CRISPR-Cas is een term die voor velen al een belletje doet rinkelen. Dit komt doordat CRISPR-Cas
gebaseerde methoden niet meer weg te denken zijn uit moderne laboratoria. Het vindt
toepassingen in landbouw, biotechnologie, geneeskunde en farmaceutica.
Het CRISPR-Cas systeem is onderdeel van wat we “gerichte nucleasen” heten, enzymen die in DNA
geprogrammeerd kunnen ‘knippen’. Deze enzymen zijn voor onderzoekers en wetenschappers van
zeer groot belang en worden daarom ook vaak gebruikt. Het CRISPR-systeem blijft aanpassingen en
verbeteringen ondergaan, zo is er ondertussen een aanpassing gekomen op het Cas proteïne
waardoor deze niet meer knipt, maar wel nog gentranscriptie kan tegenhouden. Dit staat bekend als
‘gene silencing’ en de techniek wordt CRISPRi (CRISPR interference) genoemd. In een veld dat zo
sterk uitbreidt als de genetische manipulatie is het van belang om een duidelijk overzicht te houden
van de verschillende mogelijkheden.
Zebravissen zijn een modelorganisme die al jaren gebruikt worden in biomedisch onderzoek. Ze
werden voornamelijk ingezet in onderzoek naar ontwikkeling en groei. Ondertussen is aangetoond
dat de zebravissen een goed modelorganisme kunnen zijn voor immunologisch onderzoek omdat er
grote gelijkenissen zijn tussen het immuunsysteem van zebravissen en van de mens. Het gebruik van
zebravissen is in opmars door hun vele toepassingen en voordelen.
Veel biomedisch onderzoek maakt gebruik van genetische manipulatie en genetische screens om
genen te identificeren of uit te schakelen. De combinatie van CRISPR en zebravissen leidt dus tot een
zeer bruikbaar systeem om ziektemodellen op te maken. Het is aangetoond dat het CRISPR-systeem
toepasbaar is in zebravissen. Dit is dus een veelbelovend veld.
Deze theoretische bachelor proef onderzoekt ten eerste de gerichte nucleasen (ZFN, TALEN) met de
focus gericht op de CRISPR-systemen. De voor- en nadelen van de nucleasen alsook het ontstaan,
gebruik en de werkingsmechanismen. Vervolgens wordt het de zebravis (Danio rerio) als
modelorganisme onder de loep genomen. Er wordt besproken welke voordelen dit modelorganisme
heeft, maar ook welke tekortkomingen er zijn. Ten slotte wordt besproken hoe CRISPR en CRISPRi
gebruikt kunnen worden in de zebravis. Hierbij wordt de toediening besproken en wordt er ook
aandacht besteed aan de verschillende beschikbare methoden die het mogelijk maken om de
efficiëntie van de CRISPR-modificatie te controleren.
ADDIN Mendeley Bibliography
CSL_BIBLIOGRAPHY Ablain, J., Durand, E. M., Yang, S., Zhou, Y., & Zon, L. I. (2015). A CRISPR/Cas9 Vector System for Tissue-Specific Gene Disruption in Zebrafish. Developmental Cell, 32(6), 756–764. https://doi.org/10.1016/j.devcel.2015.01.032
Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04252-2
Agrawal, N., Dasaradhi, P., Mohammed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA Interference: Biology, Mechanism, and Applications. Microbiology and Molecular Biology Reviews, 67(4), 657–685. https://doi.org/10.1128/MMBR.67.4.657
Albadri, S., De Santis, F., Di Donato, V., & Del Bene, F. (2017). CRISPR/Cas9-Mediated Knockin and Knockout in Zebrafish. In Research and Perspectives in Neurosciences (Issue 9783319601915, pp. 41–49). Springer Verlag. https://doi.org/10.1007/978-3-319-60192-2_4
Allen, J. P., & Neely, M. N. (2010). Trolling for the ideal model host: zebrafish take the bait. Future Microbiology, 5(4), 563–569. https://doi.org/10.2217/fmb.10.24
Alvarado Bremer, J. R., Smith, B. L., Moulton, D. L., Lu, C. P., & Cornic, M. (2014). Shake and stew: A non-destructive PCR-ready DNA isolation method from a single preserved fish larva. Journal of Fish Biology, 84(1), 267–272. https://doi.org/10.1111/jfb.12280
Amatruda, J. F., Shepard, J. L., Stern, H. M., & Zon, L. I. (2002). Zebrafish as a cancer model system. Cancer Cell, 1(3), 229–231. https://doi.org/10.1016/S1535-6108(02)00052-1
Amitai, G., & Sorek, R. (2016). CRISPR-Cas adaptation: Insights into the mechanism of action. Nature Reviews Microbiology, 14(2), 67–76. https://doi.org/10.1038/nrmicro.2015.14
Amsterdam, A., Burgess, S., Golling, G., Chen, W., Sun, Z., Townsend, K., Farrington, S., Haldi, M., & Hopkins, N. (1999). A large-scale insertional mutagenesis screen in zebrafish. Genes and Development, 13(20), 2713–2724. https://doi.org/10.1101/gad.13.20.2713
Aranishi, F. (2006). Single fish egg DNA extraction for PCR amplification. Conservation Genetics, 7(1), 153–156. https://doi.org/10.1007/s10592-005-5387-y
Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P., & Del Bene, F. (2014). Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 24(1), 142–153. https://doi.org/10.1101/gr.161638.113
Babon, J. J., McKenzie, M., & Cotton, R. G. H. (2003). The Use of Resolvases T4 Endonuclease VII and T7 Endonuclease I in Mutation Detection. Molecular Biotechnology, 23(1), 73–82. https://doi.org/10.1385/MB:23:1:73
Bambino, K., & Chu, J. (2017). Zebrafish in Toxicology and Environmental Health. In Current Topics in Developmental Biology (Vol. 124, pp. 331–367). Academic Press Inc. https://doi.org/10.1016/bs.ctdb.2016.10.007
Bannikov, A. V., & Lavrov, A. V. (2017). CRISPR/CAS9, the king of genome editing tools. Molecular Biology, 51(4), 514–525. https://doi.org/10.1134/S0026893317040033
Baum, C., Kustikova, O., Modlich, U., Li, Z., & Fehse, B. (2006). Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Human Gene Therapy, 17(3), 253–263. https://doi.org/10.1089/hum.2006.17.253
Baum, C., von Kalle, C., Staal, F. J. T., Li, Z., Fehse, B., Schmidt, M., Weerkamp, F., Karlsson, S., Wagemaker, G., & Williams, D. A. (2004). Chance or necessity? Insertional Mutagenesis in Gene Therapy and Its Consequences. Molecular Therapy, 9(1), 5–13. https://doi.org/10.1016/j.ymthe.2003.10.013
Bertrand, J. Y., & Traver, D. (2009). Hematopoietic cell development in the zebrafish embryo. Current Opinion in Hematology, 16(4), 243–248. https://doi.org/10.1097/MOH.0b013e32832c05e4
Beumer, K. J., Trautman, J. K., Bozas, A., Liu, J. L., Rutter, J., Gall, J. G., & Carroll, D. (2008). Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 105(50), 19821–19826. https://doi.org/10.1073/pnas.0810475105
Bi, H., & Yang, B. (2017). Gene Editing With TALEN and CRISPR/Cas in Rice. In Progress in Molecular Biology and Translational Science (1st ed., Vol. 149, pp. 81–98). Elsevier Inc. https://doi.org/10.1016/bs.pmbts.2017.04.006
Bitinaite, J., Wah, D. A., Aggarwal, A. K., & Schildkraut, I. (1998). Foki dimerization is required for dna cleavage. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10570–10575. https://doi.org/10.1073/pnas.95.18.10570
Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., & Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959), 1509–1512. https://doi.org/10.1126/science.1178811
Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333(6051), 1843–1846. https://doi.org/10.1126/science.1204094
Bonas, U. (1990). Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato.pdf. Mol Plant Microbe Interact, 4, 81–88. https://doi.org/10005382285
Bouard, D., Alazard-Dany, N., & Cosset, F.-L. (2009). Viral vectors: from virology to transgene expression. British Journal of Pharmacology, 157(2), 153–165. https://doi.org/10.1038/bjp.2008.349
Broughton, J. P., Deng, X., Yu, G., Fasching, C. L., Servellita, V., Singh, J., Miao, X., Streithorst, J. A., Granados, A., Sotomayor-gonzalez, A., Zorn, K., Gopez, A., Hsu, E., Gu, W., Miller, S., Pan, C., Guevara, H., Wadford, D. A., Chen, J. S., & Chiu, C. Y. (2019). CRISPR – Cas12-based detection of SARS-CoV-2.
Burger, A., Lindsay, H., Felker, A., Hess, C., Anders, C., Chiavacci, E., Zaugg, J., Weber, L. M., Catena, R., Jinek, M., Robinson, M. D., & Mosimann, C. (2016). Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development, 143(11), 2025–2037. https://doi.org/10.1242/dev.134809
Carroll, D. (2011). Genome Engineering With Zinc-Finger Nucleases. https://doi.org/10.1534/genetics.111.131433
Chandrasegaran, S., & Carroll, D. (2016). Origins of Programmable Nucleases for Genome Engineering. Journal of Molecular Biology, 428(5), 963–989. https://doi.org/10.1016/j.jmb.2015.10.014
Chandrasekaran, A. P., Song, M., Kim, K. S., & Ramakrishna, S. (2018). Different Methods of Delivering CRISPR/Cas9 Into Cells. In Progress in Molecular Biology and Translational Science (1st ed., Vol. 159). Elsevier Inc. https://doi.org/10.1016/bs.pmbts.2018.05.001
Chang, H. H. Y., Pannunzio, N. R., Adachi, N., & Lieber, M. R. (2017). Non-homologous DNA end joining and alternative pathways to double-strand break repair HHS Public Access. Nat Rev Mol Cell Biol, 18(8), 495–506. https://doi.org/10.1038/nrm.2017.48
Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J. W., & Xi, J. J. (2013). Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Research, 23(4), 465–472. https://doi.org/10.1038/cr.2013.45
Chen, J., Zhang, X., Wang, T., Li, Z., Guan, G., & Hong, Y. (2012). Efficient detection, quantification and enrichment of subtle allelic alterations. DNA Research, 19(5), 423–433. https://doi.org/10.1093/dnares/dss023
Chowdhury, T. A., Koceja, C., Eisa-Beygi, S., Kleinstiver, B. P., Kumar, S. N., Lin, C. W., Li, K., Prabhudesai, S., Joung, J. K., & Ramchandran, R. (2018). Temporal and spatial post-transcriptional regulation of zebrafish tie1 mRNA by Long Noncoding RNA during brain vascular assembly. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(7), 1562–1575. https://doi.org/10.1161/ATVBAHA.118.310848
Chowdhury, T. A., Li, K., Ramchandran, R., Daniel, J. F. N., David L, K. S., David H, W., Holmes, Chowdhury, T. A., Li, K., Ramchandran, R., Daniel, J. F. N., David L, K. S., David H, W., & Holmes. (2019). Lessons learned from a lncRNA odyssey for two genes with vascular functions, DLL4 and TIE1. Vascular Pharmacology, 114(1), 103–109. https://doi.org/10.1016/j.vph.2018.06.010
Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J., & Voytas, D. F. (2010). Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics, 186(2), 757–761. https://doi.org/10.1534/genetics.110.120717
Chylinski, K., Makarova, K. S., Charpentier, E., & Koonin, E. V. (2014). Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Research, 42(10), 6091–6105. https://doi.org/10.1093/nar/gku241
Condreay, J. P., Witherspoon, S. M., Clay, W. C., & Kost, T. A. (1999). Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proceedings of the National Academy of Sciences of the United States of America, 96(1), 127–132. https://doi.org/10.1073/pnas.96.1.127
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143
Davidson, A. J., & Zon, L. I. (2004). The “definitive” (and ’primitive’) guide to zebrafish hematopoiesis. In Oncogene (Vol. 23, Issue 43 REV. ISS. 6, pp. 7233–7246). Nature Publishing Group. https://doi.org/10.1038/sj.onc.1207943
Dobson, J. (2006). Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. In Gene Therapy (Vol. 13, Issue 4, pp. 283–287). Nature Publishing Group. https://doi.org/10.1038/sj.gt.3302720
Dong, J., Fan, P., & Frizzell, R. A. (1996). Quantitative Analysis of the Packaging Capacity of Recombinant Adeno-Associated Virus. Human Gene Therapy, 7(17), 2101–2112. https://doi.org/10.1089/hum.1996.7.17-2101
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213). https://doi.org/10.1126/science.1258096
Doyon, Y., McCammon, J. M., Miller, J. C., Faraji, F., Ngo, C., Katibah, G. E., Amora, R., Hocking, T. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., & Amacher, S. L. (2008). Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 26(6), 702–708. https://doi.org/10.1038/nbt1409
Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C. F., Malicki, J., Stemple, D. L., Stainier, D. Y. R., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., & Boggs, C. (1996). A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 123, 37–46. https://doi.org/10.5167/uzh-215
Eisen, J. S., & Smith, J. C. (2008). Controlling morpholino experiments: don’t stop making antisense. Development, 135(10), 1735–1743. https://doi.org/10.1242/dev.001115
El-Brolosy, M. A., & Stainier, D. Y. R. (2017). Genetic compensation: A phenomenon in search of mechanisms. PLOS Genetics, 13(7), e1006780. https://doi.org/10.1371/journal.pgen.1006780
Engeszer, R. E., Patterson, L. B., Rao, A. A., & Parichy, D. M. (2007). Zebrafish in The Wild: A Review of Natural History And New Notes from The Field. Zebrafish, 4(1), 21–40. https://doi.org/10.1089/zeb.2006.9997
Fineran, P. C., & Charpentier, E. (2012). Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information. Virology, 434(2), 202–209. https://doi.org/10.1016/j.virol.2012.10.003
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent andspecific genetic interferenceby double-strandedRNA in Caenorhabditiselegans. Nature, 391(February), 806–811.
Foley, J. E., Yeh, J.-R. J., Maeder, M. L., Reyon, D., Sander, J. D., Peterson, R. T., & Joung, J. K. (2009). Rapid Mutation of Endogenous Zebrafish Genes Using Zinc Finger Nucleases Made by Oligomerized Pool ENgineering (OPEN). PLoS ONE, 4(2), e4348. https://doi.org/10.1371/journal.pone.0004348
Franklin, R. E., & Gosling, R. G. (1995). Molecular structure of nucleic acids. Molecular configuration in sodium thymonucleate. 1953.Franklin, R. E., & Gosling, R. G. (1995). Molecular structure of nucleic acids. Molecular configuration in sodium thymonucleate. 1953. Annals of the New York Acade. Annals of the New York Academy of Sciences, 758, 16–17. https://doi.org/10.1038/171740a0
Gagnon, J. A., Valen, E., Thyme, S. B., Huang, P., Ahkmetova, L., Pauli, A., Montague, T. G., Zimmerman, S., Richter, C., & Schier, A. F. (2014). Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS ONE, 9(5), 5–12. https://doi.org/10.1371/journal.pone.0098186
Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39), E2579–E2586. https://doi.org/10.1073/pnas.1208507109
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell. https://doi.org/10.1016/j.cell.2013.06.044
Goldsmith, J. R., & Jobin, C. (2012). Think Small: Zebrafish as a Model System of Human Pathology. Journal of Biomedicine and Biotechnology, 2012, 1–12. https://doi.org/10.1155/2012/817341
Guo, S., & Kemphues, K. J. (1995). par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81(4), 611–620. https://doi.org/10.1016/0092-8674(95)90082-9
Gupta, S. K., & Shukla, P. (2017). Gene editing for cell engineering: trends and applications. Critical Reviews in Biotechnology, 37(5), 672–684. https://doi.org/10.1080/07388551.2016.1214557
H. Meijer, A., & P. Spaink, H. (2011). Host-Pathogen Interactions Made Transparent with the Zebrafish Model. Current Drug Targets, 12(7), 1000–1017. https://doi.org/10.2174/138945011795677809
H Larson, M., A Gilbert, L., Xiaowo, W., A Lim, W., S Weissman, J., & S Qi, L. (2012). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Bone, 23(1), 1–7. https://doi.org/10.1038/jid.2014.371
Hall, C. J., Flores, M. V., Crosier, K. E., & Crosier, P. S. (2008). Live imaging early immune cell ontogeny and function in zebrafish Danio rerio. Journal of Fish Biology, 73(8), 1833–1871. https://doi.org/10.1111/j.1095-8649.2008.01980.x
Hansson, G. K., & Edfeldt, K. (2005). Toll to be paid at the gateway to the vessel wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(6), 1085–1087. https://doi.org/10.1161/01.ATV.0000168894.43759.47
He, Y., Wang, M., Liu, M., Huang, L., Liu, C., Zhang, X., Yi, H., Cheng, A., Zhu, D., Yang, Q., Wu, Y., Zhao, X., Chen, S., Jia, R., Zhang, S., Liu, Y., Yu, Y., & Zhang, L. (2018). Cas1 and Cas2 from the type II-C CRISPR-cas system of Riemerella anatipestifer are required for spacer acquisition. Frontiers in Cellular and Infection Microbiology, 8(JUN). https://doi.org/10.3389/fcimb.2018.00195
Heasman, J., Kofron, M., & Wylie, C. (2000). β-catenin signaling activity dissected in the early Xenopus embryo: A novel antisense approach. Developmental Biology, 222(1), 124–134. https://doi.org/10.1006/dbio.2000.9720
Hilton, I. B., D’Ippolito, A. M., Vockley, C. M., Thakore, P. I., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 33(5), 510–517. https://doi.org/10.1038/nbt.3199
Hockemeyer, D., Wang, H., Kiani, S., Lai, C. S., Gao, Q., Cassady, J. P., Cost, G. J., Zhang, L., Santiago, Y., Miller, J. C., Zeitler, B., Cherone, J. M., Meng, X., Hinkley, S. J., Rebar, E. J., Gregory, P. D., Urnov, F. D., & Jaenisch, R. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 29(8), 731–734. https://doi.org/10.1038/nbt.1927
Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J. C., Koch, R., Rauch, G.-J., White, S., … Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. https://doi.org/10.1038/nature12111
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., & Schmid, B. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development (Cambridge), 140(24), 4982–4987. https://doi.org/10.1242/dev.099085
Hustedt, N., & Durocher, D. (2017). The control of DNA repair by the cell cycle. Nature Cell Biology, 19(1), 1–9. https://doi.org/10.1038/ncb3452
Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Shengdar, Q., Sander, J. D., Peterson, R. T., Yeh, J. J., & Keith, J. (2013). Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nature Biotechnology, 31(3), 227–229. https://doi.org/10.1038/nbt.2501.Efficient
Hyde, J. R., Lynn, E., Humphreys, R., Musyl, M., West, A. P., & Vetter, R. (2005). Shipboard identification of fish eggs and larvae by multiplex PCR, and description of fertilized eggs of blue marlin, shortbill spearfish, and wahoo. Marine Ecology Progress Series, 286, 269–277. https://doi.org/10.3354/meps286269
Invitrogen. (n.d.). mMESSAGE mMACHINETM SP6 Transcription Kit. Retrieved May 17, 2020, from https://www.thermofisher.com/order/catalog/product/AM1340#/AM1340
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakatura, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
Janelle Espinoza, G., Michael Poland, J., & Alvarado Bremer, J. R. (2017). Genotyping live fish larvae: Non-lethal and noninvasive DNA isolation from 3-5 day old hatchlings. BioTechniques, 63(4), 181–186. https://doi.org/10.2144/000114598
Jao, L. E., Wente, S. R., & Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13904–13909. https://doi.org/10.1073/pnas.1308335110
Jiang, F., & Doudna, J. A. (2017). CRISPR – Cas9 Structures and Mechanisms. 505–529.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., & Doudna, J. A. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. 91(June), 1052–1055. https://doi.org/10.1002/ajh.24462
Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. ELife, 2013(2), 1–9. https://doi.org/10.7554/eLife.00471
Kampmann, M. (2018). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 13(2), 406–416. https://doi.org/10.1021/acschembio.7b00657
Kanther, M., & Rawls, J. F. (2010). Host–microbe interactions in the developing zebrafish. Current Opinion in Immunology, 22(1), 10–19. https://doi.org/10.1016/j.coi.2010.01.006
Kay, S., Hahn, S., Marois, E., Hause, G., & Bonas, U. (2007). A Bacterial Effector Acts as a Plant Transcription Factor and Induces a Cell Size Regulator. Science, 318(5850), 648–651. https://doi.org/10.1126/science.1144956
Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., & Zhang, F. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols, 14(10), 2986–3012. https://doi.org/10.1038/s41596-019-0210-2
Kelly, T. J., & Smith, H. O. (1970). A restriction enzyme from Hemophilus influenzae II: Base sequence of the Recognition site. Journal of Molecular Biology, 51(2), 393–409. https://doi.org/10.1016/0022-2836(70)90150-6
Kim, E., Koo, T., Park, S. W., Kim, D., Kim, K., Cho, H. Y., Song, D. W., Lee, K. J., Jung, M. H., Kim, S., Kim, J. H., Kim, J. H., & Kim, J. S. (2017). In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 8. https://doi.org/10.1038/ncomms14500
Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6), 1012–1019. https://doi.org/10.1101/gr.171322.113
Kim, T. K., & Eberwine, J. H. (2010). Mammalian cell transfection: The present and the future. Analytical and Bioanalytical Chemistry, 397(8), 3173–3178. https://doi.org/10.1007/s00216-010-3821-6
Kim, Y. G., Cha, J., & Chandrasegaran, S. (1996). Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 93(3), 1156–1160. https://doi.org/10.1073/pnas.93.3.1156
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310. https://doi.org/10.1002/aja.1002030302
Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826–837. https://doi.org/10.1038/nrg1471
Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587), 490–495. https://doi.org/10.1038/nature16526
Knight, S. C., Xie, L., Deng, W., Guglielmi, B., Witkowsky, L. B., Bosanac, L., Zhang, E. T., Beheiry, M. E., Masson, J. B., Dahan, M., Liu, Z., Doudna, J. A., & Tjian, R. (2015). Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science, 350(6262), 823–826. https://doi.org/10.1126/science.aac6572
Knott, G. J., & Doudna, J. A. (2018). CRISPR-Cas guides the future of genetic engineering. In Science (Vol. 361, Issue 6405, pp. 866–869). https://doi.org/10.1126/science.aat5011
Kok, F. O., Shin, M., Ni, C. W., Gupta, A., Grosse, A. S., VanImpel, A., Kirchmaier, B. C., Peterson-Maduro, J., Kourkoulis, G., Male, I., DeSantis, D. F., Sheppard-Tindell, S., Ebarasi, L., Betsholtz, C., Schulte-Merker, S., Wolfe, S. A., & Lawson, N. D. (2015). Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental Cell, 32(1), 97–108. https://doi.org/10.1016/j.devcel.2014.11.018
Kotani, H., Taimatsu, K., Ohga, R., Ota, S., & Kawahara, A. (2015a). Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish. PLoS ONE, 10(5), 1–16. https://doi.org/10.1371/journal.pone.0128319
Kotani, H., Taimatsu, K., Ohga, R., Ota, S., & Kawahara, A. (2015b). Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0128319
Kozlowski, P. (2001). Combined SSCP/duplex analysis by capillary electrophoresis for more efficient mutation detection. Nucleic Acids Research, 29(14), 71e – 71. https://doi.org/10.1093/nar/29.14.e71
Kumar, M., Keller, B., Makalou, N., & Sutton, R. E. (2001). Systematic determination of the packaging limit of lentiviral vectors. Human Gene Therapy, 12(15), 1893–1905. https://doi.org/10.1089/104303401753153947
Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J., & Sin, Y. M. (2004). Development and maturation of the immune system in zebrafish, Danio rerio: A gene expression profiling, in situ hybridization and immunological study. Developmental and Comparative Immunology, 28(1), 9–28. https://doi.org/10.1016/S0145-305X(03)00103-4
Lambert, C. J., Freshner, B. C., Chung, A., Stevenson, T. J., Bowles, D. M., Samuel, R., Gale, B. K., & Bonkowsky, J. L. (2018). An automated system for rapid cellular extraction from live zebrafish embryos and larvae: Development and application to genotyping. PLoS ONE, 13(3). https://doi.org/10.1371/journal.pone.0193180
Langheinrich, U., Vacun, G., & Wagner, T. (2003). Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicology and Applied Pharmacology, 193(3), 370–382. https://doi.org/10.1016/j.taap.2003.07.012
Li, L., Wu, L. P., & Chandrasegaran, S. (1992). Functional domains in Fok I restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America, 89(10), 4275–4279. https://doi.org/10.1073/pnas.89.10.4275
Li, S. D., & Huang, L. (2006). Gene therapy progress and prospects: Non-viral gene therapy by systemic delivery. In Gene Therapy (Vol. 13, Issue 18, pp. 1313–1319). Nature Publishing Group. https://doi.org/10.1038/sj.gt.3302838
Li, Y., Li, Y., Cao, X., Jin, X., & Jin, T. (2017). Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. In Cellular and Molecular Immunology (Vol. 14, Issue 1, pp. 80–89). Chinese Soc Immunology. https://doi.org/10.1038/cmi.2016.50
Lieber, M. R. (2010). The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annual Review of Biochemistry, 79(1), 181–211. https://doi.org/10.1146/annurev.biochem.052308.093131
Liu, C. X., Li, C. Y., Hu, C. C., Wang, Y., Lin, J., Jiang, Y. H., Li, Q., & Xu, X. (2018). CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Molecular Autism, 9(1), 1–13. https://doi.org/10.1186/s13229-018-0204-x
Liu, K., Petree, C., Requena, T., Varshney, P., & Varshney, G. K. (2019). Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology, 7(MAR). https://doi.org/10.3389/fcell.2019.00013
Liu, Q., Yuan, Y., Zhu, F., Hong, Y., & Ge, R. (2018). Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells. Biology Open, 7(8). https://doi.org/10.1242/bio.035170
Long, L., Guo, H., Yao, D., Xiong, K., Li, Y., Liu, P., Zhu, Z., & Liu, D. (2015). Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio. In Cell Research (Vol. 25, Issue 5, pp. 638–641). Nature Publishing Group. https://doi.org/10.1038/cr.2015.35
Ma, Y., Zhang, L., & Huang, X. (2014). Genome modification by CRISPR/Cas9. FEBS Journal, 281(23), 5186–5193. https://doi.org/10.1111/febs.13110
Maeder, M. L., & Gersbach, C. A. (2016). Genome-editing technologies for gene and cell therapy. Molecular Therapy, 24(3), 430–446. https://doi.org/10.1038/mt.2016.10
Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas, Č., White, M. F., Yakunin, A. F., … Koonin, E. V. (2020). Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67–83. https://doi.org/10.1038/s41579-019-0299-x
Mali, P., Aach, J., Stranges, B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L., & Church, G. M. (2013). CAs9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. https://doi.org/10.1038/nbt.2675
Marois, E., Van Den Ackerveken, G., & Bonas, U. (2002). The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Molecular Plant-Microbe Interactions, 15(7), 637–646. https://doi.org/10.1094/MPMI.2002.15.7.637
Mashiko, D., Young, S. A. M., Muto, M., Kato, H., Nozawa, K., Ogawa, M., Noda, T., Kim, Y. J., Satouh, Y., Fujihara, Y., & Ikawa, M. (2014). Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes. Development Growth and Differentiation, 56(1), 122–129. https://doi.org/10.1111/dgd.12113
McCluskey, B. M., & Postlethwait, J. H. (2015). Phylogeny of zebrafish, a “model species,” within Danio, a “model genus.” Molecular Biology and Evolution, 32(3), 635–652. https://doi.org/10.1093/molbev/msu325
McMahon, J. M., Signori, E., Wells, K. E., Fazio, V. M., & Wells, D. J. (2001). Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase - Increased expression with reduced muscle damage. Gene Therapy, 8(16), 1264–1270. https://doi.org/10.1038/sj.gt.3301522
Meeker, N. D., Hutchinson, S. A., Ho, L., & Trede, N. S. (2007). Method for isolation of PCR-ready genomic DNA from zebrafish tissues. BioTechniques, 43(5), 610–614. https://doi.org/10.2144/000112619
Meijer, A. H., Gabby Krens, S. F., Medina Rodriguez, I. A., He, S., Bitter, W., Snaar-Jagalska, B. E., & Spaink, H. P. (2004). Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Molecular Immunology, 40(11), 773–783. https://doi.org/10.1016/j.molimm.2003.10.003
Mekler, V., Kuznedelov, K., & Severinov, K. (2020). Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences. J Biol Chem. https://doi.org/10.1074/jbc.RA119.012239
Men, W., Dong, Q., Shi, W., & Yao, K. (2019). Serotype distribution and antimicrobial resistance patterns of invasive pneumococcal disease isolates from children in mainland China—a systematic review. Brazilian Journal of Microbiology. https://doi.org/10.1007/s42770-019-00198-9
Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D., & Wolfe, S. A. (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology, 26(6), 695–701. https://doi.org/10.1038/nbt1398
Menke, A. L., Spitsbergen, J. M., Wolterbeek, A. P. M., & Woutersen, R. A. (2011). Normal Anatomy and Histology of the Adult Zebrafish. Toxicologic Pathology, 39(5), 759–775. https://doi.org/10.1177/0192623311409597
Meselson, M., & Yuan, R. (1968). DNA restriction enzyme from E. coli. Nature, 217(5134), 1110–1114. https://doi.org/10.1038/2171110a0
Miller, J. B., Zhang, S., Kos, P., Xiong, H., Zhou, K., Perelman, S. S., Zhu, H., & Siegwart, D. J. (2017). Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA. Angewandte Chemie International Edition, 56(4), 1059–1063. https://doi.org/10.1002/anie.201610209
Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., Meng, X., Paschon, D. E., Leung, E., Hinkley, S. J., Dulay, G. P., Hua, K. L., Ankoudinova, I., Cost, G. J., Urnov, F. D., Zhang, H. S., Holmes, M. C., Zhang, L., Gregory, P. D., & Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29(2), 143–150. https://doi.org/10.1038/nbt.1755
Miller, J., McLachlan, A. D., & Klug, A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. The EMBO Journal, 4(6), 1609–1614. https://doi.org/10.1002/j.1460-2075.1985.tb03825.x
Mirimin, L., O’Keeffe, D., Ruggiero, A., Bolton-Warberg, M., Vartia, S., & Fitzgerald, R. (2011). A quick, least-invasive, inexpensive and reliable method for sampling Gadus morhua postlarvae for genetic analysis. Journal of Fish Biology, 79(3), 801–805. https://doi.org/10.1111/j.1095-8649.2011.03049.x
Mojica, F. J. M., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. In Molecular Microbiology (Vol. 36, Issue 1, pp. 244–246). https://doi.org/10.1046/j.1365-2958.2000.01838.x
Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326(5959), 1501. https://doi.org/10.1126/science.1178817
Mout, R., Ray, M., Yesilbag Tonga, G., Lee, Y.-W., Tay, T., Sasaki, K., & Rotello, V. M. (2017). Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano, 11(3), 2452–2458. https://doi.org/10.1021/acsnano.6b07600
Mukherjee, A. S., & Beermann, W. (1965). Synthesis of Ribonucleic Acid by the X-Chromosomes of Drosophila melanogaster and the Problem of Dosage Compensation. Nature, 207(4998), 785–786. https://doi.org/10.1038/207785a0
Muller, H. J. (1932). Further studies on the nature and causes of gene mutations. In International Congress of Genetics (Vol. 6, Issue 1, pp. 213–255). http://darwin.amnh.org/bib/bibtexbrowser.php?key=muller1932yu83j&bib=Ev…;
Nagamine, C. M., Chan, K., & Lau, Y. F. (1989). A PCR artifact: generation of heteroduplexes. American Journal of Human Genetics, 47(1), 169–170. https://doi.org/10.1016/S0016-7878(61)80010-2
Nasevicius, A., & Ekker, S. C. (2000). Effective targeted gene “knockdown” in zebrafish. Nat Genet, 26(2), 216–220.
Neely, M. N., Pfeifer, J. D., & Caparon, M. (2002). Streptococcus-Zebrafish Model of Bacterial Pathogenesis. INFECTION AND IMMUNITY, 70(7), 3904–3914. https://doi.org/10.1128/IAI.70.7.3904-3914.2002
Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., & Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. https://doi.org/10.1016/j.cell.2014.02.001
Nobbs, A. H., Jenkinson, H. F., & Everett, D. B. (2015). Generic determinants of Streptococcus colonization and infection. Infection, Genetics and Evolution, 33, 361–370. https://doi.org/10.1016/j.meegid.2014.09.018
Novoa, B., & Figueras, A. (2012). Zebrafish: Model for the study of inflammation and the innate immune response to infectious diseases. Advances in Experimental Medicine and Biology, 946, 253–275. https://doi.org/10.1007/978-1-4614-0106-3_15
O’Callaghan, D., & Vergunst, A. (2010). Non-mammalian animal models to study infectious disease: worms or fly fishing? In Current Opinion in Microbiology (Vol. 13, Issue 1, pp. 79–85). Elsevier Current Trends. https://doi.org/10.1016/j.mib.2009.12.005
Ota, S., Hisano, Y., Ikawa, Y., & Kawahara, A. (2014). Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes to Cells, 19(7), 555–564. https://doi.org/10.1111/gtc.12154
Ota, S., Taimatsu, K., Yanagi, K., Namiki, T., Ohga, R., Higashijima, S. I., & Kawahara, A. (2016). Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish. Scientific Reports, 6. https://doi.org/10.1038/srep34991
Ousterout, D. G., Perez-Pinera, P., Thakore, P. I., Kabadi, A. M., Brown, M. T., Qin, X., Fedrigo, O., Mouly, V., Tremblay, J. P., & Gersbach, C. A. (2013). Reading frame correction by targeted genome editing restores dystrophin expression in cells from duchenne muscular dystrophy patients. Molecular Therapy, 21(9), 1718–1726. https://doi.org/10.1038/mt.2013.111
Pallarès Masmitjà, M., Knödlseder, N., & Güell, M. (2019). CRISPR-gRNA Design. Methods in Molecular Biology, 1961, 3–11. https://doi.org/10.1007/978-1-4939-9170-9_1
Prykhozhij, S. V., Fuller, C., Steele, S. L., Veinotte, C. J., Razaghi, B., Robitaille, J. M., McMaster, C. R., Shlien, A., Malkin, D., & Berman, J. N. (2018). Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Research, 46(17), 1–15. https://doi.org/10.1093/nar/gky512
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. CELL, 152, 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022
Ramaswamy, S., & Kordower, J. H. (2012). Gene therapy for Huntington’s disease. Neurobiology of Disease, 48(2), 243–254. https://doi.org/10.1016/j.nbd.2011.12.030
Ramirez, C. L., Foley, J. E., Wright, D. A., Müller-Lerch, F., Rahman, S. H., Cornu, T. I., Winfrey, R. J., Sander, J. D., Fu, F., Townsend, J. A., Cathomen, T., Voytas, D. F., & Joung, J. K. (2008). Unexpected failure rates for modular assembly of engineered zinc fingers (Nature Methods (2008) vol. 5 (374-375)). Nature Methods, 5(6), 575. https://doi.org/10.1038/nmeth0608-575a
Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V., Sharp, P. A., & Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546), 186–191. https://doi.org/10.1038/nature14299
Rath, D., Amlinger, L., Rath, A., & Lundgren, M. (2015). The CRISPR-Cas immune system: Biology, mechanisms and applications. In Biochimie. https://doi.org/10.1016/j.biochi.2015.03.025
Renshaw, S. A., Loynes, C. A., Trushell, D. M. I., Elworthy, S., Ingham, P. W., & Whyte, M. K. B. (2006). A transgenic zebrafish model of neutrophilic inflammation. Blood, 108(13), 3976–3978. https://doi.org/10.1182/blood-2006-05-024075
Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L., & Corn, J. E. (2016). Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nature Biotechnology, 34(3), 339–344. https://doi.org/10.1038/nbt.3481
Rounioja, S., Saralahti, A., Rantala, L., Parikka, M., Henriques-Normark, B., Silvennoinen, O., & Rämet, M. (2012). Defense of zebrafish embryos against Streptococcus pneumoniae infection is dependent on the phagocytic activity of leukocytes. Developmental and Comparative Immunology, 36(2), 342–348. https://doi.org/10.1016/j.dci.2011.05.008
Rudin, N., Sugarman, E., & Haber, J. E. (1989). Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics, 122(3), 519–534.
Ryan, R. P., Vorhölter, F.-J., Potnis, N., Jones, J. B., Van Sluys, M.-A., Bogdanove, A. J., & Dow, J. M. (2011). Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nature Reviews Microbiology, 9(5), 344–355. https://doi.org/10.1038/nrmicro2558
Sander, J. D., Cade, L., Khayter, C., Reyon, D., Peterson, R. T., Joung, J. K., & Yeh, J. J. (2011). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 29(8), 697–698. https://doi.org/10.1038/nbt.1934
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (n.d.). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. https://doi.org/10.1093/nar/gkr606
Saralahti, A., Piippo, H., Parikka, M., Henriques-Normark, B., Rämet, M., & Rounioja, S. (2014). Adult zebrafish model for pneumococcal pathogenesis. Developmental and Comparative Immunology, 42(2), 345–353. https://doi.org/10.1016/j.dci.2013.09.009
Scherer, S., & Davis, R. W. (1979). Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 4951–4955. https://doi.org/10.1073/pnas.76.10.4951
Schmid, B., Hruscha, A., Hogl, S., Banzhaf-Strathmann, J., Strecker, K., Van Der Zee, J., Teucke, M., Eimer, S., Hegermann, J., Kittelmann, M., Kremmer, E., Cruts, M., Solchenberger, B., Hasenkamp, L., Van Bebber, F., Van Broeckhoven, C., Edbauer, D., Lichtenthaler, S. F., & Haass, C. (2013). Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 4986–4991. https://doi.org/10.1073/pnas.1218311110
Schmidt, F., & Grimm, D. (2015). CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnology Journal, 10(2), 258–272. https://doi.org/10.1002/biot.201400529
Schulte-Merker, S., & Stainier, D. Y. R. (2014). Out with the old, in with the new: Reassessing morpholino knockdowns in light of genome editing technology. Development (Cambridge), 141(16), 3103–3104. https://doi.org/10.1242/dev.112003
Segal, D. J., Beerli, R. R., Blancafort, P., Dreier, B., Effertz, K., Huber, A., Koksch, B., Lund, C. V., Magnenat, L., Valente, D., & Barbas, C. F. (2003). Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry, 42(7), 2137–2148. https://doi.org/10.1021/bi026806o
Senís, E., Fatouros, C., Große, S., Wiedtke, E., Niopek, D., Mueller, A. K., Börner, K., & Grimm, D. (2014). CRISPR/Cas9-mediated genome engineering: An adeno-associated viral (AAV) vector toolbox. Biotechnology Journal, 9(11), 1402–1412. https://doi.org/10.1002/biot.201400046
Shah, A. N., Davey, C. F., Whitebirch, A. C., Miller, A. C., & Moens, C. B. (2016). Rapid Reverse Genetic Screening Using CRISPR in Zebrafish. Zebrafish, 13(2), 152–153. https://doi.org/10.1089/zeb.2015.29000.sha
Simpson, R. J., Wilding, C. S., & Grahame, J. (1999). Simple protocol for extracting nuclear DNA from single embryos of a marine snail. BioTechniques, 26(6), 1050–1052. https://doi.org/10.2144/99266bm08
Smith, H. O., & Welcox, K. W. (1970). A Restriction enzyme from Hemophilus influenzae. I. Purification and general properties. Journal of Molecular Biology, 51(2), 379–391. https://doi.org/10.1016/0022-2836(70)90149-X
Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., & Kucherlapati, R. S. (1985). Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature, 317(6034), 230–234. https://doi.org/10.1038/317230a0
Sprague, J. (2006). The Zebrafish Information Network: the zebrafish model organism database. Nucleic Acids Research, 34(90001), D581–D585. https://doi.org/10.1093/nar/gkj086
Stainier, D. Y. R., Raz, E., Lawson, N. D., Ekker, S. C., Burdine, R. D., Eisen, J. S., Ingham, P. W., Schulte-Merker, S., Yelon, D., Weinstein, B. M., Mullins, M. C., Wilson, S. W., Ramakrishnan, L., Amacher, S. L., Neuhauss, S. C. F., Meng, A., Mochizuki, N., Panula, P., & Moens, C. B. (2017). Guidelines for morpholino use in zebrafish. PLOS Genetics, 13(10), e1007000. https://doi.org/10.1371/journal.pgen.1007000
Sternberg, S. H., Richter, H., Charpentier, E., & Qimron, U. (2016). Adaptation in CRISPR-Cas Systems. Molecular Cell, 61(6), 797–808. https://doi.org/10.1016/j.molcel.2016.01.030
Sullivan, C., & Kim, C. H. (2008). Zebrafish as a model for infectious disease and immune function. Fish and Shellfish Immunology, 25(4), 341–350. https://doi.org/10.1016/j.fsi.2008.05.005
Summerton, J. (2007). Morpholino, siRNA, and S-DNA Compared: Impact of Structure and Mechanism of Action on Off-Target Effects and Sequence Specificity. Current Topics in Medicinal Chemistry, 7(7), 651–660. https://doi.org/10.2174/156802607780487740
Summerton, J., & Weller, D. (1997). Morpholino Antisense Oligomers: Design, Preparation, and Properties. Antisense and Nucleic Acid Drug Development, 7(3), 187–195. https://doi.org/10.1089/oli.1.1997.7.187
Sun, Z. (2004). A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development, 131(16), 4085–4093. https://doi.org/10.1242/dev.01240
Sung, Y. H., Kim, J. M., Kim, H. T., Lee, J., Jeon, J., Jin, Y., Choi, J. H., Ban, Y. H., Ha, S. J., Kim, C. H., Lee, H. W., & Kim, J. S. (2014). Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research, 24(1), 125–131. https://doi.org/10.1101/gr.163394.113
Szczepek, M., Brondani, V., Büchel, J., Serrano, L., Segal, D. J., & Cathomen, T. (2007). Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nature Biotechnology, 25(7), 786–793. https://doi.org/10.1038/nbt1317
Tampakaki, A. P., Fadouloglou, V. E., Gazi, A. D., Panopoulos, N. J., & Kokkinidis, M. (2004). Conserved features of type III secretion. Cellular Microbiology, 6(9), 805–816. https://doi.org/10.1111/j.1462-5822.2004.00432.x
Tautz, D. (1992). Problems and paradigms: Redundancies, development and the flow of information. BioEssays, 14(4), 263–266. https://doi.org/10.1002/bies.950140410
Terns, M. P., & Terns, R. M. (2012). CRISPR-Based Adaptive Immune Systems. Bone, 23(1), 1–7. https://doi.org/10.1038/jid.2014.371
Thakore, P. I., D’Ippolito, A. M., Song, L., Safi, A., Shivakumar, N. K., Kabadi, A. M., Reddy, T. E., Crawford, G. E., & Gersbach, C. A. (2015). Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods, 12(12), 1143–1149. https://doi.org/10.1038/nmeth.3630
Tobin, D. M., May, R. C., & Wheeler, R. T. (2012). Zebrafish: A see-through host and a fluorescent toolbox to probe host-pathogen interaction. PLoS Pathogens, 8(1), 8–10. https://doi.org/10.1371/journal.ppat.1002349
Tobin, D. M., Vary, J. C., Ray, J. P., Walsh, G. S., Dunstan, S. J., Bang, N. D., Hagge, D. A., Khadge, S., King, M. C., Hawn, T. R., Moens, C. B., & Ramakrishnan, L. (2010). The lta4h Locus Modulates Susceptibility to Mycobacterial Infection in Zebrafish and Humans. Cell, 140(5), 717–730. https://doi.org/10.1016/j.cell.2010.02.013
Torraca, V., & Mostowy, S. (2018). Zebrafish Infection: From Pathogenesis to Cell Biology. Trends in Cell Biology, 28(2), 143–156. https://doi.org/10.1016/j.tcb.2017.10.002
Trede, N. S., Langenau, D. M., Traver, D., Look, A. T., & Zon, L. I. (2004). The use of zebrafish to understand immunity. Immunity, 20(4), 367–379. https://doi.org/10.1016/S1074-7613(04)00084-6
Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J., & Joung, J. K. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 32(6), 569–576. https://doi.org/10.1038/nbt.2908
Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation, 183, 93–102. https://doi.org/10.1016/j.biocon.2014.11.017
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636–646. https://doi.org/10.1038/nrg2842
van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M., & Brouns, S. J. J. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends in Biochemical Sciences, 34(8), 401–407. https://doi.org/10.1016/j.tibs.2009.05.002
Vargas, R. A., Sarmiento, K., & Vásquez, I. C. (2015). Zebrafish (Danio rerio): A Potential Model for Toxinological Studies. Zebrafish, 12(5), 320–326. https://doi.org/10.1089/zeb.2015.1102
Villamizar, N., Ribas, L., Piferrer, F., Vera, L. M., & Sánchez-Vázquez, F. J. (2012). Impact of Daily Thermocycles on Hatching Rhythms, Larval Performance and Sex Differentiation of Zebrafish. PLoS ONE, 7(12), e52153. https://doi.org/10.1371/journal.pone.0052153
Villarreal, M. A., Biediger, N. M., Bonner, N. A., Miller, J. N., Zepeda, S. K., Ricard, B. J., García, D. M., & Lewis, K. A. (2017). Determining Zebrafish Epitope Reactivity to Commercially Available Antibodies. Zebrafish, 14(4), 387–389. https://doi.org/10.1089/zeb.2016.1401
Vishwanath, W. (2010). Danio rerio. https://www.iucnredlist.org/species/166487/6219667
Watson, J. D., & Crick, F. H. (1953). The structure of DNA. Cold Spring Harbor Symposia on Quantitative Biology, 18, 123–131. https://doi.org/10.1101/SQB.1953.018.01.020
Wells, D. J. (2004). Gene therapy progress and prospects: Electroporation and other physical methods. In Gene Therapy (Vol. 11, Issue 18, pp. 1363–1369). Nature Publishing Group. https://doi.org/10.1038/sj.gt.3302337
WHO. (2013). WHO | Estimated Hib and pneumococcal deaths for children under 5 years of age, 2008. World Health Organization. https://www.who.int/immunization/monitoring_surveillance/burden/estimat…
Wigler, M., Silverstein, S., Lee, L. S., Pellicer, A., Cheng, Y. chi, & Axel, R. (1977). Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell, 11(1), 223–232. https://doi.org/10.1016/0092-8674(77)90333-6
Wilkinson, R. N., Elworthy, S., Ingham, P. W., & van Eeden, F. J. M. (2013). A method for high-throughput PCR-based genotyping of larval zebrafish tail biopsies. BioTechniques, 55(6), 314–316. https://doi.org/10.2144/000114116
Wolfe, S. A., Nekludova, L., & Pabo, C. O. (2009). DNA recognition by Cys2His2 zinc finger proteins. Biophysical Structure, 25(1), 22–29. https://doi.org/10.1093/bioinformatics/btn580
Woods, I. G., Kelly, P. D., Chu, F., Ngo-Hazelett, P., Yan, Y.-L., Huang, H., Postlethwait, J. H., & Talbot, W. S. (2000). A Comparative Map of the Zebrafish Genome. Genome Research, 10(12), 1903–1914. https://doi.org/10.1101/gr.10.12.1903
Wu, Z., Yang, H., & Colosi, P. (2010). Effect of Genome Size on AAV Vector Packaging. Molecular Therapy, 18(1), 80–86. https://doi.org/10.1038/mt.2009.255
Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., Zhu, Z., Lin, S., & Zhang, B. (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Research, 41(14), 1–11. https://doi.org/10.1093/nar/gkt464
Xing, L., Quist, T. S., Stevenson, T. J., Dahlem, T. J., & Bonkowsky, J. L. (2014). Rapid and efficient zebrafish genotyping using PCR with high-resolution melt analysis. Journal of Visualized Experiments, 84. https://doi.org/10.3791/51138
Yue, G. H., & Orban, L. (2001). Rapid isolation of DNA from fresh and preserved fish scales for polymerase chain reaction. Marine Biotechnology, 3(3), 199–204. https://doi.org/10.1007/s10126-001-0010-9
ZFIN The Zebrafish Information Network. (n.d.). Retrieved March 22, 2020, from https://zfin.org/
Zhang, F., Abudayyeh, O. O., Gootenberg, J. S., Sciences, C., & Mathers, L. (2020). A protocol for detection of COVID-19 using CRISPR diagnostics. Bioarchive, 1–8.
Zilberman, N., Reikhav, S., Hulata, G., & Ron, M. (2006). High-throughput genomic DNA extraction protocol from tilapia’s fin tissue. Aquaculture, 255(1–4), 597–599. https://doi.org/10.1016/j.aquaculture.2005.11.042
Zon, L. I., & Peterson, R. T. (2005). In vivo drug discovery in the zebrafish. Nature Reviews Drug Discovery, 4(1), 35–44. https://doi.org/10.1038/nrd1606
Zou, M., Friedrich, R. W., & Bianco, I. H. (2016). Targeted Electroporation in Embryonic, Larval, and Adult Zebrafish (K. Kawakami, E. E. Patton, & M. Orger (Eds.); Vol. 1451, pp. 259–269). Springer New York. https://doi.org/10.1007/978-1-4939-3771-4_17