Goed doen voor het milieu en tegelijk minder betalen? Het kan, met textiel, kunststoffen en computerprogramma’s

Brecht
Tomme

Naar de idyllische kust van Spanje vliegen, een goedkoop pakje uit China bestellen, of gewoon de auto instappen om naar het werk te gaan: transport is makkelijk en onmisbaar. Toch stoten u en ik, en alle Europeanen, daardoor elk elf badkuipen aan CO2 uit per dag. Om dat broeikasgas te compenseren zou u om de twee dagen een boom moeten planten – wanneer was de laatste keer dat u dat gedaan heeft? Misschien is het wel makkelijker om voertuigen te bouwen zodat ze minder brandstof verbruiken. Bovendien is dit goed voor uw portemonnee! Dit is mogelijk dankzij een combinatie van textiel, kunststoffen en computerprogramma’s.

Hoezo, we stoten uit?

Onze auto’s, vliegtuigen en schepen stoten CO2 uit door brandstof te verbruiken. Zelfs een elektrische auto doet dit onrechtstreeks. Als we dus onze uitstoot willen verminderen kunnen we dat doen door ons brandstofverbruik te verlagen, wat als aangenaam neveneffect heeft dat u aan de pomp minder zal moeten betalen. Gelukkig is het zo dat lichte voertuigen nu eenmaal minder energie verbruiken dan zware voertuigen. Dit heeft u zelf ook wel al ervaren: uw lichte gsm over tafel schuiven kost veel minder moeite dan een zware doos over dezelfde afstand verplaatsen. Lichtere voertuigen zijn dus de boodschap!

Materialen van de toekomst uit textiel en kunststof?!

We kunnen voertuigen lichter maken door de carrosserie uit een lichter materiaal te bouwen. Natuurlijk moeten voertuigen wel nog veilig zijn: niemand wil in een kartonnen auto zitten. Daar komen composieten goed van pas. Dit zijn materialen die bestaan uit op elkaar gestapelde lagen textiel, ingebed in een kunststof. Dankzij het textiel is het composiet heel sterk (probeer maar eens een touw kapot te trekken), en dankzij de kunststof blijft het geheel licht. Zo kunnen we composieten maken die even sterk zijn als staal maar slechts een kwart zoveel wegen.

Een auto gemaakt uit koolstofvezelcomposiet.

Een auto gemaakt uit koolstofvezelcomposiet kan tot 40% minder wegen dan een normale auto, en zo meer dan 30% besparen op brandstof en CO2 uitstoot.

“Waarom vervangen we dan niet al het staal door composieten?” hoor ik u vragen. Wel, die zijn momenteel nog te duur voor alledaags gebruik en komen dus voornamelijk voor in sportauto’s en vliegtuigen. Een reden daarvoor is dat composieten eigenlijk niet makkelijk zijn om te produceren: na het opeenstapelen van de textiellagen worden die samengedrukt om ze in de juiste vorm te krijgen, maar dit kan kreuken veroorzaken. Denk maar aan een trui die u aantrekt: als u neerligt is de stof van die trui ook helemaal glad, maar als u rechtop zit begint de trui te kreuken rond uw middel. In een composiet zijn zo’n kreuken uiterst schadelijk. Vliegtuigbouwgigant Airbus geeft bijvoorbeeld toe dat het tussen de 30% en 50% van zijn composietonderdelen moet weggooien door zo’n productiefouten. Het is dus duidelijk dat we een productieproces moeten ontwikkelen waarmee we die kreuken kunnen vermijden. Pas dan kunnen we op een snellere, goedkopere en duurzamere manier composieten maken.

Computers: een industriële zegen

Om te kijken waar de moeilijkheden zitten zouden we eens een composiet kunnen maken in elke denkbare vorm, maar dat zou reusachtig veel tijd en geld kosten, en bovendien veel afval creëren, wat natuurlijk de milieuvriendelijkheid van het materiaal zou ondermijnen. In de plaats daarvan kunnen we op een computer een virtueel model bouwen van het textiel, waarmee we na enkele klikken voor elke mogelijke vorm exact kunnen berekenen hoe we het onderdeel best produceren. Dit was dan ook de focus van deze thesis: een zo nauwkeurig mogelijk model bouwen om voorspellingen te maken die snel verlopen, geen afval creëren én goedkoop zijn. Dat wordt dan uiteraard doorgerekend in de prijs van uw voertuig, zodat ook die zakt dankzij een goed computermodel. Ideaal, toch?

27 000 jaar ontwikkeling, en nóg te complex

Het grootste struikelblok bij het creëren van het composietmodel was het textiel zelf. 27 000 jaar geleden werd er al geweven op weefgetouwen, maar toch is dit materiaal nog te complex voor onze hedendaagse computers. Dit komt voornamelijk doordat weefsels bestaan uit garens, die op hun beurt elk bestaan uit duizenden vezeltjes. Zo zitten er in uw t-shirt makkelijk miljoenen vezels. Die allemaal exact weergeven op een computer vereist immense rekenkracht, waar onze technologie nog steeds niet ver genoeg voor ontwikkeld is. Dju! Ach ja, we mogen ons hier niet door laten afschrikken; we moeten het probleem gewoon slim aanpakken.

We kunnen textielweefsels vereenvoudigen door op de computer te doen alsof elk garen bestaat uit een veel kleiner aantal vezels – 100 in plaats van 10 000, bijvoorbeeld. Zo hebben we maar een fractie van de rekenkracht nodig, wat onze computers wel aankunnen. Natuurlijk mogen we dit niet zomaar aanpassen, dus moeten we speciale eigenschappen geven aan de virtuele vezels om hun gedrag overeen te laten stemmen met de realiteit. Tot nu toe was dat nog nooit gelukt, maar in deze thesis is een model gebouwd waarmee het wél kan.

De opbouw van het computermodel uit deze thesis.

Het weefselmodel dat in deze thesis op de computer gebouwd is bestaat uit virtuele garens met virtuele vezels die elk apart kunnen bewegen. Zo kunnen we nauwkeurig berekenen hoe we textiel moeten behandelen tijdens de productie van composieten.

Gewapend met dit nieuwe model kunnen we ons vervoer nu dus milieuvriendelijker maken. Uiteraard moeten we ons voertuiggebruik nog altijd beperken, maar wanneer het dan toch echt noodzakelijk is, kunnen we ons op een betere manier verplaatsen. Op naar een groenere (en goedkopere) toekomst!

P.S. Ja, probeer daartoe misschien toch ook eens een boom te planten.

 

Bibliografie

[1] W. Van Paepegem and I. De Baere, "Composites". Ghent University, 2018-2019.

[2] A. Khan and C. Lemmen, "Bricks and urbanism in the Indus Valley rise and decline," American Journal of Archeology, Feb 2013.

[3] T. Tsuen-Hsuin, "Paper and printing," Chemistry and Chemical Technology, vol. 5, no. 1, 1985.

[4] MHRD, "Module 1: Introduction to Composites". Government of India.

[5] S. Prashanth, K. M. Subbaya, N. Kundachira, and S. Sachhidananda, "Fiber reinforced composites - a review," Journal of Materials Science Engineering, vol. 6, May 2017.

[6] M. Kaufmann, D. Zenkert, and M. Akermo, "Material selection for a curved C-spar based on cost optimization," Journal of Aircraft, vol. 48, pp. 797-804, Jun 2011.

[7] A. J. Timmis, A. Hodzic, L. Koh, M. Bonner, C. Soutis, A. W. Schafer, and L. Dray, "Environmental impact assessment of aviation emission reduction through the implementation of composite materials," The International Journal of Life Cycle Assessment, vol. 20, pp. 233-243, Feb 2015.

[8] European Commission, "Clean sky 2: developing new generations of greener aircraft," 2014.

[9] A. Jacob, "BMW unveils i8 Spyder," Reinforced Plastics, vol. 56, p. 5, 2012.

[10] A. Jacob, "BWM begins series production of i3 electric car," Reinforced Plastics, vol. 57, p. 6, 2013.

[11] Solvay, "Composite materials for automotive applications," Jul 2018.

[12] S. Chu and A. Majumdar, "Opportunities and challenges for a sustainable energy future," Nature, vol. 488, pp. 294-303, Aug 2012.

[13] G. Fontaras and Z. Samaras, "On the way to 130 g CO2/km - estimating the future characteristics of the average European passenger car," Energy Policy, vol. 38, pp. 1826-1833, Apr 2010.

[14] F. Taheri, "Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications". Woodhead Publishing, 2013. "Chapter 18 - Advanced fiber-reinforced polymer (FRP) composites for the manufacture and rehabilitation of pipes and tanks in the oil and gas industry", pp. 662-704.

[15] A. C. Filho, "Durability of Industrial Composites". CRC Press, second ed., Oct 2018. "Chapter 21 - Impermeable pipes", pp. 379-392.

[16] K. K. Sadasivuni, D. Ponnamma, J. Kim, J. J. Cabibihan, and M. A. Al Maadeed, "Biopolymer Composites in Electronics". Elsevier, First ed., 2017.

[17] D. D. L. Chung, "Composite Materials, vol. 4 of "Engineering Materials and Processes". London: Springer, 2010. "Chapter 4 - Mechanical properties - Composite materials for electrical applications", pp. 73-89.

[18] Lucintel, "Composites market report: trends, forecast and competitive analysis," Jan 2019.

[19] SmarTech Analysis, "3D-printed composites materials markets - 2017: an opportunity analysis and ten-year forecast," Nov 2016.

[20] M. Flemming, G. Ziegmann, and S. Roth, "Faserverbund Bauweisen - Halbzeuge und Bauweisen". Berlin: Springer, 1996.

[21] D. Cripps, "NetComposites - manufacturing," 2019.

[22] P. Potluri and T. V. Sagar, "Compaction modelling of textile preforms for composite structures," Composite Structures, vol. 86, pp. 177{185, Mar 2008.

[23] T. Grieser and P. Mitschang, "Investigation of the compaction behavior of carbon fiber NCF for continuous preforming processes," Polymer Composites, vol. 38, pp. 2609{2625, Nov 2017.

[24] B. Chen and T. W. Chou, "Compaction of woven-fabric preforms in liquid composite molding processes: single-layer deformation," Composites Science and Technology, vol. 59, pp. 1519-1526, 1999.

[25] B. Chen and T. W. Chou, "Compaction of woven-fabric preforms: nesting and multi-layer deformation," Composites Science and Technology, vol. 60, pp. 2223-2231, 2000.

[26] B. Chen, E. J. Lang, and T. W. Chou, "Experimental and theoretical studies of fabric compaction behavior in resin transfer molding," Materials Science and Engineering, vol. A317, pp. 188-196, 2001.

[27] R. A. Saunders, C. Lekakou, and M. G. Bader, "Compression in the processing of polymer composites: a mechanical and microstructural study for different glass fabrics and resins," Composites Science and Technology, vol. 59, pp. 983-993, 1999.

[28] R. A. Smith, "Composite defects and their detection," Materials Science and Engineering, vol. 3, Jan 2009.

[29] L. Liu, B. M. Zhang, Z. J. Wu, and D. F. Wang, "Effects of cure pressure induced voids on the mechanical strength of carbon/epoxy laminates," Journal of Materials Science and Technologies, vol. 21, no. 1, 2005.

[30] A. Siver, "Mechanistic effects of porosity on structural composite materials," Master's thesis, University of California, 2014.

[31] J. W. Tang, W. I. Lee, and G. S. Springer, "Effects of cure pressure on resin flow, voids and mechanical properties," Journal of Composite Materials, vol. 21, pp. 421-440, Jan 1987.

[32] P. Olivier, J. P. Cottu, and B. Ferret, "Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates," Composites, vol. 26, no. 7, pp. 509-515, 1995.

[33] X. Liu and F. Chen, "A review of void formation and its effects on the mechanical performance of carbon fiber reinforced plastic," Engineering Transactions, vol. 64, no. 1, pp. 33-51, 2016.

[34] L. Q. Zhuang, "Effects of voids on delamination growth in composite laminates under compression," Master's thesis, Texas A&M University, 2012.

[35] A. M. Rubin and K. L. Jerina, "Evaluation of porosity in composite aircraft structures," Mechanics of Composite Materials, vol. 30, no. 6, pp. 587-600, 1994.

[36] M. A. Suhot and A. R. Suhot, "The effects of voids on the flexural properties and failure mechanisms of carbon/epoxy composites," Jurnal Teknologi, vol. 71, no. 2, pp. 151-157, 2014.

[37] A. Demma and B. B. Djordjevic, "Effects of porosity on the mechanical strength and ultrasonic attenuation of CF-PEEK fibre placed composites.," in 15th World Conference on Nondestructive Testing, Feb 2008.

[38] P. M. Mohite, "Composite Materials". NPTEL, Aug 2014.

[39] S. R. Ghiorse, "Effect of void content on the mechanical properties of carbon epoxy laminates," SAMPE Quarterly, pp. 54-59, Jan 1993.

[40] J. C. Suarez, F. Molleda, and A. Guemes, "Void content in carbon fibre/epoxy resin composites and its effect on compressive properties," in 9th International Conference on Composite Materials, (Madrid), 1993.

[41] J. Cinquin, V. Triquenaux, and Y. Rousne, "Porosity influence on organic composite material mechanical properties," in 16th International Conference on Composite Materials, (Japan), 2007.

[42] S. F. M. Almeida and Z. S. N. Neto, "Effect of void content on the strength of composite laminates," Composite Structures, vol. 28, pp. 139-148, 1994.

[43] A. Chambers, J. Earl, C. Squires, and M. Suhot, "The effect of voids on the flexural fatigue performance of unidirectional carbon fibre composites developed for wind turbine applications," International Journal of Fatigue, vol. 28, pp. 1389-1398, 2006.

[44] M. W. Czabaja and J. G. Ratcliffe, "Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite," Composites Science and Technology, vol. 89, pp. 15-23, Dec 2013.

[45] K. Farnand, Z. N, P. A, and G. Fernlund, "Micro-level mechanisms of fiber waviness and wrinkling during hot drape forming of unidirectional prepreg composites," Composites: Part A, vol. 103, pp. 168{-177, Oct 2017.

[46] P. S. Bhargav, "Effect of in-plane fiber tow waviness in the strength characteristics of different fiber reinforced composites," Master's thesis, Wichita State University, May 2015.

[47] D. Kugler and T. J. Moon, "Identification of the most significant processing parameters on the development of fiber waviness in thin laminates," Journal of Composite Materials, vol. 36, pp. 1451-1479, Jun 2002.

[48] J. P. H. Belnoue, O. J. Nixon-Pearson, A. J. Thompson, D. S. Ivanov, K. D. Potter, and S. R. Hallett,"Consolidation-driven defect generation in thick composite parts," Journal of Manufacturing Science and Engineering, vol. 140, Jul 2018.

[49] P. Hallander, M. Akermo, C. Mattei, M. Petersson, and T. Nyman, "An experimental study of mechanisms behind wrinkle development during forming of composite laminates," Composites: Part A, vol. 50, pp. 54-64, Mar 2013.

[50] A. J. Thompson, J. P. H. Belnoue, and S. R. Hallett, "A numerical study examining the formation of consolidation induced defects in dry textile composites," in 13th International Conference on Textile Composites, vol. 406 of IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd., 2018.

[51] P. Harrison, M. F. Alvarez, and D. Anderson, "Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics," International Journal of Solids and Structures, vol. 54, pp. 2-18, Jan 2017.

[52] T. J. Dodwell, R. Butler, and G. W. Hunt, "Out-of-plane ply wrinkling defects during consolidation over an external radius," Composites Science and Technology, vol. 105, pp. 151-159, Oct 2014.

[53] T. Grankall, P. Hallander, and M. Akermo, "Geometric compensation of convex forming tools for successful final processing in concave cure tools - an experimental study," Composites: Part A, vol. 116, pp. 187-196, 2019.

[54] P. Boisse, N. Hamila, and A. Madeo, "Modelling the development of defects during composite reinforcements and prepreg forming," Philosophical Transactions of the Royal Society A, vol. 374, Mar 2016.

[55] S. Erland, T. J. Dodwell, and R. Butler, "Characterisation of inter-ply shear in uncured carbon fibre prepreg," Composites: Part A, vol. 77, pp. 210-218, Jul 2015.

[56] W. W. Johanns, "The effect of tow grouping resolution on shearing deformation of unidirectional non-crimp fabric," Master's thesis, Iowa State University, 2012.

[57] I. Taha, Y. Abdin, and S. Ebeid, "Comparison of picture frame and bias-extension tests for the characterization of shear behaviour in natural fibre woven fabrics," Fibers and Polymers, vol. 14, pp. 338-344, Feb 2013.

[58] A. G. Prodromou and J. Chen, "On the relationship between shear angle and wrinkling of textile composite preforms," Composites: Part A, vol. 28, pp. 491{-503, 1997.

[59] T. Gereke, O. Dobrich, M. Hubner, and C. Cherif, "Experimental and computational composite textile reinforcement forming: a review," Composites: Part A, vol. 46, pp. 1-10, 2013.

[60] S. Allaoui, G. Hivet, A. Wendling, P. Ouagne, and D. Soulat, "Influence of the dry woven fabrics meso-structure on fabric/fabric contact behavior," Journal of Composite Materials, vol. 46, pp. 627-639, Jan 2012.

[61] G. Hivet, S. Allaoui, B. T. Cam, P. Ouagne, and D. Soulat, "Design and potentiality of an apparatus for measuring yarn/yarn and fabric/fabric friction," Experimental Mechanics, vol. 52, no. 8, pp. 1123-1136, 2012.

[62] M. R. Piggott, "The effect of fibre waviness on the mechanical properties of unidirectional fibre composites: a review," Composites Science and Technology, vol. 53, pp. 201-205, 1995.

[63] J. Zhu, J. Wang, and L. Zu, "Influence of out-of-plane ply waviness on elastic properties of composite laminates under uniaxial loading," Composite Structures, vol. 132, pp. 440-450, May 2015.

[64] J. Zhu, J. Wang, A. Ni, W. Guo, X. Li, and Y. Wu, "A multi-parameter model for stiffness prediction of composite laminates with out-of-plane ply waviness," Composite Structures, vol. 185, pp. 327-337, 2018.

[65] N. Xie, R. A. Smith, S. Mukhopadhyay, and S. R. Hallett, "A numerical study on the influence of composite wrinkle defect geometry on compressive strength," Materials and Design, vol. 140, pp. 7-20, Nov 2018.

[66] B. D. Allison and J. L. Evans, "Effect of fiber waviness on the bending behavior of s-glass/epoxy composites," Materials and Design, vol. 36, pp. 316-322, 2012.

[67] A. Altmann, P. Gesell, and K. Drechsler, "Strength prediction of ply waviness in composite materials considering matrix dominated effects," Composite Structures, vol. 127, pp. 51-59, Mar 2015.

[68] S. Mukhopadhyay, M. I. Jones, and S. R. Hallett, "Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study," Composites: Part A, vol. 73, pp. 132-142, Mar 2015.

[69] S. S. Nimbal, M. M. Banker, A. Roopa, B. Varughese, and R. Sundaram, "Effect of gap induced waviness on compressive strength of laminated composites," in International Conference on Advancements in Aeromechanical Materials for Manufacturing, pp. 8355-8369, 2016.

[70] S. Mukhopadhyay, M. I. Jones, and S. R. Hallett, "Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study," Composites: Part A, vol. 77, pp. 219-228, Jul 2015.

[71] L. D. Bloom, J. Wang, and K. D. Potter, "Damage progression and defect sensitivity: an experimental study of representative wrinkles in tension," Composites: Part B, vol. 45, pp. 449-458, 2013.

[72] K. Potter, B. Khan, M. Wisnom, T. Bell, and J. Stevens, "Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures," Composites: Part A, vol. 39, pp. 1343-1354, Sep 2008.

[73] S. Horrmann, A. Adumitroaie, C. Viechtbauer, and M. Schagerl, "The effect of fiber waviness on the fatigue life of CFRP materials," International Journal of Fatigue, vol. 90, pp. 139-147, Apr 2016.

[74] S. Mukhopadhyay, O. J. Nixon-Pearson, and S. R. Hallett, "An experimental and numerical study on fatigue damage development in laminates containing embedded wrinkle defects," International Journal of Fatigue, vol. 107, pp. 1-12, 2018.

[75] L. Daelemans, "Realistic numerical modelling of the yarn behaviour in the production of stitched sandwich panels," Master's thesis, Ghent University, May 2013.

[76] S. Green, A. Long, B. El Said, and S. R. Hallett, "Numerical modelling of 3D woven composite preform deformations," Composite Structures, vol. 108, pp. 747-756, Feb 2014.

[77] T. Diehl, R. D. Dixon, M. A. Lamontia, and J. A. Hanks, "The development and use of a robust modeling approach for predicting structural performance of woven fabrics using ABAQUS," in ABAQUS Users' Conference, 2003.

[78] Dassault Systemes, "SIMULIA User Assistance 2018", 2017.

[79] B. Nadler, P. Papadopoulos, and D. Steigmann, "Multiscale constitutive modeling and numerical simulation of fabric material," International Journal of Solids and Structures, vol. 43, pp. 206-221, 2006.

[80] P. Boisse, N. Hamila, E. Vidal-Salle, and F. Dumont, "Simulation of wrinkling during textile composite reinforcement forming - influence of tensile, in-plane shear and bending stiffnesses," Composites Science and Technology, vol. 71, pp. 683-692, Jan 2011.

[81] S. Allaoui, P. Boisse, S. Chatel, N. Hamila, G. Hivet, D. Soulat, and E. Vidal-Salle, "Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape," Composites: Part A, vol. 42, pp. 612-622, Feb 2011.

[82] S. Kawabata, M. Niwa, and H. Kawai, "The finite-deformation theory of plain-weave fabrics, part I: the biaxial-deformation theory," Journal of the Textile Institute, vol. 64, no. 1, pp. 21-46, 1973.

[83] S. Kawabata, M. Niwa, and H. Kawai, "The finite-deformation theory of plain-weave fabrics, part II: the uniaxial-deformation theory," Journal of the Textile Institute, vol. 64, no. 2, pp. 47-61, 1973.

[84] S. Kawabata, M. Niwa, and H. Kawai, "The finite-deformation theory of plain-weave fabrics, part III: the shear-deformation theory," Journal of the Textile Institute, vol. 64, no. 3, pp. 62-85, 1973.

[85] A. Cherouat and J. L. Billoet, "Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics," Journal of Materials Processing Technology, vol. 118, pp. 460-471, Dec 2001.

[86] M. J. King, P. Jearanaisilawong, and S. Socrate, "A continuum constitutive model for the mechanical behavior of woven fabrics," International Journal of Solids and Structures, vol. 42, pp. 3867-3896, Jun 2005.

[87] P. Harrison, "Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh," Composites: Part A, vol. 81, pp. 145-157, Nov 2015.

[88] A. Gasser, P. Boisse, and S. Hanklar, "Mechanical behaviour of dry fabric reinforcements - 3D simulations versus biaxial tests," Computational Materials Science, vol. 17, no. 1, pp. 7-20, 2000.

[89] P. Boisse, K. Buet, A. Gasser, and J. Launay, "Meso/macro-mechanical behaviour of textile reinforcements for thin composites," Composites Science and Technology, vol. 61, no. 3, pp. 395-401, 2001.

[90] J. Page and J. Wang, "Prediction of shear force using 3D non-linear FEM analyses for a plain weave carbon fabric in a bias extension state," Finite Elements in Analysis and Design, vol. 38, no. 8, pp. 755-764, 2002.

[91] R. Barauskas and A. Abraitiene, "Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA," International Journal of Impact Engineering, vol. 34, pp. 1286-1305, Jul 2007.

[92] P. Boisse, A. Gasser, and G. Hivet, "Analyses of fabric tensile behaviour: determination of the biaxial tension-strain surfaces and their use in forming simulations," Composites: Part A, vol. 32, no. 10, pp. 1395-1414, 2001.

[93] P. Boisse, A. Gasser, B. Hagege, and J. L. Billoet, "Analysis of the mechanical behaviour of woven fibrous material using virtual tests at the unit cell level," Journal of Materials Science, vol. 40, no. 22, pp. 5955-5962, 2005.

[94] P. Badel, E. Vidal-Salle, and P. Boisse,"Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements," Computational Materials Science, vol. 40, no. 4, pp. 439-448, 2007.

[95] P. Badel, E. Vidal-Salle, and P. Boisse, "Large deformation analysis of fibrous materials using rate constitutive equations," Computers & Structures, vol. 86, no. 11, pp. 1164-1175, 2008.

[96] Q. T. Nguyen, E. Vidal-Salle, P. Boisse, C. H. Park, A. Saouab, J. Breard, and G. Hivet, "Mesoscopic scale analyses of textile composite reinforcement compaction," Composites: Part B, vol. 44, pp. 231-241, Jan 2013.

[97] Y. Wang and X. Sun, "Digital-element simulation of textile processes," Composites Science and Technology, vol. 61, no. 2, pp. 311-319, 2001.

[98] G. Zhou, X. Sun, and Y. Wang, "Multi-chain digital element analysis in textile mechanics," Composites Science and Technology, vol. 64, pp. 239-244, Feb 2004.

[99] Y. Miao, E. Zhou, Y. Wang, and B. A. Cheeseman, "Mechanics of textile composites: micro-geometry," Composites Science and Technology, vol. 68, pp. 1671-1678, Jun 2008.

[100] Y. Wang, Y. Miao, D. Swenson, B. A. Cheeseman, C. F. Yen, and B. LaMattina, "Digital element approach for simulating impact and penetration of textiles," International Journal of Impact Engineering, vol. 37, pp. 552-560, May 2010.

[101] D. Durville, "Modelling of contact-friction interactions in entangled fibrous materials," in 6th World Wide Congress on Computational Mechanics, 2004.

[102] D. Durville, "Numerical simulation of entangled materials mechanical properties," Journal of Materials Science, vol. 40, no. 22, pp. 5941-5948, 2005.

[103] D. Durville, "Finite element simulation of textile materials at mesoscopic scale," Finite Element Modelling of Textiles and Textile Composites, 2007.

[104] D. Durville, "Simulation of the mechanical behaviour of woven fabrics at the scale of fibers," International Journal of Material Forming, vol. 3, no. 2, pp. 1241-1251, 2010.

[105] N. D. Chakladar, P. Mandal, P. Potluri, and J. Hearle, "Application of ABAQUS beam model to modelling mechanical properties of woven fabrics," in 5th World Conference on 3D Fabrics and Their Applications, (Delhi), Dec 2013.

[106] Y. Mahadik and S. R. Hallett, "Finite element modelling of tow geometry in 3D woven fabrics," Composites: Part A, vol. 41, no. 9, pp. 1192-1200, 2010.

[107] A. J. Thompson, B. El Said, D. Ivanov, J. P. H. Belnoue, and S. R. Hallett, "High fidelity modelling of the compression behaviour of 2D woven fabrics," International Journal of Solids and Structures, vol. 154, pp. 104-113, 2018.

[108] M. Duhovic and D. Bhattacharyya, "Simulating the deformation mechanisms of knitted fabric composites," Composites: Part A, vol. 37, no. 11, pp. 1897-1915, 2006.

[109] L. Van Langenhove, "Simulating the mechanical properties of a yarn based on the properties and arrangement of its fibers - part I: the finite element model," Textile Research Journal, vol. 67, no. 4, pp. 263-268, 1997.

[110] L. Van Langenhove, "Simulating the mechanical properties of a yarn based on the properties and arrangement of its fibers - part II: results of simulations," Textile Research Journal, vol. 67, no. 5, pp. 342-347, 1997.

[111] L. Van Langenhove, "Simulating the mechanical properties of a yarn based on the properties and arrangement of its fibers - part III: practical measurements," Textile Research Journal, vol. 67, no. 6, pp. 406-412, 1997.

[112] J. Rybicka, A. Tiwari, P. A. Del Campo, and J. Howarth, "Capturing composites manufacturing waste flows through process mapping," Journal of Cleaner Production, vol. 91, pp. 251-261, Mar 2015.

[113] M. K. Hagnell and M. Akermo, "Cost efficiency, integration and assembly of a generic composite aeronautical wing box," Composite Structures, vol. 152, pp. 1014-1023, 2016.

[114] M. K. Hagnell and M. Akermo, "A composite cost model for the aeronautical industry: methodology and case study," Composites: Part B, vol. 79, pp. 254-261, 2015.

[115] M. K. Hagnell, "The development of a technical cost model for composites - adapted to the automotive industry," Master's thesis, KTH Royal Institute of Technology - School of Engineering Sciences, 2013.

[116] K. Potter, "Beyond the pin-jointed net: maximising the deformability of aligned continuous fibre reinforcements," Composites: Part A, vol. 33, pp. 677-686, Jan 2002.

1[117] P-D Interglas Technologies GmbH, "Product information."

[118] R&G Faserverbundwerkstoffe GmbH, "Safety data sheet," Im Meiel 7 - 13, D-71111 Waldenbuch, Germany, Oct 2014.

[119] R&G, "Faserverbundwerkstoffe - composite technology." Online.

[120] Y. Nawab, T. Hamdani, and K. Shaker, "Structural textile design: interlacing and interloping". CRC Press, Mar 2017.

[121] F. T. Wallenberger, J. C. Watson, H. Li, and PPG Industries Inc., "ASM Handbook: Composites", vol. 21. ASM International, 2001.

[122] Hexion, "Technical data sheet: EPIKOTE Resin MGS RIMR 135 and EPIKURE Curing Agent MGS RIMH 134 - RIMH 137," Aug 2006.

[123] Simuleon, "SIMULIA industry solutions." Online, May 2019.

[124] P. Wang, N. Hamila, and P. Boisse, "Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix," Composites: Part B, vol. 52, pp. 127-136, Mar 2013.

[125] D. Dorr, W. Brymerski, S. Ropers, D. Leutz, T. Joppich, L. Karger, and F. Henning, "A benchmark study of finite element codes for forming simulation of thermoplastic UD-tapes," in 1st CIRP Conference on Composite Materials Parts Manufacturing, vol. 66, pp. 101-106, 2017.

[126] D. Dorr, F. J. Schirmaier, F. Henning, and L. Karger, "A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites," Composites: Part A, vol. 94, pp. 113-123, Nov 2017.

[127] S. C. Garcea, Y. Wang, and P. J. Withers, "X-ray computed tomography of polymer composites," Composites Science and Technology, pp. 1-15, Oct 2017.

[128] J. Hemmer, C. Burtin, S. Comas-Cardona, C. Binetruy, T. Savart, and A. Babeau, "Unloading during the infusion process: direct measurement of the dual-scale fibrous microstructure evolution with X-ray computed tomography," Composites: Part A, Sep 2018.

[129] J. Y. Buere, E. Maire, J. Adrien, J. P. Masse, and E. Boller, "In situ experiments with X-ray tomography: an attractive tool for experimental mechanics," Experimental Mechanics, vol. 50, pp. 289-305, Jan 2010.

[130] J. F. Van Stappen, T. De Kock, G. De Schutter, and V. Cnudde, "Uniaxial compressive strength measurements of limestone plugs and cores: a size comparison and X-ray CT study," Bulletin of Engineering Geology and the Environment, Jan 2019.

[131] B. Cornelissen and R. Akkerman, "Analysis of yarn bending behaviour," in 17th International Conference on Composite Materials, (Edinburgh, Scotland), The British Composites Society, Jul 2009.

[132] D. Petrulis and S. Petrulyte, "Properties of close packing of laments in yarn," Fibres & Textiles in Eastern Europe, vol. 11, pp. 16-20, Mar 2003.

[133] K. B. Iyer and R. M. Phatarfod, "Some aspects of yarn structure," Journal of Textile Institute Transactions, vol. 56, no. 5, pp. 225-247, 1965.

[134] F. T. Peirce, "The "handle" of cloth as a measurable quantity," Journal of Textile Institute Transactions, vol. 21, no. 9, 1930.

[135] N. Lammens, M. Kersemans, G. Luyckx, W. Van Paepegem, and J. Degrieck, "Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)," Textile Research Journal, pp. 1-8, 2014.

[136] S. Rajagopalan, "Advances in weaving technology and looms," Aug 2004. S.S.M. College of Engineering, Komarapalayam.

Download scriptie (31.57 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2019
Promotor(en)
Karen De Clerck, Wim Van Paepegem