Elektrische shock in grondwateronderzoek

Sien
Benoit

Grondwater is van fundamenteel belang. Het is onze belangrijkste bron van drinkwater en heeft tal van andere toepassingen. We kunnen het dus maar beter op een slimme manier ontginnen. Daarvoor moeten we de ondergrond en zijn eigenschappen zo goed mogelijk kennen. Hiermee kunnen nauwkeurige grondwatermodellen gemaakt worden die ons toelaten op de meest geschikte locaties grondwater te ontginnen. Een recente studie toont aan dat twee nieuwe methodes deze grondeigenschappen sneller kunnen opmeten in een rivierbodem. Daarbij wordt elektrische stroom door een rivier gestuurd. Hoe kan elektriciteit voor vonken zorgen in grondwateronderzoek?

Voor geologen is het belangrijk te weten hoe snel water door de grond stroomt. Ze noemen dit de ‘doorlatendheid’ van de ondergrond. Ken je de doorlatendheid van de grond, dan kan je starten met het maken van een grondwatermodel. Hierin spelen ook rivieren een belangrijke rol. Ze vangen het grondwater op dat steeds in de richting van een rivier stroomt. Hoe rivierwater en grondwater met elkaar interageren is daarom een belangrijk deel van zo’n grondwatermodel. Daarvoor is het kennen van de doorlatendheid in een rivierbodem van essentieel belang. Alleen verandert die eigenschap over zo’n kleine afstanden dat er talloze metingen nodig zijn om een correct beeld te kunnen krijgen van de interactie tussen grond- en rivierwater. Met de gebruikelijke methodes om doorlatendheid in een rivierbodem te meten, kunnen slechts enkele punten in een klein gebied gemeten worden. Die meetpunten zijn zeer lokaal, de metingen duren erg lang en enkel ondiepe rivieren komen hiervoor in aanmerking. Daarom wordt steeds vaker gezocht naar alternatieve methodes.

Vanuit dat opzicht werden twee elektrische methodes getest op hun bruikbaarheid in rivieren. Deze methodes werken sneller, meten veel meer punten – en dat tot op grotere diepte – en zijn toepasbaar in ondiepe én diepe rivieren. Maar in tegenstelling tot de gebruikelijke methodes meten ze niet de doorlatendheid, maar elektrische eigenschappen van de bodem, zoals elektrische weerstand en elektrische oplaadbaarheid – de mate waarin sedimentkorrels elektrische stroom kunnen vasthouden.

Elektrodes drijven op het water en meten elektrische eigenschappen in de rivierbodem.

Bij een elektrische meting stuurt een elektrodepaar elektrische stroom door het water en de rivierbodem, en meet een tweede elektrodepaar een elektrisch signaal op. Uit zulke signalen worden elektrische eigenschappen van de bodem achterhaald.

Uit recent onderzoek blijkt dat er een relatie bestaat tussen enerzijds doorlatendheid in een rivierbodem en anderzijds elektrische weerstand en oplaadbaarheid in die bodem. Bijvoorbeeld, een meting van elektrische oplaadbaarheid geeft een indicatie of doorlatendheid op deze plaats laag, middelmatig of hoog is: hoe hoger de oplaadbaarheid van het sediment, hoe lager de doorlatendheid, en omgekeerd.

Waarom kunnen deze eigenschappen, die op het eerste zicht niets met elkaar te maken hebben, nu toch aan elkaar gelinkt zijn? De verklaring is te vinden bij enkele factoren die al deze parameters beïnvloeden. Een voorbeeld hiervan is poriënruimte. Hoe meer ruimte tussen de sedimentkorrels, hoe groter de doorlatendheid van de rivierbodem, maar hoe lager de elektrische oplaadbaarheid. Dit komt omdat meer poriënruimte zorgt voor meer water tussen de sedimentkorrels, en net dat verhindert de oplaadbaarheid van de bodem. Ook de hoeveelheid klei in de bodem is een belangrijke beïnvloedende factor op zowel doorlatendheid als elektrische weerstand en oplaadbaarheid.

Deze omgekeerde correlatie is bijgevolg erg interessant voor verder geologisch onderzoek. Dergelijke combinatie van elektrische en doorlatendheiddata kan helpen om belangrijke zones gedetailleerder te bepalen en daardoor grondwatermodellen te verbeteren. Deze nieuwe elektrische methodes zijn daarom een waardevolle aanvulling om ons blauwe goud uit de ondergrond verstandiger te ontginnen. En dat geldt niet enkel voor ons land, maar ook voor watergebruik in derdewereldlanden. Grensverleggend werk dus voor de toekomst!

Door de overeenkomst tussen doorlatendheid en elektrische oplaadbaarheid kunnen zones afgebakend worden in de rivierbodem. Groene zones tonen een duidelijk omgekeerde relatie, terwijl het verband minder uitgesproken is in de rode zone.

 

Bibliografie

ABEM Instrument AB (2012). Instruction Manual Terrameter LS. Sundbyberg, Sweden. 122p.

al Hagrey, S. A., & Michaelsen, J. (1999). Resistivity and percolation study of preferential flow in vadose zone at Bokhorst, Germany. Geophysics, 64 (3), 746–753, doi:10.1190/1.1444584.

Alyamani, M.S., & Sen, Z. (1993). Determination of hydraulic conductivity from complete grain-size distribution curves. Ground water, 31 (4), 551-555.

Amaya, A. G., Dahlin, T., Barmen, G. & Rosberg, J-E (2016). Electrical Resistivity Tomography and Induced Polarization for Mapping of the Subsurface of Alluvial Fans: A Case Study in Punata (Bolivia). Geosciences, 6, 51.

Anibas, C., Buis, K., Verhoeven, R., Meire, P., & Batelaan, O. (2011). A simple thermal mapping method for seasonal spatial patterns of groundwater – surface water interaction. Journal of Hydrology, 397(1–2), 93–104. https://doi.org/10.1016/j.jhydrol.2010.11.036

Anibas, C., Fleckenstein, J. H., Volze, N., Buis, K., Verhoeven, R., Meire, P., & Batelaan, O. (2009). Transient or steady-state ? Using vertical temperature profiles to quantify groundwater – surface water exchange, 2177, 2165–2177. https://doi.org/10.1002/hyp

Anibas, C., Schneidewind, U., Vandersteen, G., & Joris, I. (2016). From streambed temperature measurements to spatial- temporal flux quanti fi cation : using the LPML method to study groundwater – surface water interaction, 216, 203–216. https://doi.org/10.1002/hyp.10588

Archie, G.E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am. Inst. Min. Metal. and Petr. Eng., 146, 54-62.

Attwa, M., & Günther, T. (2013). Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers. Hydrology and Earth System Sciences, 17(10), 4079–4094. https://doi.org/10.5194/hess-17-4079-2013

Bal, K. & Meire, P. (2009). The influence of macrophyte cutting on the hydraulic resistance of Lowland Rivers. Journal of Aquatic Plant Management, 47, 65–68.

Barker, J.A. & Black, J.H. (1983). Slug tests in fissured aquifers. Water Resources Research 19 (6), 1558-1564.

Beyer, W. (1964). Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve. Wasserwirtschaft Wassertechnik 14 (6), 165–168.

Binley, A., Slater, L., Fukes, M., and Cassiani, G. (2005). Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resour. Res., 41, W12417, doi:10.1029/2005WR004202.

Binley, A., Winship, P., West, L. J., Pokar, M.  & Middleton, R.  (2002). Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. J. Hydrol., 267, 160– 172, doi:10.1016/S0022-1694(02)00147-6.

Binley, A., Ullah, S., Heathwaite, A. L., Heppell, C., Byrne, P., Lansdown, K., … Zhang, H. (2013). Revealing the spatial variability of water fluxes at the groundwater-surface water interface, 49, 3978–3992. https://doi.org/10.1002/wrcr.20214

Börner, F. D., Schopper, W., and Weller, A. (1996). Evaluation of transport and storage properties in the soils and groundwater zone from induced polarization measurements. Geophys. Prosp., 44, 583–601, doi:10.1111/j.1365-2478.1996.tb00167.x.

Boulton, A., Findlay, S., Marmonier, P., Stanley, E., & Valett, H. (1998). The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 59–81.

Bouwer, H. & Rice, R.C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12, 423-428.

Butler, J. J. (1996). Slug Tests in Site Characterization: Some Practical Considerations. Environmental Geosciences, 3(3), 154–163.

Butler, J. J. (1998). The design, performance, and analysis of slug tests. Lewis Publishers, New York, 252 p.

Butler Jr., J.J., Zlotnik, V.A. & Tsou, M.S. (2001). Drawdown and stream depletion produced by pumping in the vicinity of a finite width stream of shallow penetration. Ground Water, 39 (5), 651 – 659.

Calver, A. (2001). Riverbed Permeabilities: Information from Pooled Data. Ground water, 39 (4), 546 – 553.

Cardenas, M. B., Zlotnikz, V., & A. (2003). Three-dimensional model of modern channel bend deposits. Water Resources Research, 39(6), 1–13. https://doi.org/10.1029/2002WR001383

Chambers, J. M. (1992). Chapter 4: Linear models. In: Chambers, J.M. & Hastie, T.J. Statistical Models in S, Wadsworth & Brooks/Cole.

Chen, X. (2005). Statistical and geostatistical features of streambed hydraulic conductivities in the Platte River , Nebraska, (7), 693–701. https://doi.org/10.1007/s00254-005-0007-1

Chen, X., Burbach, M., & Cheng, C. (2008). Electrical and hydraulic vertical variability in channel sediments and its effects on streamflow depletion due to groundwater extraction, 250–266. https://doi.org/10.1016/j.jhydrol.2008.01.004

Chen, X., & Chen, X. (2003). Stream water infiltration , bank storage , and storage zone changes due to stream-stage fluctuations, 280, 246–264. https://doi.org/10.1016/S0022-1694(03)00232-4

Chou, T.-K., Chouteau, M., & Dubé, J.-S. (2016). Estimation of Saturated Hydraulic Conductivity during Infiltration Test with the Aid of ERT and Level-Set Method. Vadose Zone Journal, 15(7), 0. https://doi.org/10.2136/vzj2015.05.0082

Christensen, N.B. (2000). The electrical resistivity of geological formations. Aarhus University, Aarhus, 20p.

Christensen, N.B. & Christiansen, A.V. (2015). Environmental applications of geoelectrical methods. Aarhus University, Aarhus, 74p.

Clifford, J., & Binley, A. (2010). Geophysical characterization of riverbed hydrostratigraphy using electrical resistance tomography, 493–501. https://doi.org/10.3997/1873-0604.2010035

Crestani, E., Camporese, M., & Salandin, P. (2015). Assessment of hydraulic conductivity distributions through assimilation of travel time data from ERT-monitored tracer tests. Advances in Water Resources, 84(January 2016), 23–36. https://doi.org/10.1016/j.advwatres.2015.07.022

Crook, N., Binley, A., Knight, R., Robinson, D. A., Zarnetske, J., & Haggerty, R. (2008). Electrical resistivity imaging of the architecture of substream sediments, 44(December), 1–11. https://doi.org/10.1029/2008WR006968

Dahlin, T. (1996). 2D resistivity surveying for environmental and engineering applications. First Break, 14, 275-284.

Daily, W., Ramirez, A., LaBrecque, D. & Nitao, J. (1992). Electrical resistivity tomography of vadose water movement. Water Resour. Res., 28, 1429– 1442, doi:10.1029/91WR03087.

deGroot-Hedlin, C. & Constable, S. (1990). Occam's inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics, 55, 1613-1624.

Di Maio, R., Piegari, E., Todero, G., & Fabbrocino, S. (2014). A combined use of Archie and van Genuchten models for predicting hydraulic conductivity of unsaturated pyroclastic soils. Journal of Applied Geophysics, 112, 249–255. https://doi.org/10.1016/j.jappgeo.2014.12.002

Doetsch, J. (2016). Electrical Resistivity Tomography (ERT): Measurement Principles. Exploration and Environmental Geophysics, ETH Zurich, 8p.

DOV (2010). Databank Ondergrond Vlaanderen. Database Subsurface of Flanders. https://dov.vlaanderen.be/.

DOV (2016). Databank Ondergrond Vlaanderen. Database Subsurface of Flanders. https://dov.vlaanderen.be/.

Edwards, L. (1977). A modified pseudosection for resistivity and IP. Geophysics, 42, 1020–1036. doi:10.1190/1.1440762

Elliott, A. H. & Brooks, N. H. (1997). Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resour. Res.,  33 (1), 123–136.

Everitt, B. (1974). Cluster Analysis. Heinemann Educ. Books., London.

Fadl, A.E. (1979). A modified permeameter for measuring hydraulic conductivity of soils. Soil Science, 128 (2), 126-128.

Farzamian, M., Monteiro Santos, F. A., & Khalil, M. A. (2015a). Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. Journal of Applied Geophysics, 112, 175–189. https://doi.org/10.1016/j.jappgeo.2014.11.016

Farzamian, M., Monteiro Santos, F. A., & Khalil, M. A. (2015b). Estimation of unsaturated hydraulic parameters in sandstone using electrical resistivity tomography under a water injection test. Journal of Applied Geophysics, 121, 71–83. https://doi.org/10.1016/j.jappgeo.2015.07.014

Finsterle S. & Kowalsky, M.B. (2008). Joint hydrological-geophysical inversion for soil structure identification. Water Resour Res, 7:287–93. http://dx.doi.org/10.2136/ vzj2006.0078.

Gelhar, L. W. (1993). Stochastic Subsurface Hydrology. Prentice-Hall, Old Tappan, N. J., 390p.

Genereux, D. P., Leahy, S., Mitasova, H., Kennedy, C. D., & Corbett, D. R. (2008). Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. Journal of Hydrology, 358(3–4), 332–353. https://doi.org/10.1016/j.jhydrol.2008.06.017

Geopunt (2017). Luchtfoto Vlaanderen, winter 2013 – 2015 – kleur, www.geopunt.be

Ghysels, G., Anibas, C., Mutua, S., Huysmans, M. (2016). Modeling the influence of riverbed heterogeneity on river-aquifer exchange fluxes using multiple-point statistics. GeoENV, Lisbon.

Gommers, K. (2017). Design and assessment of ERT and IP setup in rivers: numerical and field experiments. Not published Master’s thesis, KU Leuven, 70p.

Groetsch, C.W. (1999). Inverse Problems: Activities for Undergraduates. Cambridge University Press. 234 p.

Hartmann, R., Michiels, P., Gabriëls, D. & De Stooper, E. (1988). Field monitoring of surface and subsurface runoff on a slope in a loamy region. Soil Technology, 1 (2), 175-180.

Hayley, K., Bentley, L.R., Gharibi, M., Nightingale, M., (2007). Low temperature dependence of electrical resistivity: implications for near surface geophysical monitoring. J. Geophys. Res. Lett. 34 L18402.

Hazen, A. (1893). Some physical properties of sands and gravels.  Massachusetts State Board of Health, 24th Annual Report.

Hördt, A., Blaschek, R., Kemna, A., and Zisser, N. (2007). Hydraulic conductivity estimation from induced polarisation data at the field scale—the Krauthausen case history. J. Appl. Geophys., 62, 33–46.

Hunt, B. (1999). Unsteady stream depletion from ground water pumping. Ground Water, 37 (1), 98–102.

Hutchinson, P. A. & Webster, I. T. (1998). Solute Uptake in Aquatic Sediments due to Current-Obstacle Interactions. J. Environ. Eng., 124 (5), 419–426.

Hvorslev, M.J. (1951). Time lag and soil permeability in ground-water observations. U.S. Army Waterways Experiment Station Bulletin, 36, Vicksburg, Mississippi.

Jadoon K.Z., Slob E., Vanclooster M. & Vereecken H. (2008). Uniqueness and stability analysis of hydrogeophysical inversion for time-lapse ground-penetrating radar esti- mates of shallow soil hydraulic properties. Water Resour Res, 44:W09421. http://dx.doi.org/10.1029/2007WR006639.

Kalbus, E., Reinstorf, F., & Schirmer, M. (2006). Measuring methods for groundwater – surface water interactions : a review, 873–887.

Kalbus, E., Schmidt, C., Molson, J. W., Reinstorf, F., & Schirmer, M. (2009). Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge, 69–77.

Kazakis, N., Vargemezis, G., & Voudouris, K. S. (2016a). Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods. Science of the Total Environment, 550, 742–750. https://doi.org/10.1016/j.scitotenv.2016.01.133

Kazakis, N., Vargemezis, G., & Voudouris, K. S. (2016b). Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods. Science of the Total Environment, 550, 742–750. https://doi.org/10.1016/j.scitotenv.2016.01.133

Kelly, W.E. (1977). Geoelectric sounding for estimation aquifer hydraulic conductivity. Ground Water 15 (6), 420–425.

Kennedy C.D., Genereux D.P., Mitasova H., Corbett D.R. & Leahy S. (2008). Effect of sampling density on estimation of streambed attributes. Journal of Hydrology, 355, 164–180. DOI: 10.1016/j.jhydrol.2008.03.018.

Kruschwitz, S., Binley, A., Lesmes, D., and Elshenawy, A. (2010). Textural controls on low-frequency spectra of porous media. Geophysics, 75, 113–123, doi:10.1190/1.3479835.

Landon, M. K., Rus, D. L. & Harvey, F. E. (2001). Comparison of Instream Methods for Measuring Hydraulic Conductivity in Sandy Streambeds. Ground Water, 39 (6), 870 – 885.

Loke, M.H. (2015). RES2DINVx64 ver. 4.05 with multi-core and 64-bit support. Geotomosoft, Malaysia, 138p.

Loke, M.H., Acworth, I. and Dahlin, T. (2003). A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34, 182-187.

Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135–156. https://doi.org/10.1016/j.jappgeo.2013.02.017

Looms M.C., Binley A., Jensen K.H., Nielsen L. & Hansen T.M. (2008). Identifying unsaturated hydraulic parameters using an integrated data fusion approach on cross-borehole geophysical data. Vadose Zone J, 7 (1), 227–37. http://dx.doi.org/10.2136/vzj2007.0087.

Mardia, K. V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic Press, London.

McDonald, M.G. & Harbaugh, A.W. (1988). MODFLOW, A Modular three dimensional finite-difference groundwater flow model. U.S. Geological Survey Techniques of Water-Resources Investigation, Book 6 (Chapter A1), 586 pp.

Myers, D. E. (1992). Kriging, cokriging, radial basis functions and the role of positive definiteness. Computers and Mathematics with Applications, 24(12), 139–148. https://doi.org/10.1016/0898-1221(92)90176-I

Nyquist, J. E., Freyer, P. A., & Toran, L. (2008). Stream Bottom Resistivity Tomography to Map Ground Water Discharge, 46(4), 561–569. https://doi.org/10.1111/j.1745-6584.2008.00432.x

Oldenburg, D.W. & Li, Y. (1999). Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64, 403-416.

Oliver, M.A. & Webster, R. (1990). Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information Science, 4: 313-332.

Purvance, D.T., Andricevic, R. (2000). On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36, 2905–2913.

Ramey Jr., J.J., Agarwal, R.G., Martin, I. (1975). Analysis of ‘Slug Test’ or DST flow period data. J. Can. Pet. Technol. 14 (3), 37–47. http://dx.doi.org/10.2118/ 75-03-04.

Remy, N. (2004). S-GeMS: The Stanford Geostatistical Modeling Software: A Tool for New Algorithms Development. Geostatistics Ban, 865-871.

Revil, A. & Florsch, N. (2010). Determination of permeability from spectral induced polarization in granular media. Geophys. J. Int., 181, 1480–1498, doi:10.1111/j.1365-246X.2010.04573.x.

Revil, A., Cathles, L.M.I. (1999). Permeability of shaly sands. Water Resour Res 35(3), 651–662.

RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.

Salako, A. O., & Adepelumi, A. A. (2016). Evaluation of hydraulic conductivity of subsoil using electrical resistivity and ground penetrating radar data: example from Southwestern Nigeria. International Journal of Geo-Engineering, 7(1), 5. https://doi.org/10.1186/s40703-016-0018-7

Sanchez-León, E., Leven, C., Haslauer, C. P., & Cirpka, O. A. (2016). Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization. Groundwater, 54(4), 498–507. https://doi.org/10.1111/gwat.12381

Schlichter, C. S. (1905). Field Measurements of the Rate of Movement of Underground Waters. U.S. Geol. Surv. Water Supply, Paper 140.

Schön, J.H. (1996). Physical properties of rocks – fundamentals and principles of petrophysics. Handbook of geophysical exploration: seismic exploration, 18. Pergamon Press, 583 pp.

Scott, J.B.T., Barker, R.D. (2003). Determining throat size in Permo-Triassic sandstones from low frequency electrical spectroscopy. Geophys Res Lett GL012951:30.

Sebok, E., Duque, C., Engesgaard, P., & Boegh, E. (2014). Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies : channel bend and straight channel. https://doi.org/10.1002/hyp.10170

Shepherd, R. G. (1989). Correlations of Permeability and Grain-Size. Ground Water, 27 (5), 633–638.

Sillanpäa, M. (1956). Studies on the hydraulic conductivity of soils and its  measurement. Acta Agr: Fenlz., 87, 1- 109.

Slater, L. (2007). Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries - A review. Surveys in Geophysics, 28(2–3), 169–197. https://doi.org/10.1007/s10712-007-9022-y

Slater, L. D., & Lesmes, D. (2002). IP interpretation in environmental investigations. Geophysics, 67(1), 77. https://doi.org/10.1190/1.1451353

Sophocleous, M. A., Koussis, A. D., Martin, J. L., & Perkins, S. P. (1995). Evaluation of simplified stream-aquifer depletion models for water rights administration. Ground Water, 33, 579–588.

Spitzer, K. (1998). The three-dimensional DC sensitivity for surface and subsurface sources. Geophysical Journal International, 134, 736–746. doi:10.1046/j.1365-246x.1998.00592.x

Sun, D. & Zhan, H. (2007). Pumping induced depletion from two streams. Advances in Water Resources, 30, 1016–1026.

Telford, W.M., Sheriff, R.E., Geldert, L.P. (1990). Resistivity methods. Applied geophysics. Cambridge University Press, Cambridge, pp 523–524.

Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Wien.

Thibodeaux, L. J. & Boyle, J. D. (1987): Bedform-generated convective transport in bottom sediments. Nature, 325, 341–343.

Titov, K., Tarasov, A., Ilyin, Y., Seleznev, N., & Boyd, A. (2010). Relationships between induced polarization relaxation time and hydraulic properties of sandstone. Geophysical Journal International, 180(3), 1095–1106. https://doi.org/10.1111/j.1365-246X.2009.04465.x

Waterinfo (2017). Waterinfo Vlaanderen. Water information Flanders. https://www.waterinfo.be/

Weller, A., Slater, L., Binley, A., Nordsiek, S., & Xu, S. (2015). Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range. Geophysics, 80(2), D161–D173. https://doi.org/10.1190/geo2014-0368.1

Wharton, G., Cotton, J. A., Wotton, R. S., Bass, J. A. B., Heppell, C. M., Trimmer, M., Sanders, I. A., & Warren, L. L. (2006). Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK). J. Hydrol., 330, 171–184.

Woldeamlak, S. (2007). Spatio-temporal Impacts of Climate and Land-use Changes on the Groundwater and Surface Water Resources of a Lowland Catchment. PhD Thesis, Vrije Universiteit Brussel, Brussels, Belgium.

Yadav, G.S., Abolfazli, H. (1998). Geoelectrical soundings and their relationship to hydraulic parameters in semiarid regions of Jalore, Northwestern India. J. Appl. Geophys. 39, 35–51.

Zlotnik, V. (1994). Interpretation of slug and packer tests in anisotropic aquifers. Ground Water 32 (5): 761-766.

Download scriptie (10.91 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2017
Promotor(en)
Marijke Huysmans