Het zit tussen je oren! Of toch in je bloed?

Jolien
Hendrix

Kennen jullie iemand die een psychische ziekte heeft? Waarschijnlijk wel, want wereldwijd zijn er meer dan 220 miljoen mensen die lijden aan één van de drie belangrijkste psychische ziektes. Dat is 20 keer het aantal inwoners van België! Dit onderzoek draagt bij tot de verbetering van de psychische gezondheidszorg, dit omdat momenteel de kwaliteit hiervan laag is door een gebrek aan biologische testen.

Psychische ziektes zitten niet tussen je oren!

In tegenstelling tot andere ziektes, zijn psychische ziektes nog altijd een mysterie voor wetenschappers over de hele wereld. We weten nog altijd niet hoe mensen psychisch ziek worden of hoe we deze mensen het beste kunnen behandelen. Wat onderzoek naar psychische ziektes verder bemoeilijkt is het feit dat mensen die een psychische ziekte hebben er voor de buitenwereld kerngezond uitzien. Daarom wordt ook vaak gezegd dat het ‘tussen je oren zit’, maar dat is natuurlijk helemaal niet waar!

Naast biologische afwijkingen in de hersenen, zijn bij mensen met een psychische ziekte ook afwijkingen in het bloed gevonden. Wetenschappers proberen momenteel aan de hand van deze biologische afwijkingen een test op te stellen die kan zeggen welke psychische ziekte iemand heeft. Helaas heeft dit tot op de dag van vandaag nog niet veel opgeleverd. Dit is een enorm groot probleem aangezien verschillende psychische ziektes heel hard op elkaar lijken. Daarom krijgen heel veel mensen een foute diagnose en dus ook een foute behandeling. Dit kan ernstige gevolgen hebben aangezien de behandeling van een psychische ziekte vaak zware medicatie omvat om symptomen onder controle te krijgen. Omdat vooral de symptomen van depressie, bipolaire stoornis en schizofrenie hard op elkaar lijken en de nood dus het hoogst is bij deze ziektes, hebben wij deze drie psychische ziektes tijdens dit onderzoek onder de loep genomen.

Vlaamse scriptieprijs

Figuur 1. Visuele voorstelling van de meest voorkomende symptomen bij depressie, bipolaire stoornis en schizofrenie. © @lavelydrawings

Thinking out of the box

Tot nu toe hebben wetenschappers vooral gekeken naar bloedplasma om een biologische test te ontwikkelen, maar aangezien de resultaten van deze onderzoeken zeer teleurstellend zijn, besloten wij om iets anders te gebruiken. Witte bloedcellen leken ons een interessant alternatief, maar er is nog niet veel gekend over het gebruik van witte bloedcellen in vergelijking met bloedplasma voor de ontwikkeling van een biologische test. Daarom heeft deze thesis de technische aspecten van bloedplasma en witte bloedcellen vergeleken om zo te bepalen welke van de twee we het beste zouden gebruiken.

Dit hebben we gedaan door gebruik te maken van een massaspectrometer. Dat is een toestel dat de hoeveelheden van verschillende eiwitten in ons lichaam meet. Eiwitten doen eigenlijk bijna alles in ons lichaam om het goed te laten werken en als er een belangrijk eiwit te veel of te weinig aanwezig is, kan er wel eens iets mislopen. Het is dus niet raar dat er in zieke mensen vaak een bepaald eiwit meer of minder aanwezig is in vergelijking met gezonde mensen. Daarom zijn eiwitten ideaal om als biologische test gebruikt te worden.

In dit geval keken we in het bijzonder naar de eiwitten die we konden vinden in het bloedplasma en in de witte bloedcellen. We vergeleken het aantal verschillende eiwitten die gedetecteerd werden (hoe meer verschillende eiwitten, des te groter de kans dat er eiwitten tussen zitten die gebruikt kunnen worden voor de test) en hoe stabiel de hoeveelheden van deze eiwitten zijn (een test moet accuraat zijn en hiervoor moeten de hoeveelheden van de eiwitten stabiel zijn). Jammer genoeg werden de experimenten vroegtijdig stopgezet om de verspreiding van  COVID-19 tegen te gaan, maar toch kunnen we een voorzichtige conclusie trekken. Uit onze resultaten blijkt dat witte bloedcellen mogelijks betere eigenschappen hebben voor de ontwikkeling van een biologische test dan de zogenaamde ‘gouden standaard’, het bloedplasma. Deze resultaten zullen dus hopelijk andere wetenschappers stimuleren om meer op witte bloedcellen te focussen in plaats van op bloedplasma bij het ontwikkelen van een biologische test voor psychische ziektes.

Wat nu?

Het uiteindelijke doel van dit onderzoek is om eiwitprofielen op te stellen die kenmerkend zijn voor depressie, bipolaire stoornis of schizofrenie. Die eiwitprofielen zijn een soort biologische handtekening uniek voor elke ziekte. Hiermee kunnen witte bloedcellen van patiënten geanalyseerd worden via een biologische test die dan op basis van die handtekening kan zeggen welke psychische ziekte elke patiënt heeft.

spectra

Figuur 2. Een simplistisch voorbeeld van eiwitprofielen die kenmerkend zijn voor depressie, bipolaire stoornis of schizofrenie. Elke kleur stelt één eiwit voor en zoals je kan zien zullen de eiwitprofielen zijn samengesteld uit eiwitten die in verschillende hoeveelheden aanwezig zijn bij patiënten met een depressie, bipolaire stoornis of schizofrenie. © @lavelydrawings

Eens zo’n test is ontwikkeld, zal deze uitgevoerd worden in het laboratorium en zal de patiënt enkele dagen later de resultaten krijgen. In de toekomst wordt het misschien zelfs mogelijk om deze test in de vorm van een ‘lab-on-a-chip’ te maken. Een ‘lab-on-a-chip’ is een klein apparaatje dat de witte bloedcellen van een patiënt kan analyseren. Omdat het zo’n klein en gemakkelijk apparaatje is, kunnen dokters dit op hun bureau zetten waardoor ze de witte bloedcellen van de patiënt dus niet meer moeten opsturen naar laboratorium en gewoon ter plaatse kunnen analyseren. Dat betekent dus dat de dokter en patiënt dan ook meteen het resultaat weten en kunnen starten met een gepaste behandeling, zonder dat er eerst nog een paar dagen gewacht moet worden.

lab on a chip

Figuur 3. Voorbeeld van een ‘lab-on-a-chip’.

Momenteel heeft ons team al enkele kandidaat-eiwitten gevonden die gebruikt zouden kunnen worden voor een biologische test die kan zeggen of een persoon een depressie, bipolaire stoornis of schizofrenie heeft. De volgende stap is om de hoeveelheden van deze eiwitten na te kijken in een grotere groep patiënten. Uiteindelijk zal een programma op de computer dan bepalen hoe goed onze eiwithandtekening kan zeggen welke psychische ziekte iemand heeft. Het uiteindelijke doel van dit onderzoek ligt dus zeker nog niet binnen handbereik, maar toch zijn de eerste stappen gezet om de psychische gezondheidszorg te verbeteren.

Bibliografie

1. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1684-1735. 2. Kay, J. and A. Tasman, Mood disorders: Bipolar (Manic-Depressive) Disorders, in Essentials of Psychiatry. 2006, John Wiley & Sons, Ltd. p. 556-572. 3. Kay, J. and A. Tasman, Mood disorders: Depression, in Essentials of Psychiatry. 2006, John Wiley & Sons, Ltd. p. 533-555. 4. Kay, J. and A. Tasman, Schizophrenia and Other Psychoses, in Essentials of Psychiatry. 2006, John Wiley & Sons, Ltd. p. 495-532. 5. Allsopp, K., et al., Heterogeneity in psychiatric diagnostic classification. Psychiatry Res, 2019. 279: p. 15-22. 6. Health, W.M. Prevention of Suicidal Behaviours: A Task for All. Available from: http://www.who.int/mental_health/prevention/suicide/background 7. Cavanagh, J.T., et al., Psychological autopsy studies of suicide: a systematic review. Psychol Med, 2003. 33(3): p. 395-405. 8. Chesney, E., G.M. Goodwin, and S. Fazel, Risks of all-cause and suicide mortality in mental disorders: a meta-review. World psychiatry : official journal of the World Psychiatric Association (WPA), 2014. 13(2): p. 153-160. 9. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1736-1788. 10. Colton, C.W. and R.W. Manderscheid, Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states. Preventing chronic disease, 2006. 3(2): p. A42-A42. 11. Whiteford, H.A., et al., Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet, 2013. 382(9904): p. 1575-86. 12. Malzberg, B., Mortality among patients with involution melancholia. American Journal of Psychiatry, 1937. 93(5): p. 1231-1238. 13. Dregan, A., et al., Potential gains in life expectancy from reducing amenable mortality among people diagnosed with serious mental illness in the United Kingdom. PLoS One, 2020. 15(3): p. e0230674. 14. Laursen, T.M., M. Nordentoft, and P.B. Mortensen, Excess early mortality in schizophrenia. Annual review of clinical psychology, 2014. 10: p. 425-448. 15. Druss, B.G. and E.R. Walker, Mental disorders and medical comorbidity. The Synthesis project. Research synthesis report, 2011(21): p. 1-26. 16. Walker, E.R., R.E. McGee, and B.G. Druss, Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA psychiatry, 2015. 72(4): p. 334-341. 17. Saha, S., D. Chant, and J. McGrath, A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Archives of general psychiatry, 2007. 64(10): p. 1123-1131. 18. Brown, S., Excess mortality of schizophrenia. A meta-analysis. Br J Psychiatry, 1997. 171: p. 502-8. 19. Osby, U., et al., Time trends in schizophrenia mortality in Stockholm county, Sweden: cohort study. BMJ (Clinical research ed.), 2000. 321(7259): p. 483-484. 20. Murray, C.J. and A. Lopez, The Global burden of disease : a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. 1996, Cambridge: Harvard University Press. 21. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018. 392(10159): p. 1859-1922. 22. Murray, C.J. and A.D. Lopez, Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet, 1997. 349(9064): p. 1498-504. 23. Organization, W.H., Mental health and development: targeting people with mental health conditions as a vulnerable group, in Mental health and development: targeting people with mental health conditions as a vulnerable group. 2010. p. 74-74. 24. Bloom, D., et al., The global economic burden of noncommunicable diseases. 2011, Geneva: World Economic Forum. 25. World Health, O., Investing in mental health. 2003, Geneva, Switzerland: Department of Mental Health and Substance Dependence, Noncommunicable Diseases and Mental Health, World Health Organization. 26. Grover, S., et al., Cost of care of schizophrenia: a study of Indian out-patient attenders. Acta Psychiatr Scand, 2005. 112(1): p. 54- 63. 68 27. Somaiya, M., et al., Comparative study of cost of care of outpatients with bipolar disorder and schizophrenia. Asian J Psychiatr, 2014. 12: p. 125-33. 28. Alonso, J., et al., Days out of role due to common physical and mental conditions: results from the WHO World Mental Health surveys. Mol Psychiatry, 2011. 16(12): p. 1234-46. 29. Galatzer-Levy, I.R. and R.M. Galatzer-Levy, The revolution in psychiatric diagnosis: problems at the foundations. Perspect Biol Med, 2007. 50(2): p. 161-80. 30. van Os, J. and S. Kapur, Schizophrenia. Lancet, 2009. 374(9690): p. 635-45. 31. Organization, W.H., ICD-10: The ICD-10 Classification of Mental and Behavioural Disorders: diagnostic criteria for research, in ICD10: the ICD-10 classification of mental and behavioural disorders: diagnostic criteria for research. 1993. 32. Association, A.P., Diagnostic and statistical manual of mental disorders: DSM-5™, 5th ed. Diagnostic and statistical manual of mental disorders: DSM-5™, 5th ed. 2013, Arlington, VA, US: American Psychiatric Publishing, Inc. xliv, 947-xliv, 947. 33. Tasman, A., J. Kay, and R. Ursano, The Psychiatric Interview: Evaluation and Diagnosis. 2013. 34. Cantor, N. and N. Genero, Psychiatric diagnosis and natural categorization: A close analogy, in Contemporary directions in psychopathology: Toward the DSM-IV. 1986, The Guilford Press: New York, NY, US. p. 233-256. 35. Kim, N.S. and W.K. Ahn, Clinical psychologists' theory-based representations of mental disorders predict their diagnostic reasoning and memory. J Exp Psychol Gen, 2002. 131(4): p. 451-76. 36. Schneider, K., Clinical psychopathology.(trans. by MW Hamilton). 1959. 37. Goodwin, F.K. and K.R. Jamison, Manic-depressive illness. Manic-depressive illness. 1990, New York, NY, US: Oxford University Press. xxi, 938-xxi, 938. 38. Dunayevich, E. and P.E. Keck, Jr., Prevalence and description of psychotic features in bipolar mania. Curr Psychiatry Rep, 2000. 2(4): p. 286-90. 39. Gonzalez-Pinto, A., et al., First episode in bipolar disorder: misdiagnosis and psychotic symptoms. J Affect Disord, 1998. 50(1): p. 41-4. 40. Canuso, C.M., et al., Psychotic symptoms in patients with bipolar mania. J Affect Disord, 2008. 111(2-3): p. 164-9. 41. Jääskeläinen, E., et al., Epidemiology of psychotic depression - systematic review and meta-analysis. Psychol Med, 2018. 48(6): p. 905-918. 42. Toh, W.L., N. Thomas, and S.L. Rossell, Auditory verbal hallucinations in bipolar disorder (BD) and major depressive disorder (MDD): A systematic review. J Affect Disord, 2015. 184: p. 18-28. 43. Miller, P.R., et al., Inpatient diagnostic assessments: 1. Accuracy of structured vs. unstructured interviews. Psychiatry Res, 2001. 105(3): p. 255-64. 44. Phillips, M.L. and D.J. Kupfer, Bipolar disorder diagnosis: challenges and future directions. Lancet, 2013. 381(9878): p. 1663-71. 45. Kaltenboeck, A., D. Winkler, and S. Kasper, Bipolar and related disorders in DSM-5 and ICD-10. CNS Spectr, 2016. 21(4): p. 318-23. 46. Biedermann, F. and W.W. Fleischhacker, Psychotic disorders in DSM-5 and ICD-11. CNS Spectr, 2016. 21(4): p. 349-54. 47. Santelmann, H., et al., Interrater reliability of schizoaffective disorder compared with schizophrenia, bipolar disorder, and unipolar depression - A systematic review and meta-analysis. Schizophr Res, 2016. 176(2-3): p. 357-363. 48. Santelmann, H., et al., Test-retest reliability of schizoaffective disorder compared with schizophrenia, bipolar disorder, and unipolar depression--a systematic review and meta-analysis. Bipolar Disord, 2015. 17(7): p. 753-68. 49. Bannister, D., The logical requirements o f research into schizophrenia. Br J Psychiatry, 1968. 114(507): p. 181-8. 50. Olbert, C.M., G.J. Gala, and L.A. Tupler, Quantifying heterogeneity attributable to polythetic diagnostic criteria: theoretical framework and empirical application. J Abnorm Psychol, 2014. 123(2): p. 452-62. 51. Meyer, F. and T.D. Meyer, The misdiagnosis of bipolar disorder as a psychotic disorder: some of its causes and their influence on therapy. J Affect Disord, 2009. 112(1-3): p. 174-83. 52. Kessler, R.C., et al., The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCSR). JAMA, 2003. 289(23): p. 3095-3105. 53. Newson, J.J., D. Hunter, and T.C. Thiagarajan, The Heterogeneity of Mental Health Assessment. Frontiers in psychiatry, 2020. 11: p. 76-76. 54. Akiskal, H.S., et al., Re-evaluating the prevalence of and diagnostic composition within the broad clinical spectrum of bipolar disorders. Journal of affective disorders, 2000. 59 Suppl 1: p. S5-S30. 55. Hirschfeld, R.M., Bipolar spectrum disorder: improving its recognition and diagnosis. The Journal of clinical psychiatry, 2001. 62 Suppl 14: p. 5-9. 56. Watanabe, K., et al., Perceptions and impact of bipolar disorder in Japan: results of an Internet survey. Neuropsychiatr Dis Treat, 2016. 12: p. 2981-2987. 57. Judd, L.L., et al., Long-term symptomatic status of bipolar I vs. bipolar II disorders. Int J Neuropsychopharmacol, 2003. 6(2): p. 127- 37. 58. Hirschfeld, R.M., L. Lewis, and L.A. Vornik, Perceptions and impact of bipolar disorder: how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. J Clin Psychiatry, 2003. 64(2): p. 161-74. 59. Lish, J.D., et al., The National Depressive and Manic-depressive Association (DMDA) survey of bipolar members. J Affect Disord, 1994. 31(4): p. 281-94. 60. Bruchmuller, K. and T.D. Meyer, Diagnostically irrelevant information can affect the likelihood of a diagnosis of bipolar disorder. J Affect Disord, 2009. 116(1-2): p. 148-51. 61. Baldessarini, R.J., et al., Effects of treatment latency on response to maintenance treatment in manic-depressive disorders. Bipolar Disord, 2007. 9(4): p. 386-93. 62. Judd, L.L., et al., The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch Gen Psychiatry, 2002. 59(6): p. 530-7. 63. Hirschfeld, R.M., Differential diagnosis of bipolar disorder and major depressive disorder. J Affect Disord, 2014. 169 Suppl 1: p. S12-6. 64. Fountoulakis, K.N., et al., Mood Symptoms in Stabilized Patients with Schizophrenia: A Bipolar Type with Predominant Psychotic Features? Psychiatr Danub, 2017. 29(2): p. 148-154. 65. Altamura, A.C., et al., Misdiagnosis, duration of untreated illness (DUI) and outcome in bipolar patients with psychotic symptoms: A naturalistic study. Journal of affective disorders, 2015. 182: p. 70-75. 69 66. Kennedy, S.H., et al., Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Can J Psychiatry, 2016. 61(9): p. 540-60. 67. Yatham, L.N., et al., Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: consensus and controversies. Bipolar Disord, 2005. 7 Suppl 3: p. 5-69. 68. Remington, G., et al., Guidelines for the Pharmacotherapy of Schizophrenia in Adults. Can J Psychiatry, 2017. 62(9): p. 604-616. 69. Awad, A.G., et al., Quality of life among bipolar disorder patients misdiagnosed with major depressive disorder. Prim Care Companion J Clin Psychiatry, 2007. 9(3): p. 195-202. 70. Altshuler, L.L., et al., Antidepressant-induced mania and cycle acceleration: a controversy revisited. Am J Psychiatry, 1995. 152(8): p. 1130-8. 71. Boerlin, H.L., et al., Bipolar depression and antidepressant-induced mania: a naturalistic study. J Clin Psychiatry, 1998. 59(7): p. 374-9. 72. Peet, M., Induction of mania with selective serotonin re-uptake inhibitors and tricyclic antidepressants. Br J Psychiatry, 1994. 164(4): p. 549-50. 73. Shi, L., P. Thiebaud, and J.S. McCombs, The impact of unrecognized bipolar disorders for patients treated for depression with antidepressants in the fee-for-services California Medicaid (Medi-Cal) program. J Affect Disord, 2004. 82(3): p. 373-83. 74. Angst, F., et al., Mortality of patients with mood disorders: follow-up over 34-38 years. J Affect Disord, 2002. 68(2-3): p. 167-81. 75. Tondo, L., B. Lepri, and R.J. Baldessarini, Suicidal risks among 2826 Sardinian major affective disorder patients. Acta Psychiatr Scand, 2007. 116(6): p. 419-28. 76. McCombs, J.S., et al., The impact of unrecognized bipolar disorders among patients treated for depression with antidepressants in the fee-for-services California Medicaid (Medi-Cal) program: a 6-year retrospective analysis. Journal of affective disorders, 2007. 97(1-3): p. 171-179. 77. Keck, P.E., Jr., R.C. Kessler, and R. Ross, Clinical and economic effects of unrecognized or inadequately treated bipolar disorder. Journal of psychiatric practice, 2008. 14 Suppl 2: p. 31-38. 78. Lally, J. and J.H. MacCabe, Antipsychotic medication in schizophrenia: a review. British medical bulletin, 2015. 114(1): p. 169-179. 79. Al-Harbi, K.S., Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient preference and adherence, 2012. 6: p. 369-388. 80. Sharma, V., M. Khan, and A. Smith, A closer look at treatment resistant depression: is it due to a bipolar diathesis? Journal of affective disorders, 2005. 84(2-3): p. 251-257. 81. Correa, R., et al., Is unrecognized bipolar disorder a frequent contributor to apparent treatment resistant depression? Journal of affective disorders, 2010. 127(1-3): p. 10-18. 82. Mitelman, S.A., Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry research, 2019. 277: p. 23-38. 83. Aydin, O., P. Unal Aydin, and A. Arslan, Development of Neuroimaging-Based Biomarkers in Psychiatry. Adv Exp Med Biol, 2019. 1192: p. 159-195. 84. Goodkind, M., et al., Identification of a Common Neurobiological Substrate for Mental Illness. JAMA Psychiatry, 2015. 72(4): p. 305-315. 85. White, T., et al., Comparative neuropsychiatry: White matter abnormalities in children and adolescents with schizophrenia, bipolar affective disorder, and obsessive-compulsive disorder. European Psychiatry, 2015. 30(2): p. 205-213. 86. Chang, M., et al., Neurobiological Commonalities and Distinctions Among Three Major Psychiatric Diagnostic Categories: A Structural MRI Study. Schizophrenia Bulletin, 2017. 44(1): p. 65-74. 87. Smoller, J.W. and C.T. Finn, Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet, 2003. 123c(1): p. 48-58. 88. Barnett, J.H. and J.W. Smoller, The genetics of bipolar disorder. Neuroscience, 2009. 164(1): p. 331-43. 89. Gejman, P.V., A.R. Sanders, and J. Duan, The role of genetics in the etiology of schizophrenia. Psychiatr Clin North Am, 2010. 33(1): p. 35-66. 90. Cardno, A.G. and Gottesman, II, Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet, 2000. 97(1): p. 12-7. 91. Cardno, A.G., et al., Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry, 1999. 56(2): p. 162-8. 92. Prata, D.P., et al., Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res, 2019. 114: p. 178-207. 93. Davalieva, K., I. Maleva Kostovska, and A.J. Dwork, Proteomics Research in Schizophrenia. Front Cell Neurosci, 2016. 10: p. 18. 94. Graves, P.R. and T.A. Haystead, Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev, 2002. 66(1): p. 39-63; table of contents. 95. Bot, M., et al., Serum proteomic profiling of major depressive disorder. Transl Psychiatry, 2015. 5: p. e599. 96. van Gastel, J., et al., Enhanced Molecular Appreciation of Psychiatric Disorders Through High-Dimensionality Data Acquisition and Analytics. Methods Mol Biol, 2019. 2011: p. 671-723. 97. Saia-Cereda, V.M., et al., Psychiatric disorders biochemical pathways unraveled by human brain proteomics. European archives of psychiatry and clinical neuroscience, 2017. 267(1): p. 3-17. 98. Comes, A.L., et al., Proteomics for blood biomarker exploration of severe mental illness: pitfalls of the past and potential for the future. Translational Psychiatry, 2018. 8(1): p. 160. 99. Sokolowska, I., et al., The potential of biomarkers in psychiatry: focus on proteomics. J Neural Transm (Vienna), 2015. 122 Suppl 1: p. S9-18. 100. Rollins, B., et al., Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet, 2010. 153b(4): p. 919-36. 101. Guest, P.C., Proteomic Studies of Psychiatric Disorders. Methods Mol Biol, 2018. 1735: p. 59-89. 102. Giusti, L., et al., Proteomics insight into psychiatric disorders: an update on biological fluid biomarkers. Expert Rev Proteomics, 2016. 13(10): p. 941-950. 103. Wang, F., et al., Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis, 2020. 221(11): p. 1762-1769. 104. Tappuni, A.R., Immune reconstitution inflammatory syndrome. Adv Dent Res, 2011. 23(1): p. 90-6. 70 105. Nowicka, D., et al., NK and NKT-Like Cells in Patients with Recurrent Furunculosis. Arch Immunol Ther Exp (Warsz), 2018. 66(4): p. 315-319. 106. Chakrabarty, T. and L.N. Yatham, Objective and biological markers in bipolar spectrum presentations. Expert Rev Neurother, 2019. 19(3): p. 195-209. 107. Schwarz, E., et al., Identification of a biological signature for schizophrenia in serum. Mol Psychiatry, 2012. 17(5): p. 494-502. 108. Chan, M.K., et al., Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Translational Psychiatry, 2015. 5(7): p. e601-e601. 109. Papakostas, G.I., et al., Assessment of a multi-assay, serum-based biological diagnostic test for major depressive disorder: a pilot and replication study. Mol Psychiatry, 2013. 18(3): p. 332-9. 110. Bilello, J.A., et al., MDDScore: confirmation of a blood test to aid in the diagnosis of major depressive disorder. The Journal of clinical psychiatry, 2015. 76(2): p. e199-e206. 111. Stelzhammer, V., et al., Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients. Int J Neuropsychopharmacol, 2014. 17(10): p. 1599-608. 112. Haenisch, F., et al., Towards a blood-based diagnostic panel for bipolar disorder. Brain Behav Immun, 2016. 52: p. 49-57. 113. Frye, M.A., et al., Feasibility of investigating differential proteomic expression in depression: implications for biomarker development in mood disorders. Translational psychiatry, 2015. 5(12): p. e689-e689. 114. Domenici, E., et al., Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One, 2010. 5(2): p. e9166. 115. Chen, J., et al., Comparative proteomic analysis of plasma from bipolar depression and depressive disorder: identification of proteins associated with immune regulatory. Protein & cell, 2015. 6(12): p. 908-911. 116. Ren, J., et al., Identification of plasma biomarkers for distinguishing bipolar depression from major depressive disorder by iTRAQcoupled LC-MS/MS and bioinformatics analysis. Psychoneuroendocrinology, 2017. 86: p. 17-24. 117. Rhee, S.J., et al., Comparison of serum protein profiles between major depressive disorder and bipolar disorder. BMC Psychiatry, 2020. 20(1): p. 145. 118. Teixeira, A.L., et al., Update on bipolar disorder biomarker candidates. Expert review of molecular diagnostics, 2016. 16(11): p. 1209-1220. 119. Le-Niculescu, H., et al., Identifying blood biomarkers for mood disorders using convergent functional genomics. Molecular Psychiatry, 2009. 14(2): p. 156-174. 120. Song, Y.R., et al., Specific alterations in plasma proteins during depressed, manic, and euthymic states of bipolar disorder. Braz J Med Biol Res, 2015. 48(11): p. 973-82. 121. Končarević, S., et al., In-depth profiling of the peripheral blood mononuclear cells proteome for clinical blood proteomics. International journal of proteomics, 2014. 2014: p. 129259-129259. 122. Haudek-Prinz, V.J., et al., Proteome signatures of inflammatory activated primary human peripheral blood mononuclear cells. Journal of proteomics, 2012. 76 Spec No.(5): p. 150-162. 123. Corkum, C.P., et al., Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient. BMC immunology, 2015. 16: p. 48-48. 124. Grievink, H.W., et al., Comparison of Three Isolation Techniques for Human Peripheral Blood Mononuclear Cells: Cell Recovery and Viability, Population Composition, and Cell Functionality. Biopreserv Biobank, 2016. 14(5): p. 410-415. 125. Ruitenberg, J.J., et al., VACUTAINER CPT and Ficoll density gradient separation perform equivalently in maintaining the quality and function of PBMC from HIV seropositive blood samples. BMC immunology, 2006. 7: p. 11-11. 126. Nilsson, C., et al., Optimal blood mononuclear cell isolation procedures for gamma interferon enzyme-linked immunospot testing of healthy Swedish and Tanzanian subjects. Clinical and vaccine immunology : CVI, 2008. 15(4): p. 585-589. 127. Gladkevich, A., H.F. Kauffman, and J. Korf, Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry, 2004. 28(3): p. 559-76. 128. Fan, H.M., et al., Altered microRNA Expression in Peripheral Blood Mononuclear Cells from Young Patients with Schizophrenia. J Mol Neurosci, 2015. 56(3): p. 562-71. 129. Fisar, Z. and J. Raboch, Depression, antidepressants, and peripheral blood components. Neuro Endocrinol Lett, 2008. 29(1): p. 17- 28. 130. Bhandage, A.K., et al., GABA Regulates Release of Inflammatory Cytokines From Peripheral Blood Mononuclear Cells and CD4(+) T Cells and Is Immunosuppressive in Type 1 Diabetes. EBioMedicine, 2018. 30: p. 283-294. 131. Marques-Deak, A., G. Cizza, and E. Sternberg, Brain-immune interactions and disease susceptibility. Molecular Psychiatry, 2005. 10(3): p. 239-250. 132. DeRijk, R., et al., Exercise and Circadian Rhythm-Induced Variations in Plasma Cortisol Differentially Regulate Interleukin-1β (IL1β), IL-6, and Tumor Necrosis Factor-α (TNFα) Production in Humans: High Sensitivity of TNFα and Resistance of IL-6. The Journal of Clinical Endocrinology & Metabolism, 1997. 82(7): p. 2182-2191. 133. Hornung, V., et al., Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol, 2002. 168(9): p. 4531-7. 134. Ringheim, G.E., K.L. Burgher, and J.A. Heroux, Interleukin-6 mRNA expression by cortical neurons in culture: evidence for neuronal sources of interleukin-6 production in the brain. J Neuroimmunol, 1995. 63(2): p. 113-23. 135. Sébire, G., et al., In vitro production of IL-6, IL-1 beta, and tumor necrosis factor-alpha by human embryonic microglial and neural cells. J Immunol, 1993. 150(4): p. 1517-23. 136. Guyon, A., et al., How cytokines can influence the brain: a role for chemokines? J Neuroimmunol, 2008. 198(1-2): p. 46-55. 137. Turnbull, A.V. and C.L. Rivier, Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev, 1999. 79(1): p. 1-71. 138. Krueger, J.M., et al., Sleep. A physiologic role for IL-1 beta and TNF-alpha. Ann N Y Acad Sci, 1998. 856: p. 148-59. 139. Giulian, D., et al., Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci, 1988. 8(2): p. 709-14. 140. Boulanger, L.M., Immune proteins in brain development and synaptic plasticity. Neuron, 2009. 64(1): p. 93-109. 141. Quan, N. and W.A. Banks, Brain-immune communication pathways. Brain Behav Immun, 2007. 21(6): p. 727-35. 142. Kokai, M., et al., Immunophenotypic studies on atypical lymphocytes in psychiatric patients. Psychiatry Res, 1998. 77(2): p. 105- 12. 71 143. Cosentino, M., et al., Assessment of lymphocyte subsets and neutrophil leukocyte function in chronic psychiatric patients on longterm drug therapy. Prog Neuropsychopharmacol Biol Psychiatry, 1996. 20(7): p. 1117-29. 144. Xu, Y.Y., et al., MicroRNA-Based Biomarkers in the Diagnosis and Monitoring of Therapeutic Response in Patients with Depression. Neuropsychiatr Dis Treat, 2019. 15: p. 3583-3597. 145. Zheng, P., et al., Metabolite signature for diagnosing major depressive disorder in peripheral blood mononuclear cells. J Affect Disord, 2016. 195: p. 75-81. 146. Herberth, M., et al., Peripheral profiling analysis for bipolar disorder reveals markers associated with reduced cell survival. Proteomics, 2011. 11(1): p. 94-105. 147. Coppens, V., et al., Profiling of the Peripheral Blood Mononuclear Cell Proteome in Schizophrenia and Mood Disorders for the Discovery of Discriminatory Biomarkers: A Proof-of-Concept Study. Neuropsychobiology, 2020: p. 1-11. 148. Torres, K.C., et al., The leukocytes expressing DARPP-32 are reduced in patients with schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry, 2009. 33(2): p. 214-9. 149. Torres, K.C., et al., Expression of neuronal calcium sensor-1 (NCS-1) is decreased in leukocytes of schizophrenia and bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry, 2009. 33(2): p. 229-34. 150. Ferretjans, R., et al., Cognitive performance and peripheral endocannabinoid system receptor expression in schizophrenia. Schizophr Res, 2014. 156(2-3): p. 254-60. 151. Perl, O., et al., The alpha7 nicotinic acetylcholine receptor in schizophrenia: decreased mRNA levels in peripheral blood lymphocytes. Faseb j, 2003. 17(13): p. 1948-50. 152. Gardiner, E.J., et al., Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. J Psychiatr Res, 2013. 47(4): p. 425-37. 153. Gurvich, A., et al., A role for prostaglandins in rapid cycling suggested by episode-specific gene expression shifts in peripheral blood mononuclear cells: a preliminary report. Bipolar Disord, 2014. 16(8): p. 881-8. 154. Roy, B., R.C. Shelton, and Y. Dwivedi, DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation. J Psychiatr Res, 2017. 89: p. 115-124. 155. Ignjatovic, V., et al., Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J Proteome Res, 2019. 156. Luque-Garcia, J.L. and T.A. Neubert, Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J Chromatogr A, 2007. 1153(1-2): p. 259-76. 157. Anderson, N.L. and N.G. Anderson, The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics, 2002. 1(11): p. 845-67. 158. Omenn, G.S., Exploring the human plasma proteome. Proteomics, 2005. 5(13): p. 3223, 3225. 159. Ramstrom, M., et al., Depletion of high-abundant proteins in body fluids prior to liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res, 2005. 4(2): p. 410-6. 160. Echan, L.A., et al., Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics, 2005. 5(13): p. 3292-303. 161. Geyer, P.E., et al., Revisiting biomarker discovery by plasma proteomics. Molecular systems biology, 2017. 13(9): p. 942-942. 162. Huang, L., et al., Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics, 2005. 5(13): p. 3314-28. 163. Giansanti, P., et al., Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc, 2016. 11(5): p. 993-1006. 164. Hsieh, E.J., et al., Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples. J Am Soc Mass Spectrom, 2013. 24(1): p. 148-53. 165. Zhang, Y., et al., Evaluating Chromatographic Approaches for the Quantitative Analysis of a Human Proteome on Orbitrap-Based Mass Spectrometry Systems. J Proteome Res, 2019. 18(4): p. 1857-1869. 166. Cox, J. and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, 2008. 26(12): p. 1367-72. 167. Weisser, H., et al., An automated pipeline for high-throughput label-free quantitative proteomics. J Proteome Res, 2013. 12(4): p. 1628-44. 168. Cox, J., et al., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics, 2014. 13(9): p. 2513-26. 169. Ahad, N.A., et al., Sensitivity of normality tests to non-normal data. Sains Malaysiana, 2011. 40(6): p. 637-641. 170. Nahm, F.S., Nonparametric statistical tests for the continuous data: the basic concept and the practical use. Korean journal of anesthesiology, 2016. 69(1): p. 8-14. 171. Food and D. Administration, Guidance for industry: bioanalytical method validation. http://www.fda.gov/cder/Guidance/4252fnl. pdf,2001. 172. Maudsley, S., et al., Bioinformatic approaches to metabolic pathways analysis. Methods in molecular biology (Clifton, N.J.), 2011. 756: p. 99-130. 173. Cai, H., et al., VennPlex--a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints. PLoS One, 2013. 8(1): p. e53388. 174. Wu, D. and G.K. Smyth, Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res, 2012. 40(17): p. e133. 175. Gatti, D.M., et al., Heading down the wrong pathway: on the influence of correlation within gene sets. BMC Genomics, 2010. 11: p. 574. 176. Breslin, T., P. Edén, and M. Krogh, Comparing functional annotation analyses with Catmap. BMC Bioinformatics, 2004. 5: p. 193. 177. Dørum, G., et al., Rotation testing in gene set enrichment analysis for small direct comparison experiments. Stat Appl Genet Mol Biol, 2009. 8: p. Article34. 178. Nguyen, T.-M., et al., Identifying significantly impacted pathways: a comprehensive review and assessment. Genome Biology, 2019. 20(1): p. 203. 179. Geistlinger, L., et al., Toward a gold standard for benchmarking gene set enrichment analysis. Briefings in Bioinformatics, 2020. 180. Maleki, F., et al., Size matters: how sample size affects the reproducibility and specificity of gene set analysis. Hum Genomics, 2019. 13(Suppl 1): p. 42. 72 181. Maleki, F., et al., Measuring consistency among gene set analysis methods: A systematic study. J Bioinform Comput Biol, 2019. 17(5): p. 1940010. 182. Ritchie, M.E., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 2015. 43(7): p. e47-e47. 183. Liberzon, A., et al., Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011. 27(12): p. 1739-1740. 184. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): p. 2498-504. 185. Merico, D., et al., Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One, 2010. 5(11): p. e13984. 186. Kucera, M., et al., AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations. F1000Res, 2016. 5: p. 1717. 187. Oesper, L., et al., WordCloud: a Cytoscape plugin to create a visual semantic summary of networks. Source Code Biol Med, 2011. 6: p. 7. 188. Szklarczyk, D., et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019. 47(D1): p. D607-d613. 189. Doncheva, N.T., et al., Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res, 2019. 18(2): p. 623-632. 190. Assenov, Y., et al., Computing topological parameters of biological networks. Bioinformatics, 2008. 24(2): p. 282-4. 191. Chin, C.H., et al., cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol, 2014. 8 Suppl 4(Suppl 4): p. S11. 192. Barabási, A.-L., N. Gulbahce, and J. Loscalzo, Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 2011. 12(1): p. 56-68. 193. Yu, H., et al., The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol, 2007. 3(4): p. e59. 194. Kohler, K. and A. Ercole, Can network science reveal structure in a complex healthcare system? A network analysis using data from emergency surgical services. BMJ Open, 2020. 10(2): p. e034265. 195. Karbalaei, R., et al., Protein-protein interaction analysis of Alzheimer`s disease and NAFLD based on systems biology methods unhide common ancestor pathways. Gastroenterol Hepatol Bed Bench, 2018. 11(1): p. 27-33. 196. Valizadeh, R., et al., Evaluation of involved proteins in colon adenocarcinoma: an interactome analysis. Gastroenterol Hepatol Bed Bench, 2017. 10(Suppl1): p. S129-s138. 197. Rezaei-Tavirani, M., et al., Protein-Protein Interaction Network Analysis for a Biomarker Panel Related to Human Esophageal Adenocarcinoma. Asian Pac J Cancer Prev, 2017. 18(12): p. 3357-3363. 198. Nepusz, T., H. Yu, and A. Paccanaro, Detecting overlapping protein complexes in protein-protein interaction networks. Nature methods, 2012. 9(5): p. 471-472. 199. Zhao, L., et al., Comparative evaluation of label-free quantification strategies. Journal of Proteomics, 2020. 215: p. 103669. 200. Bubis, J.A., et al., Comparative evaluation of label-free quantification methods for shotgun proteomics. Rapid Commun Mass Spectrom, 2017. 31(7): p. 606-612. 201. Ramus, C., et al., Benchmarking quantitative label-free LC–MS data processing workflows using a complex spiked proteomic standard dataset. Journal of Proteomics, 2016. 132: p. 51-62. 202. Ramus, C., et al., Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods. Data in Brief, 2016. 6: p. 286-294. 203. Sticker, A., et al., Robust summarization and inference in proteome-wide label-free quantification. Mol Cell Proteomics, 2020. 204. Olsen, J.V., et al., A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics, 2009. 8(12): p. 2759-69. 205. Xu, P., D.M. Duong, and J. Peng, Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res, 2009. 8(8): p. 3944-50. 206. Kocher, T., R. Swart, and K. Mechtler, Ultra-high-pressure RPLC hyphenated to an LTQ-Orbitrap Velos reveals a linear relation between peak capacity and number of identified peptides. Anal Chem, 2011. 83(7): p. 2699-704. 207. Gilar, M., et al., Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography. J Chromatogr A, 2004. 1061(2): p. 183-92. 208. Hassis, M.E., et al., Evaluating the effects of preanalytical variables on the stability of the human plasma proteome. Anal Biochem, 2015. 478: p. 14-22. 209. Shen, Q., et al., Strong impact on plasma protein profiles by precentrifugation delay but not by repeated freeze-thaw cycles, as analyzed using multiplex proximity extension assays. Clin Chem Lab Med, 2018. 56(4): p. 582-594. 210. Addona, T.A., et al., A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol, 2011. 29(7): p. 635-43. 211. Cao, Z., et al., Systematic comparison of fractionation methods for in-depth analysis of plasma proteomes. J Proteome Res, 2012. 11(6): p. 3090-100. 212. Paczesny, S., et al., Elafin is a biomarker of graft-versus-host disease of the skin. Sci Transl Med, 2010. 2(13): p. 13ra2. 213. Sahebekhtiari, N., et al., Plasma Proteomics Analysis Reveals Dysregulation of Complement Proteins and Inflammation in Acquired Obesity-A Study on Rare BMI-Discordant Monozygotic Twin Pairs. Proteomics Clin Appl, 2019. 13(4): p. e1800173. 214. Hakimi, A., et al., Assessment of reproducibility in depletion and enrichment workflows for plasma proteomics using label-free quantitative data-independent LC-MS. Proteomics, 2014. 14(1): p. 4-13. 215. Maccarrone, G., et al., Proteome profiling of peripheral mononuclear cells from human blood. Proteomics, 2013. 13(5): p. 893-7. 216. Wang, L., et al., Comparative proteome analysis of peripheral blood mononuclear cells in systemic lupus erythematosus with iTRAQ quantitative proteomics. Rheumatol Int, 2012. 32(3): p. 585-93. 217. Zhang, L., et al., Network-based proteomic analysis for postmenopausal osteoporosis in Caucasian females. Proteomics, 2016. 16(1): p. 12-28. 218. Maes, E., et al., Interindividual variation in the proteome of human peripheral blood mononuclear cells. PLoS One, 2013. 8(4): p. e61933. 73 219. Corzett, T.H., et al., Statistical analysis of variation in the human plasma proteome. Journal of biomedicine & biotechnology, 2010. 2010: p. 258494-258494. 220. Sperner-Unterweger, B., Immunological Aetiology of Major Psychiatric Disorders. Drugs, 2005. 65(11): p. 1493-1520. 221. Bauer, M.E. and A.L. Teixeira, Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci, 2019. 1437(1): p. 57-67. 222. Taskinen, M.R. and J. Borén, Why Is Apolipoprotein CIII Emerging as a Novel Therapeutic Target to Reduce the Burden of Cardiovascular Disease? Curr Atheroscler Rep, 2016. 18(10): p. 59. 223. Ooi, Esther M.M., et al., Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clinical Science, 2008. 114(10): p. 611-624. 224. Sacks, F.M., et al., VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation, 2000. 102(16): p. 1886-92. 225. Mendivil, C.O., et al., Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation, 2011. 124(19): p. 2065-72. 226. Boiko, A.S., et al., Apolipoprotein serum levels related to metabolic syndrome in patients with schizophrenia. Heliyon, 2019. 5(7): p. e02033. 227. Knöchel, C., et al., Altered apolipoprotein C expression in association with cognition impairments and hippocampus volume in schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci, 2017. 267(3): p. 199-212. 228. Andersen, C.B.F., et al., Haptoglobin. Antioxid Redox Signal, 2017. 26(14): p. 814-831. 229. Maes, M., et al., Haptoglobin polymorphism and schizophrenia: genetic variation on chromosome 16. Psychiatry Res, 2001. 104(1): p. 1-9. 230. Cooper, J.D., et al., Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Transl Psychiatry, 2017. 7(12): p. 1290. 231. Yee, J.Y., et al., Peripheral blood gene expression of acute phase proteins in people with first episode psychosis. Brain Behav Immun, 2017. 65: p. 337-341. 232. Maes, M., et al., Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res, 1997. 66(1): p. 1-11. 233. Wan, C., et al., Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene. Amino Acids, 2007. 32(1): p. 101-8. 234. Yang, Y., et al., Altered levels of acute phase proteins in the plasma of patients with schizophrenia. Anal Chem, 2006. 78(11): p. 3571-6. 235. Maes, M., et al., Haptoglobin phenotypes and gene frequencies in unipolar major depression. Am J Psychiatry, 1994. 151(1): p. 112-6. 236. Giusti, L., et al., Search for peripheral biomarkers in patients affected by acutely psychotic bipolar disorder: a proteomic approach. Molecular BioSystems, 2014. 10(6): p. 1246-1254. 237. Zanetti, M., Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol, 2004. 75(1): p. 39-48. 238. Yang, J., et al., An iron delivery pathway mediated by a lipocalin. Mol Cell, 2002. 10(5): p. 1045-56. 239. Kozłowska, E., A. Wysokiński, and E. Brzezińska-Błaszczyk, Serum levels of peptide cathelicidin LL-37 in elderly patients with depression. Psychiatry Res, 2017. 255: p. 156-160. 240. Kozłowska, E., et al., Circulating cathelicidin LL-37 level is increased in euthymic patients with bipolar disorder. J Clin Neurosci, 2018. 48: p. 168-172. 241. Wei, L., et al., Elevation of plasma neutrophil gelatinase-associated lipocalin (NGAL) levels in schizophrenia patients. J Affect Disord, 2018. 226: p. 307-312. 242. Naudé, P.J.W., et al., Neutrophil gelatinase-associated lipocalin: A novel inflammatory marker associated with late-life depression. Journal of Psychosomatic Research, 2013. 75(5): p. 444-450. 243. Kozlowska, E., et al., Human cathelicidin LL-37 - Does it influence the homeostatic imbalance in mental disorders? J Biosci, 2018. 43(2): p. 321-327. 244. Sternlicht, M.D. and Z. Werb, How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001. 17: p. 463-516. 245. Rodríguez, D., C.J. Morrison, and C.M. Overall, Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta, 2010. 1803(1): p. 39-54. 246. McClellan, S.A., et al., Matrix Metalloproteinase-9 Amplifies the Immune Response to Pseudomonas aeruginosa Corneal Infection. Investigative Ophthalmology & Visual Science, 2006. 47(1): p. 256-264. 247. Lepeta, K. and L. Kaczmarek, Matrix Metalloproteinase-9 as a Novel Player in Synaptic Plasticity and Schizophrenia. Schizophrenia bulletin, 2015. 41(5): p. 1003-1009. 248. Rybakowski, J.K., et al., Matrix metalloproteinase-9 gene and bipolar mood disorder. Neuromolecular Med, 2009. 11(2): p. 128- 32. 249. Gao, J., et al., DNA Methylation and Gene Expression of Matrix Metalloproteinase 9 Gene in Deficit and Non-deficit Schizophrenia. Front Genet, 2018. 9: p. 646. 250. Kumarasinghe, N., et al., Gene expression profiling in treatment-naive schizophrenia patients identifies abnormalities in biological pathways involving AKT1 that are corrected by antipsychotic medication. Int J Neuropsychopharmacol, 2013. 16(7): p. 1483-503. 251. Rybakowski, J.K., et al., Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophrenia research, 2009. 109(1-3): p. 90-93. 252. Heizmann, C.W., G. Fritz, and B.W. Schäfer, S100 proteins: structure, functions and pathology. Front Biosci, 2002. 7: p. d1356-68. 253. White, S.H., W.C. Wimley, and M.E. Selsted, Structure, function, and membrane integration of defensins. Current opinion in structural biology, 1995. 5(4): p. 521-527. 254. Iavarone, F., et al., Characterization of salivary proteins of schizophrenic and bipolar disorder patients by top-down proteomics. J Proteomics, 2014. 103: p. 15-22. 255. Pacifico, R. and R.L. Davis, Transcriptome sequencing implicates dorsal striatum-specific gene network, immune response and energy metabolism pathways in bipolar disorder. Molecular Psychiatry, 2017. 22(3): p. 441-449. 256. Craddock, R.M., et al., Increased alpha-defensins as a blood marker for schizophrenia susceptibility. Mol Cell Proteomics, 2008. 7(7): p. 1204-13. 257. Lee, J., et al., Proteomic analysis of serum from patients with major depressive disorder to compare their depressive and remission statuses. Psychiatry investigation, 2015. 12(2): p. 249-259. 74 258. Huang, T.-L., et al., Rapid and simple analysis of disease-associated biomarkers of Taiwanese patients with schizophrenia using matrix-assisted laser desorption ionization mass spectrometry. Clinica Chimica Acta, 2017. 473: p. 75-81. 259. Stuart, M.J. and B.T. Baune, Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev, 2014. 42: p. 93-115. 260. Reale, M., et al., Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls. BMC Neurosci, 2011. 12: p. 13. 261. Grassi-Oliveira, R., et al., Peripheral chemokine levels in women with recurrent major depression with suicidal ideation. Revista Brasileira de Psiquiatria, 2012. 34(1): p. 71-75. 262. van Zuiden, M., et al., Cytokine production by leukocytes of military personnel with depressive symptoms after deployment to a combat-zone: a prospective, longitudinal study. PLoS One, 2011. 6(12): p. e29142. 263. Ferrúa, C.P., et al., MicroRNAs expressed in depression and their associated pathways: A systematic review and a bioinformatics analysis. Journal of Chemical Neuroanatomy, 2019. 100: p. 101650. 264. Timberlake, M.A. and Y. Dwivedi, Altered expression of endoplasmic reticulum stress associated genes in hippocampus of learned helpless rats: relevance to depression pathophysiology. Frontiers in pharmacology, 2016. 6: p. 319. 265. Zhang, G., et al., Weighted Gene Coexpression Network Analysis Identifies Specific Modules and Hub Genes Related to Major Depression. Neuropsychiatr Dis Treat, 2020. 16: p. 703-713. 266. Perez, J., et al., Protein kinase A and Rap1 levels in platelets of untreated patients with major depression. Mol Psychiatry, 2001. 6(1): p. 44-9. 267. González-Castro, T.B., et al., Identification of gene ontology and pathways implicated in suicide behavior: Systematic review and enrichment analysis of GWAS studies. Am J Med Genet B Neuropsychiatr Genet, 2019. 180(5): p. 320-329. 268. Wang, H., et al., Identification of diagnostic markers for major depressive disorder by cross-validation of data from whole blood samples. PeerJ, 2019. 7: p. e7171. 269. Kao, C.-F., et al., Enriched pathways for major depressive disorder identified from a genome-wide association study. International Journal of Neuropsychopharmacology, 2012. 15(10): p. 1401-1411. 270. Ji, H.-F., Q.-S. Zhuang, and L. Shen, Genetic overlap between type 2 diabetes and major depressive disorder identified by bioinformatics analysis. Oncotarget, 2016. 7(14): p. 17410-17414. 271. Wakabayashi, Y., et al., State-dependent changes in the expression levels of NCAM-140 and L1 in the peripheral blood cells of bipolar disorders, but not in the major depressive disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008. 32(5): p. 1199-1205. 272. Gnanapavan, S. and G. Giovannoni, Neural cell adhesion molecules in brain plasticity and disease. Multiple sclerosis and related disorders, 2013. 2(1): p. 13-20. 273. Sandi, C. and R. Bisaz, A model for the involvement of neural cell adhesion molecules in stress-related mood disorders. Neuroendocrinology, 2007. 85(3): p. 158-176. 274. Carlson, P.J., et al., Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx, 2006. 3(1): p. 22-41. 275. Goto, Y., C.R. Yang, and S. Otani, Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biological psychiatry, 2010. 67(3): p. 199-207. 276. Meyer-Lindenberg, A. and H. Tost, Neuroimaging and plasticity in schizophrenia. Restorative neurology and neuroscience, 2014. 32(1): p. 119-127. 277. Wang, Q., et al., The CMYA5 gene confers risk for both schizophrenia and major depressive disorder in the Han Chinese population. The World Journal of Biological Psychiatry, 2014. 15(7): p. 553-560. 278. Chen, X., et al., GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Mol Psychiatry, 2011. 16(11): p. 1117-29. 279. Li, M., et al., A common variant of the cardiomyopathy associated 5 gene (CMYA5) is associated with schizophrenia in Chinese population. Schizophr Res, 2011. 129(2-3): p. 217-9. 280. Correll, C.U., et al., Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World psychiatry : official journal of the World Psychiatric Association (WPA), 2017. 16(2): p. 163-180. 281. Wu, Q. and J.M. Kling, Depression and the Risk of Myocardial Infarction and Coronary Death: A Meta-Analysis of Prospective Cohort Studies. Medicine (Baltimore), 2016. 95(6): p. e2815. 282. Gan, Y., et al., Depression and the risk of coronary heart disease: a meta-analysis of prospective cohort studies. BMC psychiatry, 2014. 14: p. 371-371. 283. Dong, J.Y., et al., Depression and risk of stroke: a meta-analysis of prospective studies. Stroke, 2012. 43(1): p. 32-7. 284. Prieto, M.L., et al., Risk of myocardial infarction and stroke in bipolar disorder: a systematic review and exploratory meta-analysis. Acta psychiatrica Scandinavica, 2014. 130(5): p. 342-353. 285. Fan, Z., et al., Schizophrenia and the risk of cardiovascular diseases: a meta-analysis of thirteen cohort studies. J Psychiatr Res, 2013. 47(11): p. 1549-56. 286. Li, M., et al., Schizophrenia and risk of stroke: a meta-analysis of cohort studies. Int J Cardiol, 2014. 173(3): p. 588-90. 287. Yamagata, H., et al., Identification of commonly altered genes between in major depressive disorder and a mouse model of depression. Sci Rep, 2017. 7(1): p. 3044. 288. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci, 2015. 18(2): p. 199-209. 289. Saavedra, K., et al., Epigenetic Modifications of Major Depressive Disorder. Int J Mol Sci, 2016. 17(8). 290. Mill, J., et al., Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. American journal of human genetics, 2008. 82(3): p. 696-711. 291. Connor, C.M. and S. Akbarian, DNA methylation changes in schizophrenia and bipolar disorder. Epigenetics, 2008. 3(2): p. 55-8. 292. Chiu, C.-C., et al., Polyunsaturated fatty acid deficit in patients with bipolar mania. European Neuropsychopharmacology, 2003. 13(2): p. 99-103. 293. Ranjekar, P.K., et al., Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry research, 2003. 121(2): p. 109-122. 75 294. McNamara, R.K., et al., Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry research, 2008. 160(3): p. 285-299. 295. Wu, X., et al., The comparison of glycometabolism parameters and lipid profiles between drug-naïve, first-episode schizophrenia patients and healthy controls. Schizophrenia Research, 2013. 150(1): p. 157-162. 296. Sengupta, S., et al., Are metabolic indices different between drug-naïve first-episode psychosis patients and healthy controls? Schizophrenia Research, 2008. 102(1-3): p. 329-336. 297. Gautam, S. and P.S. Meena, Drug-emergent metabolic syndrome in patients with schizophrenia receiving atypical (secondgeneration) antipsychotics. Indian J Psychiatry, 2011. 53(2): p. 128-33. 298. de Jesus, J.R., et al., Simplifying the human serum proteome for discriminating patients with bipolar disorder of other psychiatry conditions. Clin Biochem, 2017. 50(18): p. 1118-1125. 299. Hodge, K., et al., Cleaning up the masses: exclusion lists to reduce contamination with HPLC-MS/MS. J Proteomics, 2013. 88: p. 92- 103. 300. Goh, K.I., et al., The human disease network. Proc Natl Acad Sci U S A, 2007. 104(21): p. 8685-90. 301. Hartwell, L.H., et al., From molecular to modular cell biology. Nature, 1999. 402(6761): p. C47-C52. 302. Rolland, T., et al., A proteome-scale map of the human interactome network. Cell, 2014. 159(5): p. 1212-1226. 303. Laske, C., et al., Identification of a blood-based biomarker panel for classification of Alzheimer's disease. International Journal of Neuropsychopharmacology, 2011. 14(9): p. 1147-1155. 304. Pinto, J.V., et al., Peripheral biomarker signatures of bipolar disorder and schizophrenia: A machine learning approach. Schizophr Res, 2017. 188: p. 182-184. 305. Jacobs, R., et al., Identification of novel host biomarkers in plasma as candidates for the immunodiagnosis of tuberculosis disease and monitoring of tuberculosis treatment response. Oncotarget 7, 57581–57592. 2016. 306. Lodes, M.J., et al., Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One, 2009. 4(7): p. e6229. 307. Best, M.G., et al., RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell, 2015. 28(5): p. 666-676. 308. Weatherall, M., et al., Distinct clinical phenotypes of airways disease defined by cluster analysis. European Respiratory Journal, 2009. 34(4): p. 812-818. 309. Ness, R.B., et al., A cluster analysis of bacterial vaginosis–associated microflora and pelvic inflammatory disease. American journal of epidemiology, 2005. 162(6): p. 585-590. 310. Erro, R., et al., The heterogeneity of early Parkinson’s disease: a cluster analysis on newly diagnosed untreated patients. PloS one, 2013. 8(8). 311. Newcomer, S.R., J.F. Steiner, and E.A. Bayliss, Identifying subgroups of complex patients with cluster analysis. The American journal of managed care, 2011. 17(8): p. e324-32.

Download scriptie (2.46 MB)
Universiteit of Hogeschool
Universiteit Antwerpen
Thesis jaar
2020
Promotor(en)
Prof dr. Violette Coppens, Prof. dr. Manuel Morrens