savija, B., Pacheco, J., and Polder, R. B., “Modified Wedge Splitting Test ( MWST )— a simple tool for durability investigations of reinforcement corrosion in cracked concrete,” in Concrete Repair, Rehabiliation and Retrofitting III, 2011, pp. 386–391.

[29]    Copuroglu, O., Schlangen, E., Nishiwaki, T., Van Tittelboom, K., Snoeck, D., De Belie, N., and de Rooij, M. R., “Experimental Techniques used to Verify Healing.” pp. 19–63, 2013.

[30]    Jang, S. Y., Kim, B. S., and Oh, B. H., “Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests,” Cement and Concrete Research, vol. 41, no. 1, 2011, pp. 9–19.

[31]    Wang, K., Jansen, D. C., Shah, S. P., and Karr, A. F., “Permeability study of cracked concrete,” Cement and Concrete Research, vol. 27, no. 3, 1997, pp. 381–393.

[32]    Granger, S., Loukili, a., Pijaudier-Cabot, G., and Chanvillard, G., “Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis,” Cement and Concrete Research, vol. 37, no. 4, 2007, pp. 519–527.

[33]    De Belie, N., Van Tittelboom, K., Tsangouri, E., Karaiskos, G., Snoeck, D., Wang, J., Araújo, M., and Van Hemelrijck, D., “Autonomous regeneration of concrete structures by incorporation of self-healing mechanisms,” in International Conference on the Regeneration and Conservation of Concrete Structures, Proceedings, 2015, pp. 1–10.

[34]    Van Tittelboom, K., Snoeck, D., Wang, J., and Belie, N. De, “Most recent advances in the field of self-healing cementitious materials,” in ICSHM 2013 : 4th international conference on self-healing materials, 2013, pp. 406–413.

[35]    Snoeck, D. and De Belie, N., “From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing – A review,” Construction and Building Materials, vol. 95, 2015, pp. 774–787.

[36]    Ter Heide, N., “Crack healing in hydrating concrete,” 2005.

[37]    Li, V. and Yang, E.-H., Self Healing in Concrete Materials, vol. 100. 2008.

[38]    Snoeck, D., Debaecke, S., and De Be, “Repeated autogenous healing in cementitious composites with microfibres and syperabsorbent polymers,” in XIII International Congerence on Durability of Building Materials and Components, 2015, no. SEPTEMBER 2014, pp. 73–80.

[39]    Yang, Y., Lepech, M. D., Yang, E. H., and Li, V. C., “Autogenous healing of engineered cementitious composites under wet-dry cycles,” Cement and Concrete Research, vol. 39, no. 5, 2009, pp. 382–390.

[40]    Van Tittelboom, K., Gruyaert, E., Rahier, H., and De Belie, N., “Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation,” Construction and Building Materials, vol. 37, 2012, pp. 349–359.

[41]    Li, V. C., Sakulich, A. R., Reinhardt, H. W., Schlangen, E., Van Tittelboom, K., Snoeck, D., De Belie, N., Joseph, C., Gardner, D. R., Lark, R. J., Mihashi, H., and Nishiwaki, T., “Recovery against Mechanical Actions.” pp. 119–215, 2013.

[42]    Sangadji, S., “Porous Network Concrete: a bio-inspired building component ot make concrete structures self-healing,” 2015.

[43]    Mignon, A., Snoeck, D., Schaubroeck, D., Luickx, N., Dubruel, P., Van Vlierberghe, S., and De Belie, N., “pH-responsive superabsorbent polymers: A pathway to self-healing of mortar,” Reactive and Functional Polymers, vol. 93, no. JUNE, 2015, pp. 68–76.

[44]    Lee, H., “Potential of superabsorbent polymer for self‐sealing cracks in concrete,” Advances in Applied Ceramics, vol. 109, no. 5, 2010, pp. 296–302.

[45]    Van Tittelboom, K., Snoeck, D., Vontobel, P., Wittmann, F. H., and Belie, N., “Use of neutron radiography and tomography to visualize the autonomous crack sealing efficiency in cementitious materials,” Materials and Structures, no. August 2015, 2012.

[46]    Vantyghem, S., “Tegengaan van wapeningscorrosie door zelfherstel van scheuren in beton,” 2014.

[47]    Lee, Y.-S. and Ryou, J.-S., “Self healing behavior for crack closing of expansive agent via granulation/film coating method,” Construction and Building Materials, vol. 71, 2014, pp. 188–193.

[48]    Van Tittelboom, K. and De Belie, N., “Self-healing in cementitious materials- A review,” Materials, vol. 6, no. 6, 2013, pp. 2182–2217.

[49]    Snoeck, D. and De Belie, N., “Repeated Autogenous Healing in Strain-Hardening Cementitious Composits by Using Superabsorbent Polymers,” Journal of Materials in Civil Engineering, vol. 25, no. 7, 2013, pp. 864–870.

[50]    Zhang, P., Wittmann, F. H., Zhao, T., and Lehmann, E. H., “Neutron imaging of water penetration into cracked steel reinforced concrete,” Physica B: Condensed Matter, vol. 405, no. 7, 2010, pp. 1866–1871.

[51]    Sherir, M. A. A., Hossain, K. M. A., and Lachemi, M., “Interaction of Superabsorbent Polymers and Admixtures on THe Properties of Engineered Cementitious Composites,” in Building on Our Growth Opportunities, 2015, pp. 1–10.

[52]    Mechtcherine, V. and Reinhardt, H.-W., “STAR 225-SAP Application of Superabsorbent Polymers ( SAP ) in Concrete Construction,” 2012.

[53]    Snoeck, D., Velasco, L. F., Mignon, a., Van Vlierberghe, S., Dubruel, P., Lodewyckx, P., and De Belie, N., “The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments,” Cement and Concrete Research, vol. 77, no. September, 2015, pp. 26–35.

[54]    Mönnig, S., “Water saturated super-absorbent polymers used in high strength concrete,” Otto-Graf-Journal, vol. 16, 2005, pp. 193–202.

[55]    Van Den Heede, P., “Durability and Sustainability of Concrete with High Volumes of Fly Ash,” 2014.

[56]    Zhou, Y., Gencturk, B., Asce, a M., Willam, K., Asce, F., and Attar, A., “Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures,” Journal of Materials in Civil Engineering, vol. 27, no. 9, 2015.

[57]    Šavija, B., Pacheco, J., and Schlangen, E., “Lattice modeling of chloride diffusion in sound and cracked concrete,” Cement and Concrete Composites, vol. 42, 2013, pp. 30–40.

[58]    Lu, C., Gao, Y., Cui, Z., and Liu, R., “Experimental Analysis of Chloride Penetration into Concrete Subjected to Drying – Wetting Cycles,” Journal of Materials in Civil Engineering, 2013, pp. 1–10.

[59]    Boddy, A., Bentz, E., Thomas, M. D. a, and Hooton, R. D., “Overview and sensitivity study of a multimechanistic chloride transport model,” Cement and Concrete Research, vol. 29, no. 6, 1999, pp. 827–837.

[60]    Glasser, F. P., Marchand, J., and Samson, E., “Durability of concrete - Degradation phenomena involving detrimental chemical reactions,” Cement and Concrete Research, vol. 38, no. 2, 2008, pp. 226–246.

[61]    Alonso, M. C. and Sanchez, M., “Analysis of the variability of chloride threshold values in the literature,” Materials and Corrosion, vol. 60, no. 8, 2009, pp. 631–637.

[62]    Angst, U., Elsener, B., Larsen, C. K., and Vennesland, Ø., “Critical chloride content in reinforced concrete - A review,” Cement and Concrete Research, vol. 39, no. 12, 2009, pp. 1122–1138.

[63]    Gruyaert, E., “Effect of Blast-Furnace Slag as a Cement Replacement on Hydration, Microstructure, Strength and Durability of Concrete,” 2011.

[64]    Ferreira, M. and Makkonen, L., “Performance and durability of concrete in extreme cold environment - Literature Review,” 2013.

[65]    Aldea, C.-M., Shah, S. P., and Karr, A. F., “Effect of Cracking on Water and Chloride Permeability of Concrete,” Journal of Materials in Civil Engineering, no. August, 1999, pp. 181–187.

[66]    Audenaert, K., De Schutter, G., and Marsavina, L., “Influence of cracks and crack width on penetration depth of chlorides in concrete,” European Journal of Environmental and Civil Engineering, vol. 13, no. 5, 2009, pp. 561–572.

[67]    Spiesz, P. and Brouwers, H. J. H., “The apparent and effective chloride migration coefficients obtained in migration tests,” Cement and Concrete Research, vol. 48, 2013, pp. 116–127.

[68]    Castellote, M. and Andrade, C., “Round-Robin test on chloride analysis in concrete—Part II: Analysis of water soluble chloride content,” Materials and Structures, vol. 34, no. 9, 2001, pp. 532–549.

[69]    Stanish, K. D., Hooton, R. D., and Thomas, M. D. ., “Testing the Chloride Penetration Resistance of Concrete : A Literature Review,” 1997.

[70]    Tang, L., “Discussion of ‘AFREM test procedures concerning chlorides in concrete: Extraction and titration methods,’” Materials and Structures, vol. 34, no. 236, 2005, pp. 128–129.

[71]    Baroghel-Bouny, V., Belin, P., Maultzsch, M., and Henry, D., “AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete.,” Materials and Structures, vol. 40, no. 8, 2007, pp. 783–799.

[72]    Meck, E. and Sirivivatnanon, V., “Field indicator of chloride penetration depth,” Cement and Concrete Research, vol. 33, no. 8, 2003, pp. 1113–1117.

[73]    Andrade, C., Castellote, M., Alonso, C., and González, C., “Relation between colourimetric chloride penetration depth and charge passed in migration tests of the type of standard ASTM C1202-91,” Cement and Concrete Research, vol. 29, no. 3, 1999, pp. 417–421.

[74]    Rilem TC 178, “Rilem Technical Committees Rilem Tc 178-Tmc : ‘ Testing and Modelling Chloride Penetration in concrete,’” Materials and Structures, vol. 35, 2002, pp. 586–588.

[75]    NT Build 492, “Concrete , Mortar and Cement-Based Repair Materials : chloride migration coefficient from non-steady-state migration experiments,” Measurement, 1999, pp. 1–8.

[76]    NT Build 443, “Concrete, Hardened: Accelerated Chloride Penetration.” 1995.

[77]    Mori, D., Yamada, K., Hosokawa, Y., and Yamamoto, M., “Applications of Electron Probe Microanalyzer for Measurement of Cl Concentration Profile in Concrete,” Journal of Advanced Concrete Technology, vol. 4, no. 3, 2006, pp. 369–383.

[78]    Ye, H., Tian, Y., Jin, N., Jin, X., and Fu, C., “Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions,” Construction and Building Materials, vol. 47, no. August, 2013, pp. 66–79.

[79]    Šavija, B., Schlangen, E., Pacheco, J., Millar, S., Eichler, T., and Wilsch, G., “Chloride ingress in cracked concrete: a laser induced breakdown spectroscopy (LIBS) study,” Journal of Advanced Concrete Technology, vol. 12, no. 10, 2014, pp. 425–442.

[80]    Van Den Heede, P. and De Belie, N., “A service life based global warming potential for high-volume fly ash concrete exposed to carbonation,” Construction and Building Materials, vol. 55, 2014, pp. 183–193.

[81]    Thiery, M., Villain, G., Dangla, P., and Platret, G., “Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics,” Cement and Concrete Research, vol. 37, no. 7, 2007, pp. 1047–1058.

[82]    Alahmad, S., Toumi, a., Verdier, J., and François, R., “Effect of crack opening on carbon dioxide penetration in cracked mortar samples,” Materials and Structures, vol. 42, no. 5, 2009, pp. 559–566.

[83]    Gruyaert, E., Maes, M., and Belie, N. De, “A comparative study of the durability of ordinary portland cement concrete and concrete containing (high) percentages of blast-furnace slag,” in International RILEM Conference on Material Science, 2010, vol. III, pp. 241–251.

[84]    Mönnig, S., “Superabsorbing additions in concrete : applications, modelling and comparison of different internal water sources,” 2009.

[85]    Xiang, H., Lee, D., Wong, H. S., and Buenfeld, N., “Self-Sealing Cement-Based Materials Using Superabsorbent Polymers,” in International RILEM Conference on Use of Superabsorbent Polymers and Other New Additives in Concrete 15-18 August, 2010, no. August.

[86]    Schröfl, C., Mechtcherine, V., and Gorges, M., “Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage,” Cement and Concrete Research, vol. 42, no. 6, 2012, pp. 865–873.

[87]    Brüdern, a.-E. and Mechtcherine, V., “Multifunctional use of SAP in strain-hardening cement-based composites,” International RILEM Conference on Use of Superabsorbent Polymers and Other New Additives in Concrete 15-18 August, no. August, 2010, pp. 11–22.

[88]    Tittelboom, K. Van, Wang, J., Araújo, M., Snoeck, D., Gruyaert, E., Debbaut, B., Derluyn, H., Cnudde, V., Tsangouri, E., Hemelrijck, D. Van, and Belie, N. De, “Comparison of different approaches for self-healing concrete in a large-scale lab test,” CONSTRUCTION & BUILDING MATERIALS, vol. 107, 2016, pp. 125–137.

[89]    Yuan, Q., “Fundamental studies on test methods for the transport of chloride ions in cementitious materials,” 2008.

[90]    Visser, J. H. M., “Influence of the carbon dioxide concentration on the resistance to carbonation of concrete,” Construction and Building Materials, vol. 67, 2014, pp. 8–13.

[91]    Audenaert, K., “Transportmechanismen in zelfverdichtend beton in relatie met carbonatatie en chloridepenetratie,” Ghent University, 2006.

[92]    Mignon, A., Graulus, G.-J., Snoeck, D., Martins, J., De Belie, N., Dubruel, P., and Van Vlierberghe, S., “pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete,” Journal of Materials Science, vol. 50, no. 2, 2014, pp. 970–979.

[93]    Gruyaert, E., Maes, M., and De Belie, N., “Performance of BFS concrete: K-Value concept versus equivalent performance concept,” Construction and Building Materials, vol. 47, 2013, pp. 441–455.

[94]    Gruyaert, E., Van Den Heede, P., Maes, M., and De Belie, N., “Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests,” Cement and Concrete Research, vol. 42, no. 1, 2012, pp. 173–185.

[95]    Snoeck, D. and Belie, N. De, “The influence of superabsorbent polymers on the microstructure and permeability of cementitious materials,” in International Conference on Concrete under Severe Conditions - Environment and Loading, At Nanjing, 2013, no. SEPTEMBER 2013, pp. 1–11.

[96]    Tang, W., Kardani, O., and Cui, H., “Robust evaluation of self-healing efficiency in cementitious materials – A review,” Construction and Building Materials, vol. 81, no. APRIL, 2015, pp. 233–247.

Universiteit of Hogeschool
Master of Science in de ingenieurswetenschappen: bouwkunde
Publicatiejaar
2016
Promotor(en)
Nele De Belie
Kernwoorden
Share this on: