Evaluating the structural effects of High Frequency spinal cord stimulation over time in patients with Failed Back Surgery Syndrome: A voxel-based morphometric study.

Félix Buyck
Persbericht

Lage Rugpijn: Ons brein als medicijn?

“Dokter, heeft u geen pilletje tegen de pijn?”

1 op 4 volwassen Belgen kampt met rugklachten. 

1 op 10 gevallen van ziekteverzuim gedurende minstens 1 maand is te wijten aan lage rugpijn.

167.000.000 euro, dit is de naar schatting totale directe jaarlijkse kost van chronische lage rugpijn in België.

De cijfers liegen er niet om, chronische lage rugpijn is een enorm maatschappelijk probleem. Dit is rugpijn die langer dan 3 maanden aanhoudt. Wereldwijd beschouwd als een van de voornaamste oorzaken van invaliditeit. Voortdurende pijn, bewegingsbeperking, sociale en economische consequenties, het geheel resulteert in een karige levenskwaliteit. Pijn, de kern van het probleem. Kunnen we dit behandelen? Jazeker, U heeft in het Belgisch repertorium van geneesmiddelen zelfs keuze uit ongeveer 980 medicijnen. Verder bestaan er ook chirurgische ingrepen die gericht zijn op het aanpakken van aanhoudende rugpijn. Maar wat als geen van deze behandelingen aanslaat? Dat is het geval voor bijna 4 op de 10 patiënten die aan chronische rugpijn lijdt. We spreken in dit geval van het “falende rugsyndroom” of “failed back surgery syndrome”. Kunnen we deze mensen helpen? 
 

Ruggenmergstimulatie als laatste redmiddel

Een masterstudent van de Vrije Universiteit Brussel onderzocht samen met de onderzoeksgroep van het departement neurochirurgie te UZ Brussel wat de effecten zijn van ruggenmergstimulatie op de hersenen. Wat is ruggenmergstimulatie of “spinal cord stimulation” precies? Dit is een behandeling waarbij schokjes gegeven worden aan ons ruggenmerg. Het ruggenmerg verbindt de hersenen met alle zenuwen van ons lichaam. Elektrische prikkels worden langsheen twee dunne draden geleverd, verbonden met een onderhuids geïmplanteerd apparaatje (figuur 1). De stroomstoten die toegediend worden, zijn zodanig klein dat patiënten deze niet gewaar worden. Zo kunnen we de rugpijn vaak toch verminderen bij patiënten die geen vooruitgang boeken met de standaardbehandeling op basis van medicatie en klassieke heelkunde. 

image-20201001213642-1

Figuur 1: Illustratie van een geïmplanteerde ruggenmergstimulator. Het gaat hier om een van de laatste nieuwe types, een hoogfrequent systeem (HF10). Hierbij worden maar liefst 10.000 pijnloze elektrische schokjes per seconde afgevuurd naar het ruggenmerg.

Pijn verandert ons brein

Wie dacht dat het brein na de puberteit niet meer verandert, heeft het mis. Dit kan geïllustreerd worden aan de hand van een buitengewoon experiment. Zo’n 15 jaar geleden nodigde de Spaanse onderzoeker Alvare Pascal-Leone twee groepen mensen uit voor een reeks pianolessen. Hij liet de ene groep werkelijk oefenen op het instrument, terwijl de anderen zich slechts moesten inbeelden dat ze piano speelden. Opmerkelijk genoeg vertoonden beide groepen een gelijkaardige evolutie van de hersenactiviteit. Hiermee toonde de onderzoeker aan dat de gedachte alleen aan het pianospelen voldoende was om de hersenfunctie te veranderen. Dit proces heet neuroplasticiteit. Het is het vermogen van het zenuwstelsel om zich aan te passen aan een bepaalde situatie of omgeving. Ook mensen die langdurig aan rugpijn lijden, vertonen veranderingen in de hersenen. Met name, in regio’s die deel uitmaken van het zogenaamde pijnsysteem. In dit geval zouden de veranderingen zelfs kunnen leiden tot een verergering van de initiële rugklachten. Wellicht door ontregeling van het systeem dat onze pijn afstelt.

Heeft pijn geheugen?

Als pijn zorgt voor hersenveranderingen, kan onze behandeling dat dan ook? Met anderen woorden, kunnen we die veranderingen ongedaan maken en zo langdurige rugpijn helpen genezen? Ruggenmergstimulatie wordt steeds vaker gebruikt omwille van zijn gunstige effect op de lage rugpijn. Maar heeft het ook een effect op de herseninhoud? De onderzoeksgroep van de VUB-UZ Brussel zocht het als eerste uit. Bij 11 patiënten werd een ruggenmergstimulator geïmplanteerd. Nadien kregen ze op regelmatige basis een check-up bij de arts alsook een hersenscan. Zo konden ze het effect van de therapie, niet alleen op de rugpijn, maar ook op de hersenen onderzoeken.

1 maand na aanvang van de therapie vertoonden de patiënten reeds een psychologische vooruitgang. Dit met betrekking tot hun pijnbeleving. Vanaf 3 maanden hadden patiënten beduidend minder rugpijn. De pijnintensiteit bleek gemiddeld met een vierde gedaald te zijn. Tevens vertoonden sommigen onder hen een afname in beenpijn. Wat de onderzoekers niet hadden verwacht, was dat de hersenen van hun patiënten na 3 maanden lichte veranderingen zouden vertonen. Op de hersenscans zagen ze dat de hippocampus gekrompen was ten opzichte van voor de behandeling (figuur 2). Een weliswaar kleine volumeafname, equivalent aan de grootte van slechts een veertigste van een eurocent muntstuk. De hippocampus is een hersengebied dat deel uitmaakt van ons pijnsysteem. Het staat niet alleen in voor ons geheugen, maar vervult ook verscheidene pijngerelateerde functies. Een combinatie van deze eigenschappen maakt dat de hippocampus zo vorm geeft aan wat men het “pijngeheugen” noemt. Hoe meer tijd er verstreek na aanvang van de behandeling, des te meer de hippocampus in volume bleek afgenomen te zijn. In verhouding hiermee nam de rugpijn van de patiënten progressief af.

image-20201001213702-2

Figuur 2: Een 3D model van de hersenen in zijaanzicht (links) en achteraanzicht (rechts). Deze reconstructie werd gemaakt op basis van de hersenscans van alle 11 patiënten. Na ruggenmergstimulatie nam een deel van de hippocampus af in volume. Deze afname bevindt zich in de rode zone. Dit zowel in de linker als rechter hersenhelft, immers beschikken we over twee hippocampi.

Kunnen we onze hersenen inschakelen als medicijn?

We weten dat langdurige pijn aanleiding kan geven tot een vergroting van de hippocampus. Het lijkt erop dat een behandeling met ruggenmergstimulatie de hippocampus weer kleiner maakt. Enerzijds zou dit ervoor kunnen zorgen dat het “pijngeheugen” als het ware gewist wordt. Als onze hersenen minder denken aan pijn, zullen we dus ook in mindere mate pijn ervaren. Anderzijds zou zo ook het pijnregulerend systeem hersteld kunnen worden, waardoor rugklachten verbeteren. Dit stelt ruggenmergstimulatie als laatste redmiddel voor lage rugpijn in een nieuw daglicht. Kunnen we onze hersenen gebruiken als medicijn? Ons brein vormt duidelijk een deur naar een betere pijntherapie voor patiënten met chronische lage rugpijn. De vraag is alleen, zullen we de sleutel ertoe ooit in handen krijgen?

 

Bibliografie

1.      O'Brien T, Breivik H. The impact of chronic pain-European patients' perspective over 12 months. Scand J Pain. 2012;3(1):23-9.

2.      Van Buyten JP. Neurostimulation for chronic neuropathic back pain in failed back surgery syndrome. J Pain Symptom Manage. 2006;31(4 Suppl):S25-9.

3.      Nees F, Ruttorf M, Fuchs X, Rance M, Beyer N. Volumetric brain correlates of approach-avoidance behavior and their relation to chronic back pain. Brain Imaging Behav. 2019.

4.      Ivo R, Nicklas A, Dargel J, Sobottke R, Delank KS, Eysel P, et al. Brain structural and psychometric alterations in chronic low back pain. Eur Spine J. 2013;22(9):1958-64.

5.      Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287-333.

6.      Grider JS, Manchikanti L, Carayannopoulos A, Sharma ML, Balog CC, Harned ME, et al. Effectiveness of Spinal Cord Stimulation in Chronic Spinal Pain: A Systematic Review. Pain Physician. 2016;19(1):E33-54.

7.      Al-Kaisy A, Van Buyten JP, Amirdelfan K, Gliner B, Caraway D, Subbaroyan J, et al. Opioid-sparing effects of 10 kHz spinal cord stimulation: a review of clinical evidence. Ann N Y Acad Sci. 2019.

8.      Fritz HC, McAuley JH, Wittfeld K, Hegenscheid K, Schmidt CO, Langner S, et al. Chronic Back Pain Is Associated With Decreased Prefrontal and Anterior Insular Gray Matter: Results From a Population-Based Cohort Study. J Pain. 2016;17(1):111-8.

9.      Meucci RD, Fassa AG, Faria NM. Prevalence of chronic low back pain: systematic review. Rev Saude Publica. 2015;49:1.

10.    Ng SK, Urquhart DM, Fitzgerald PB, Cicuttini FM, Hussain SM, Fitzgibbon BM. The Relationship Between Structural and Functional Brain Changes and Altered Emotion and Cognition in Chronic Low Back Pain Brain Changes: A Systematic Review of MRI and fMRI Studies. Clin J Pain. 2018;34(3):237-61.

11.    Head J, Mazza J, Sabourin V, Turpin J, Hoelscher C, Wu C, et al. Waves of Pain Relief: A Systematic Review of Clinical Trials in Spinal Cord Stimulation Waveforms for the Treatment of Chronic Neuropathic Low Back and Leg Pain. World Neurosurg. 2019;131:264-74.e3.

12.    Schmidt GL. The Use of Spinal Cord Stimulation/Neuromodulation in the Management of Chronic Pain. J Am Acad Orthop Surg. 2019;27(9):e401-e7.

13.    Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain. 2019;160(1):19-27.

14.    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463-84.

15.    Mouraux A, Iannetti GD. The search for pain biomarkers in the human brain. Brain. 2018;141(12):3290-307.

16.    Knudsen L, Petersen GL, Norskov KN, Vase L, Finnerup N, Jensen TS, et al. Review of neuroimaging studies related to pain modulation. Scand J Pain. 2018;2(3):108-20.

17.    Borsook D, Becerra L, Hargreaves R. Biomarkers for chronic pain and analgesia. Part 2: how, where, and what to look for using functional imaging. Discov Med. 2011;11(58):209-19.

18.    Martucci KT, Ng P, Mackey S. Neuroimaging chronic pain: what have we learned and where are we going? Future Neurol. 2014;9(6):615-26.

19.    Grothe M, Lotze M, Langner S, Dressel A. The role of global and regional gray matter volume decrease in multiple sclerosis. J Neurol. 2016;263(6):1137-45.

20.    Lansley J, Mataix-Cols D, Grau M, Radua J, Sastre-Garriga J. Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev. 2013;37(5):819-30.

21.    Lin CH, Chen CM, Lu MK, Tsai CH, Chiou JC, Liao JR, et al. VBM Reveals Brain Volume Differences between Parkinson's Disease and Essential Tremor Patients. Front Hum Neurosci. 2013;7:247.

22.    Radua J, Grau M, van den Heuvel OA, Thiebaut de Schotten M, Stein DJ, Canales-Rodriguez EJ, et al. Multimodal voxel-based meta-analysis of white matter abnormalities in obsessive-compulsive disorder. Neuropsychopharmacology. 2014;39(7):1547-57.

23.    Mechelli A, Price C, Friston K, Ashburner J. Voxel-Based Morphometry of the Human Brain: Methods and Applications2005; 1(1). Available from: https://www.fil.ion.ucl.ac.uk/spm/doc/papers/am_vbmreview.pdf.

24.    Scarpazza C, Simone MSD. Voxel-based morphometry: current perspectives. Neuroscience and Neuroeconomics. 2019;5:19-35.

25.    Fonseka TM, MacQueen GM, Kennedy SH. Neuroimaging biomarkers as predictors of treatment outcome in Major Depressive Disorder. J Affect Disord. 2018;233:21-35.

26.    Yuan C, Shi H, Pan P, Dai Z, Zhong J, Ma H, et al. Gray Matter Abnormalities Associated With Chronic Back Pain: A Meta-Analysis of Voxel-based Morphometric Studies. Clin J Pain. 2017;33(11):983-90.

27.    Mao C, Wei L, Zhang Q, Liao X, Yang X, Zhang M. Differences in brain structure in patients with distinct sites of chronic pain: A voxel-based morphometric analysis. Neural Regen Res. 2013;8(32):2981-90.

28.    Ung H, Brown JE, Johnson KA, Younger J, Hush J, Mackey S. Multivariate classification of structural MRI data detects chronic low back pain. Cereb Cortex. 2014;24(4):1037-44.

29.    Schmidt-Wilcke T, Leinisch E, Ganssbauer S, Draganski B, Bogdahn U, Altmeppen J, et al. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain. 2006;125(1-2):89-97.

30.    Pan PL, Zhong JG, Shang HF, Zhu YL, Xiao PR, Dai ZY, et al. Quantitative meta-analysis of grey matter anomalies in neuropathic pain. Eur J Pain. 2015;19(9):1224-31.

31.    Baliki MN, Schnitzer TJ, Bauer WR, Apkarian AV. Brain morphological signatures for chronic pain. PLoS One. 2011;6(10):e26010.

32.    Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410-5.

33.    Kregel J, Meeus M, Malfliet A, Dolphens M, Danneels L, Nijs J, et al. Structural and functional brain abnormalities in chronic low back pain: A systematic review. Semin Arthritis Rheum. 2015;45(2):229-37.

34.    Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci. 2009;29(44):13746-50.

35.    Sinding C, Gransjoen AM, Schlumberger G, Grushka M, Frasnelli J, Singh PB. Grey matter changes of the pain matrix in patients with burning mouth syndrome. Eur J Neurosci. 2016;43(8):997-1005.

36.    Khan SA, Keaser ML, Meiller TF, Seminowicz DA. Altered structure and function in the hippocampus and medial prefrontal cortex in patients with burning mouth syndrome. Pain. 2014;155(8):1472-80.

37.    Liao X, Mao C, Wang Y, Zhang Q, Cao D, Seminowicz DA, et al. Brain gray matter alterations in Chinese patients with chronic knee osteoarthritis pain based on voxel-based morphometry. Medicine (Baltimore). 2018;97(12):e0145.

38.    Buckalew N, Haut MW, Morrow L, Weiner D. Chronic pain is associated with brain volume loss in older adults: preliminary evidence. Pain Med. 2008;9(2):240-8.

39.    Valet M, Gundel H, Sprenger T, Sorg C, Muhlau M, Zimmer C, et al. Patients with pain disorder show gray-matter loss in pain-processing structures: a voxel-based morphometric study. Psychosom Med. 2009;71(1):49-56.

40.    Luchtmann M, Firsching R. Central plasticity resulting from chronic low back pain in degenerative disorders of the spine. Neural Regen Res. 2015;10(8):1234-6.

41.    Ruscheweyh R, Deppe M, Lohmann H, Stehling C, Floel A, Ringelstein EB, et al. Pain is associated with regional grey matter reduction in the general population. Pain. 2011;152(4):904-11.

42.    Whitten CE, Donovan M, Cristobal K. Treating chronic pain: new knowledge, more choices. Perm J. 2005;9(4):9-18.

43.    Hofmeister M, Memedovich A, Brown S, Saini M, Dowsett LE, Lorenzetti DL, et al. Effectiveness of Neurostimulation Technologies for the Management of Chronic Pain: A Systematic Review. Neuromodulation. 2019.

44.    Chung JW, Zeng Y, Wong TK. Drug therapy for the treatment of chronic nonspecific low back pain: systematic review and meta-analysis. Pain Physician. 2013;16(6):E685-704.

45.    Martell BA, O'Connor PG, Kerns RD, Becker WC, Morales KH, Kosten TR, et al. Systematic review: opioid treatment for chronic back pain: prevalence, efficacy, and association with addiction. Ann Intern Med. 2007;146(2):116-27.

46.    Enthoven WT, Roelofs PD, Deyo RA, van Tulder MW, Koes BW. Non-steroidal anti-inflammatory drugs for chronic low back pain. Cochrane Database Syst Rev. 2016;2:Cd012087.

47.    Chou R, Huffman LH. Medications for acute and chronic low back pain: a review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann Intern Med. 2007;147(7):505-14.

48.    Abdel Shaheed C, Maher CG, Williams KA, Day R, McLachlan AJ. Efficacy, Tolerability, and Dose-Dependent Effects of Opioid Analgesics for Low Back Pain: A Systematic Review and Meta-analysis. JAMA Intern Med. 2016;176(7):958-68.

49.    Hylands-White N, Duarte RV, Raphael JH. An overview of treatment approaches for chronic pain management. Rheumatol Int. 2017;37(1):29-42.

50.    Foster NE, Anema JR, Cherkin D, Chou R, Cohen SP, Gross DP, et al. Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet. 2018;391(10137):2368-83.

51.    Chaparro LE, Furlan AD, Deshpande A, Mailis-Gagnon A, Atlas S, Turk DC. Opioids compared to placebo or other treatments for chronic low-back pain. Cochrane Database Syst Rev. 2013(8):Cd004959.

52.    Kuritzky L, Samraj GP. Nonsteroidal anti-inflammatory drugs in the treatment of low back pain. J Pain Res. 2012;5:579-90.

53.    Busse JW, Schandelmaier S, Kamaleldin M, Hsu S, Riva JJ, Vandvik PO, et al. Opioids for chronic non-cancer pain: a protocol for a systematic review of randomized controlled trials. Syst Rev. 2013;2:66.

54.    Morales A, Yong RJ, Kaye AD, Urman RD. Spinal Cord Stimulation: Comparing Traditional Low-frequency Tonic Waveforms to Novel High Frequency and Burst Stimulation for the Treatment of Chronic Low Back Pain. Curr Pain Headache Rep. 2019;23(4):25.

55.    Deshpande A, Furlan A, Mailis-Gagnon A, Atlas S, Turk D. Opioids for chronic low-back pain. Cochrane Database Syst Rev. 2007(3):Cd004959.

56.    Kalso E, Edwards JE, Moore RA, McQuay HJ. Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain. 2004;112(3):372-80.

57.    Koes BW, Scholten RJ, Mens JM, Bouter LM. Efficacy of non-steroidal anti-inflammatory drugs for low back pain: a systematic review of randomised clinical trials. Ann Rheum Dis. 1997;56(4):214-23.

58.    Deer TR, Jain S, Hunter C, Chakravarthy K. Neurostimulation for Intractable Chronic Pain. Brain Sci. 2019;9(2).

59.    Knezevic NN, Mandalia S, Raasch J, Knezevic I, Candido KD. Treatment of chronic low back pain - new approaches on the horizon. J Pain Res. 2017;10:1111-23.

60.    Manchikanti L, Falco FJ, Singh V, Benyamin RM, Racz GB, Helm S, 2nd, et al. An update of comprehensive evidence-based guidelines for interventional techniques in chronic spinal pain. Part I: introduction and general considerations. Pain Physician. 2013;16(2 Suppl):S1-48.

61.    Manchikanti L, Abdi S, Atluri S, Benyamin RM, Boswell MV, Buenaventura RM, et al. An update of comprehensive evidence-based guidelines for interventional techniques in chronic spinal pain. Part II: guidance and recommendations. Pain Physician. 2013;16(2 Suppl):S49-283.

62.    Sivanesan E, Maher DP, Raja SN, Linderoth B, Guan Y. Supraspinal Mechanisms of Spinal Cord Stimulation for Modulation of Pain: Five Decades of Research and Prospects for the Future. Anesthesiology. 2019;130(4):651-65.

63.    Vannemreddy P, Slavin KV. Spinal cord stimulation: Current applications for treatment of chronic pain. Anesth Essays Res. 2011;5(1):20-7.

64.    Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation. 2014;17(6):515-50; discussion 50.

65.    Orlando M, Nichols T, Mandybur G. Mayfield Brain & Spine: Spinal Cord Stimulation2019. Available from: https://d3djccaurgtij4.cloudfront.net/pe-spinal-cord-stimulation.pdf.

66.    NICE. Senza spinal cord stimulationsystem for delivering HF10 therapy to treat chronic neuropathic pain: National Institute for Health and Care Excellence; 2019 [Available from: https://www.nice.org.uk/guidance/mtg41/resources/senza-spinal-cord-stimulation-system-for-delivering-hf10-therapy-to-treat-chronic-neuropathic-pain-pdf-64372050739141.

67.    Rock AK, Truong H, Park YL, Pilitsis JG. Spinal Cord Stimulation. Neurosurg Clin N Am. 2019;30(2):169-94.

68.    Linderoth B, Foreman RD. Conventional and Novel Spinal Stimulation Algorithms: Hypothetical Mechanisms of Action and Comments on Outcomes. Neuromodulation. 2017;20(6):525-33.

69.    Maheshwari A, Pope JE, Deer TR, Falowski S. Advanced methods of spinal stimulation in the treatment of chronic pain: pulse trains, waveforms, frequencies, targets, and feedback loops. Expert Rev Med Devices. 2019;16(2):95-106.

70.    Caylor J, Reddy R, Yin S, Cui C, Huang M, Huang C, et al. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med. 2019;5.

71.    Xu J, Liu A, Cheng J. New advancements in spinal cord stimulation for chronic pain management. Curr Opin Anaesthesiol. 2017;30(6):710-7.

72.    Shealy CN, Taslitz N, Mortimer JT, Becker DP. Electrical inhibition of pain: experimental evaluation. Anesth Analg. 1967;46(3):299-305.

73.    Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46(4):489-91.

74.    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971-9.

75.    Sclafani J, Leong M, Desai MJ, Mehta N, Sayed D, Singh JR. Conventional versus High-Frequency Neuromodulation in the Treatment of Low Back Pain Following Spine Surgery. Pm r. 2019;11(12):1346-53.

76.    Rapcan R, Mlaka J, Venglarcik M, Vinklerova V, Gajdos M, Illes R. High-frequency - Spinal Cord Stimulation. Bratisl Lek Listy. 2015;116(6):354-6.

77.    Levy R, Deer TR, Poree L, Rosen SM, Kapural L, Amirdelfan K, et al. Multicenter, Randomized, Double-Blind Study Protocol Using Human Spinal Cord Recording Comparing Safety, Efficacy, and Neurophysiological Responses Between Patients Being Treated With Evoked Compound Action Potential-Controlled Closed-Loop Spinal Cord Stimulation or Open-Loop Spinal Cord Stimulation (the Evoke Study). Neuromodulation. 2019;22(3):317-26.

78.    Arle JE, Mei L, Carlson KW, Shils JL. High-Frequency Stimulation of Dorsal Column Axons: Potential Underlying Mechanism of Paresthesia-Free Neuropathic Pain Relief. Neuromodulation. 2016;19(4):385-97.

79.    Ahmed S, Yearwood T, De Ridder D, Vanneste S. Burst and high frequency stimulation: underlying mechanism of action. Expert Rev Med Devices. 2018;15(1):61-70.

80.    Sankarasubramanian V, Harte SE, Chiravuri S, Harris RE, Brummett CM, Patil PG, et al. Objective Measures to Characterize the Physiological Effects of Spinal Cord Stimulation in Neuropathic Pain: A Literature Review. Neuromodulation. 2019;22(2):127-48.

81.    Jensen MP, Brownstone RM. Mechanisms of spinal cord stimulation for the treatment of pain: Still in the dark after 50 years. Eur J Pain. 2018.

82.    Vallejo R, Bradley K, Kapural L. Spinal Cord Stimulation in Chronic Pain: Mode of Action. Spine (Phila Pa 1976). 2017;42 Suppl 14:S53-s60.

83.    Bentley LD, Duarte RV, Furlong PL, Ashford RL, Raphael JH. Brain activity modifications following spinal cord stimulation for chronic neuropathic pain: A systematic review. Eur J Pain. 2016;20(4):499-511.

84.    Weigel R, Capelle HH, Flor H, Krauss JK. Event-related cortical processing in neuropathic pain under long-term spinal cord stimulation. Pain Physician. 2015;18(2):185-94.

85.    De Groote S, Goudman L, Peeters R, Linderoth B, Vanschuerbeek P, Sunaert S, et al. Magnetic Resonance Imaging Exploration of the Human Brain During 10 kHz Spinal Cord Stimulation for Failed Back Surgery Syndrome: A Resting State Functional Magnetic Resonance Imaging Study. Neuromodulation. 2019.

86.    Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, et al. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience. 2012;215:196-208.

87.    Song Z, Ansah OB, Meyerson BA, Pertovaara A, Linderoth B. Exploration of supraspinal mechanisms in effects of spinal cord stimulation: role of the locus coeruleus. Neuroscience. 2013;253:426-34.

88.    Linderoth B, Foreman RD. Physiology of spinal cord stimulation: review and update. Neuromodulation. 1999;2(3):150-64.

89.    Schlaier JR, Eichhammer P, Langguth B, Doenitz C, Binder H, Hajak G, et al. Effects of spinal cord stimulation on cortical excitability in patients with chronic neuropathic pain: a pilot study. Eur J Pain. 2007;11(8):863-8.

90.    Treede RD. Gain control mechanisms in the nociceptive system. Pain. 2016;157(6):1199-204.

91.    Santana MB, Halje P, Simplício H, Richter U, Freire MAM, Petersson P, et al. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron. 2014;84(4):716-22.

92.    Abboud H, Hill E, Siddiqui J, Serra A, Walter B. Neuromodulation in multiple sclerosis. Mult Scler. 2017;23(13):1663-76.

93.    Yadav AP, Nicolelis MAL. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson's disease. Mov Disord. 2017;32(6):820-32.

94.    Moens M, Mariën P, Brouns R, Poelaert J, De Smedt A, Buyl R, et al. Spinal cord stimulation modulates cerebral neurobiology: a proton magnetic resonance spectroscopy study. Neuroradiology. 2013;55(8):1039-47.

95.    De Groote S, De Jaeger M, Van Schuerbeek P, Sunaert S, Peeters R, Loeckx D, et al. Functional magnetic resonance imaging: cerebral function alterations in subthreshold and suprathreshold spinal cord stimulation. J Pain Res. 2018;11:2517-26.

96.    Moens M, Sunaert S, Marien P, Brouns R, De Smedt A, Droogmans S, et al. Spinal cord stimulation modulates cerebral function: an fMRI study. Neuroradiology. 2012;54(12):1399-407.

97.    Nagamachi S, Fujita S, Nishii R, Futami S, Wakamatsu H, Yano T, et al. Alteration of regional cerebral blood flow in patients with chronic pain--evaluation before and after epidural spinal cord stimulation. Ann Nucl Med. 2006;20(4):303-10.

98.    Kishima H, Saitoh Y, Oshino S, Hosomi K, Ali M, Maruo T, et al. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. Neuroimage. 2010;49(3):2564-9.

99.    Goudman L, Brouns R, De Groote S, De Jaeger M, Huysmans E, Forget P, et al. Association Between Spinal Cord Stimulation and Top-Down Nociceptive Inhibition in People With Failed Back Surgery Syndrome: A Cohort Study. Phys Ther. 2019;99(7):915-23.

100.  Sufianov AA, Shapkin AG, Sufianova GZ, Elishev VG, Barashin DA, Berdichevskii VB, et al. Functional and metabolic changes in the brain in neuropathic pain syndrome against the background of chronic epidural electrostimulation of the spinal cord. Bull Exp Biol Med. 2014;157(4):462-5.

101.  Maleki N, Becerra L, Brawn J, McEwen B, Burstein R, Borsook D. Common hippocampal structural and functional changes in migraine. Brain Struct Funct. 2013;218(4):903-12.

102.  Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci. 2011;31(20):7540-50.

103.  Hamm-Faber TE, Gultuna I, van Gorp EJ, Aukes H. High-Dose Spinal Cord Stimulation for Treatment of Chronic Low Back Pain and Leg Pain in Patients With FBSS, 12-Month Results: A Prospective Pilot Study. Neuromodulation. 2019.

104.  Orhurhu VJ, Chu R, Gill J. Failed Back Surgery Syndrome.  StatPearls. Treasure Island (FL): StatPearls Publishing

StatPearls Publishing LLC.; 2019.

105.  Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1-2):29-36.

106.  Timmerman H, Steegers MAH, Huygen F, Goeman JJ, van Dasselaar NT, Schenkels MJ, et al. Investigating the validity of the DN4 in a consecutive population of patients with chronic pain. PLoS One. 2017;12(11):e0187961.

107.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama. 2013;310(20):2191-4.

108.  Garcia K, Wray JK, Kumar S. Spinal Cord Stimulation.  StatPearls. Treasure Island (FL): StatPearls Publishing

Copyright © 2020, StatPearls Publishing LLC.; 2020.

109.  Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000;11(6 Pt 1):805-21.

110.  Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95-113.

111.  Greve D. An Absolute Beginner's Guide to Surface- and Voxel-Based Morphometric Analysis 2011 [Available from: https://cds.ismrm.org/protected/11MProceedings/files/ISMRM2011-8410.pdf.

112.  Sidhu MK, Duncan JS, Sander JW. Neuroimaging in epilepsy. Curr Opin Neurol. 2018;31(4):371-8.

113.  Yasuda CL, Betting LE, Cendes F. Voxel-based morphometry and epilepsy. Expert Rev Neurother. 2010;10(6):975-84.

114.  Palaniyappan L, Maayan N, Bergman H, Davenport C, Adams CE, Soares-Weiser K. Voxel-based morphometry for separation of schizophrenia from other types of psychosis in first episode psychosis. Cochrane Database Syst Rev. 2015(8):Cd011021.

115.  Mueller S, Keeser D, Reiser MF, Teipel S, Meindl T. Functional and structural MR imaging in neuropsychiatric disorders, part 2: application in schizophrenia and autism. AJNR Am J Neuroradiol. 2012;33(11):2033-7.

116.  Pan PL, Shi HC, Zhong JG, Xiao PR, Shen Y, Wu LJ, et al. Gray matter atrophy in Parkinson's disease with dementia: evidence from meta-analysis of voxel-based morphometry studies. Neurol Sci. 2013;34(5):613-9.

117.  Pavese N, Brooks DJ. Imaging neurodegeneration in Parkinson's disease. Biochim Biophys Acta. 2009;1792(7):722-9.

118.  Lai TH, Wang SJ. Neuroimaging Findings in Patients with Medication Overuse Headache. Curr Pain Headache Rep. 2018;22(1):1.

119.  Yang Q, Wang Z, Yang L, Xu Y, Chen LM. Cortical thickness and functional connectivity abnormality in chronic headache and low back pain patients. Hum Brain Mapp. 2017;38(4):1815-32.

120.  Gerber AJ, Peterson BS. What is an image? J Am Acad Child Adolesc Psychiatry. 2008;47(3):245-8.

121.  Kurth F, Gaser C, Luders E. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nat Protoc. 2015;10(2):293-304.

122.  Radua J, Canales-Rodriguez EJ, Pomarol-Clotet E, Salvador R. Validity of modulation and optimal settings for advanced voxel-based morphometry. Neuroimage. 2014;86:81-90.

123.  Haefeli M, Elfering A. Pain assessment. Eur Spine J. 2006;15 Suppl 1(Suppl 1):S17-24.

124.  Jensen MP, Chen C, Brugger AM. Interpretation of visual analog scale ratings and change scores: a reanalysis of two clinical trials of postoperative pain. J Pain. 2003;4(7):407-14.

125.  Karcioglu O, Topacoglu H, Dikme O. A systematic review of the pain scales in adults: Which to use? Am J Emerg Med. 2018;36(4):707-14.

126.  Chiarotto A, Maxwell LJ, Ostelo RW, Boers M, Tugwell P, Terwee CB. Measurement Properties of Visual Analogue Scale, Numeric Rating Scale, and Pain Severity Subscale of the Brief Pain Inventory in Patients With Low Back Pain: A Systematic Review. J Pain. 2019;20(3):245-63.

127.  Sedaghat AR. Understanding the Minimal Clinically Important Difference (MCID) of Patient-Reported Outcome Measures. Otolaryngol Head Neck Surg. 2019;161(4):551-60.

128.  Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain. 1983;16(1):87-101.

129.  Paul-Dauphin A, Guillemin F, Virion JM, Briancon S. Bias and precision in visual analogue scales: a randomized controlled trial. Am J Epidemiol. 1999;150(10):1117-27.

130.  Hjermstad MJ, Fayers PM, Haugen DF, Caraceni A, Hanks GW, Loge JH, et al. Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. J Pain Symptom Manage. 2011;41(6):1073-93.

131.  Arendt-Nielsen L, Morlion B, Perrot S, Dahan A, Dickenson A, Kress HG, et al. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur J Pain. 2018;22(2):216-41.

132.  Neblett R, Hartzell MM, Mayer TG, Cohen H, Gatchel RJ. Establishing Clinically Relevant Severity Levels for the Central Sensitization Inventory. Pain Pract. 2017;17(2):166-75.

133.  Leung L. Pain catastrophizing: an updated review. Indian J Psychol Med. 2012;34(3):204-17.

134.  Quartana PJ, Campbell CM, Edwards RR. Pain catastrophizing: a critical review. Expert Rev Neurother. 2009;9(5):745-58.

135.  Darnall BD, Sturgeon JA, Cook KF, Taub CJ, Roy A, Burns JW, et al. Development and Validation of a Daily Pain Catastrophizing Scale. J Pain. 2017;18(9):1139-49.

136.  Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O'Neill E. Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med. 1997;20(6):589-605.

137.  Cheng ST, Chen PP, Chow YF, Chung JWY, Law ACB, Lee JSW, et al. The Pain Catastrophizing Scale-short form: psychometric properties and threshold for identifying high-risk individuals. Int Psychogeriatr. 2019:1-10.

138.  Sullivan M. PCS Manual 2009 [Available from: https://sullivan-painresearch.mcgill.ca/pdf/pcs/PCSManual_English.pdf.

139.  Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193-213.

140.  Mccollum S. NASA: Actiwatch Spectrum System  [Available from: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=838.

141.  Shrivastava D, Jung S, Saadat M, Sirohi R, Crewson K. How to interpret the results of a sleep study. J Community Hosp Intern Med Perspect. 2014;4(5):24983.

142.  Mantua J, Gravel N, Spencer RM. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography. Sensors (Basel). 2016;16(5).

143.  Simopoulos TT, Gill JS. Magnetic resonance imaging of the lumbar spine in a patient with a spinal cord stimulator. Pain Physician. 2013;16(3):E295-300.

144.  Rubino S, Adepoju A, Kumar V, Prusik J, Murphy N, Owusu-Sarpong S, et al. MRI Conditionality in Patients with Spinal Cord Stimulation Devices. Stereotact Funct Neurosurg. 2016;94(4):254-8.

145.  Manfield J, Bartlett R, Park N. Safety and Utility of Spinal Magnetic Resonance Imaging in Patients with High-Frequency Spinal Cord Stimulators: A Prospective Single-Centre Study.  Stereotact Funct Neurosurg. 97. Switzerland: The Author(s). Published by S. Karger AG, Basel.; 2019. p. 272-7.

146.  Shellock FG, Audet-Griffin AJ. Evaluation of magnetic resonance imaging issues for a wirelessly powered lead used for epidural, spinal cord stimulation. Neuromodulation. 2014;17(4):334-9; discussion 9.

147.  Walsh KM, Machado AG, Krishnaney AA. Spinal cord stimulation: a review of the safety literature and proposal for perioperative evaluation and management. Spine J. 2015;15(8):1864-9.

148.  Moens M, Droogmans S, Spapen H, De Smedt A, Brouns R, Van Schuerbeek P, et al. Feasibility of cerebral magnetic resonance imaging in patients with externalised spinal cord stimulator. Clin Neurol Neurosurg. 2012;114(2):135-41.

149.  De Andres J, Martinez-Sanjuan V, Fabregat-Cid G, Asensio-Samper JM, Sanchis-Lopez N, Villanueva-Perez V. MRI-compatible spinal cord stimulator device and related changes in patient safety and imaging artifacts. Pain Med. 2014;15(10):1815-9.

150.  Nevro Corp  .   4040 Campbell Avenue SMP, CA 94025   USA. Nevro  ® Senza  ® Spinal Cord Stimulation System 1.5   Tesla   Magnetic Resonance   Imaging (MRI  ) Guidelines 2013 [Available from: https://s21.q4cdn.com/478267292/files/doc_downloads/manuals/europe/mri/10935-Rev-A-ENG-Nevro-Senza-SCS-MRI-Guidelines.pdf.

151.  De Groote S, Goudman L, Peeters R, Linderoth B, Van Schuerbeek P, Sunaert S, et al. The influence of High Dose Spinal Cord Stimulation on the descending pain modulatory system in patients with failed back surgery syndrome. Neuroimage Clin. 2019;24:102087.

152.  De Groote S, Goudman L, Van Schuerbeek P, Peeters R, Sunaert S, Linderoth B, et al. Abstract from Benelux Neuromodulation Society 2019 Scientific Meeting: Voxel-based morphometry of the human brain during Spinal Cord Stimulation in patients with Failed Back Surgery Syndrome. 2019.

153.  Ashburner J. Computational anatomy with the SPM software. Magn Reson Imaging. 2009;27(8):1163-74.

154.  Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci. 2009;29(31):9661-4.

155.  Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273-89.

156.  Luchtmann M, Baecke S, Steinecke Y, Bernarding J, Tempelmann C, Ragert P, et al. Changes in gray matter volume after microsurgical lumbar discectomy: a longitudinal analysis. Front Hum Neurosci. 2015;9:12.

157.  Luchtmann M, Steinecke Y, Baecke S, Lützkendorf R, Bernarding J, Kohl J, et al. Structural brain alterations in patients with lumbar disc herniation: a preliminary study. PLoS One. 2014;9(3):e90816.

158.  MarsBaR region of interest toolbox for SPM  [Available from: http://marsbar.sourceforge.net/.

159.  Neurofunctional Imaging Group - Université de Bordeaux: AAL / AAL2 / AAL3 2019 [Available from: http://www.gin.cnrs.fr/en/tools/aal/.

160.  NITRC: MRIcron: Tool/Resource Info: .zip posted by Chris Rorden on Dec 27, 2012; 2019 [Available from: https://www.nitrc.org/projects/mricron.

161.  Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage. 2019:116189.

162.  Ridgeway G. Get_Totals Script  [Available from: http://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m.

163.  Kim HY. Statistical notes for clinical researchers: Nonparametric statistical methods: 1. Nonparametric methods for comparing two groups. Restor Dent Endod. 2014;39(3):235-9.

164.  RStudio Team (2019), version 1.2.5001. RStudio: Integrated Development for R. RStudio, Inc., Boston 2020 [Available from: https://rstudio.com/.

165.  Bakdash J, Marusich L. CRAN - Package rmcorr 2018 [Available from: https://cran.r-project.org/web/packages/rmcorr/index.html.

166.  Bakdash JZ, Marusich LR. Repeated Measures Correlation. Front Psychol. 2017;8:456.

167.  Stawski RS, Sliwinski MJ, Hofer SM. Between-person and within-person associations among processing speed, attention switching, and working memory in younger and older adults. Exp Aging Res. 2013;39(2):194-214.

168.  Viswanath O, Urits I, Bouley E, Peck JM, Thompson W, Kaye AD. Evolving Spinal Cord Stimulation Technologies and Clinical Implications in Chronic Pain Management. Curr Pain Headache Rep. 2019;23(6):39.

169.  DiBenedetto DJ, Wawrzyniak KM, Schatman ME, Kulich RJ, Finkelman M. 10 kHz spinal cord stimulation: a retrospective analysis of real-world data from a community-based, interdisciplinary pain facility. J Pain Res. 2018;11:2929-41.

170.  Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, et al. Novel 10-kHz High-frequency Therapy (HF10 Therapy) Is Superior to Traditional Low-frequency Spinal Cord Stimulation for the Treatment of Chronic Back and Leg Pain: The SENZA-RCT Randomized Controlled Trial. Anesthesiology. 2015;123(4):851-60.

171.  Amirdelfan K, Yu C, Doust MW, Gliner BE, Morgan DM, Kapural L, et al. Long-term quality of life improvement for chronic intractable back and leg pain patients using spinal cord stimulation: 12-month results from the SENZA-RCT. Qual Life Res. 2018;27(8):2035-44.

172.  Stauss T, El Majdoub F, Sayed D, Surges G, Rosenberg WS, Kapural L, et al. A multicenter real-world review of 10 kHz SCS outcomes for treatment of chronic trunk and/or limb pain. Ann Clin Transl Neurol. 2019;6(3):496-507.

173.  Ghosh PE, Simopolous TT. A review of the Senza System: a novel, high frequency 10 kHz (HF10), paresthesia free spinal cord stimulator. Pain Manag. 2019;9(3):225-31.

174.  Song Z, Viisanen H, Meyerson BA, Pertovaara A, Linderoth B. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions. Neuromodulation. 2014;17(3):226-34; discussion 34-5.

175.  Abstracts from the 21st Annual Meeting of the North American Neuromodulation Society, Las Vegas, NV, USA January 11‐14, 2018. Neuromodulation: Technology at the Neural Interface. (21):e1-e149.

176.  Smallwood RF, Laird AR, Ramage AE, Parkinson AL, Lewis J, Clauw DJ, et al. Structural brain anomalies and chronic pain: a quantitative meta-analysis of gray matter volume. J Pain. 2013;14(7):663-75.

177.  Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry. 2009;195(5):393-402.

178.  Bishop JH, Shpaner M, Kubicki A, Clements S, Watts R, Naylor MR. Structural network differences in chronic muskuloskeletal pain: Beyond fractional anisotropy. Neuroimage. 2018;182:441-55.

179.  McCarberg B, Peppin J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. Pain Medicine. 2019.

180.  Price TJ, Inyang KE. Commonalities between pain and memory mechanisms and their meaning for understanding chronic pain. Prog Mol Biol Transl Sci. 2015;131:409-34.

181.  Apkarian AV, Mutso AA, Centeno MV, Kan L, Wu M, Levinstein M, et al. Role of adult hippocampal neurogenesis in persistent pain. Pain. 2016;157(2):418-28.

182.  Mutso AA, Petre B, Huang L, Baliki MN, Torbey S, Herrmann KM, et al. Reorganization of hippocampal functional connectivity with transition to chronic back pain. J Neurophysiol. 2014;111(5):1065-76.

183.  Mutso AA, Radzicki D, Baliki MN, Huang L, Banisadr G, Centeno MV, et al. Abnormalities in hippocampal functioning with persistent pain. J Neurosci. 2012;32(17):5747-56.

184.  Thompson JM, Neugebauer V. Cortico-limbic pain mechanisms. Neurosci Lett. 2019;702:15-23.

185.  Chong CD, Dumkrieger GM, Schwedt TJ. Structural Co-Variance Patterns in Migraine: A Cross-Sectional Study Exploring the Role of the Hippocampus. Headache. 2017;57(10):1522-31.

186.  Berger SE, Vachon-Presseau É, Abdullah TB, Baria AT, Schnitzer TJ, Apkarian AV. Hippocampal morphology mediates biased memories of chronic pain. Neuroimage. 2018;166:86-98.

187.  McEwen BS. Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann N Y Acad Sci. 2001;933:265-77.

188.  Liu MG, Chen J. Roles of the hippocampal formation in pain information processing. Neurosci Bull. 2009;25(5):237-66.

189.  Ziv M, Tomer R, Defrin R, Hendler T. Individual sensitivity to pain expectancy is related to differential activation of the hippocampus and amygdala. Hum Brain Mapp. 2010;31(2):326-38.

190.  Gondo M, Moriguchi Y, Kodama N, Sato N, Sudo N, Kubo C, et al. Daily physical complaints and hippocampal function: an fMRI study of pain modulation by anxiety. Neuroimage. 2012;63(3):1011-9.

191.  Greenwald JD, Shafritz KM. An Integrative Neuroscience Framework for the Treatment of Chronic Pain: From Cellular Alterations to Behavior. Front Integr Neurosci. 2018;12:18.

192.  Ploghaus A, Narain C, Beckmann CF, Clare S, Bantick S, Wise R, et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci. 2001;21(24):9896-903.

193.  Keller SS, Wilke M, Wieshmann UC, Sluming VA, Roberts N. Comparison of standard and optimized voxel-based morphometry for analysis of brain changes associated with temporal lobe epilepsy. Neuroimage. 2004;23(3):860-8.

194.  Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(1 Pt 1):21-36.

195.  al. Ae. SPM12 Manual - manual.pdf 2018 [Available from: https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf.

196.  Mak HK, Zhang Z, Yau KK, Zhang L, Chan Q, Chu LW. Efficacy of voxel-based morphometry with DARTEL and standard registration as imaging biomarkers in Alzheimer's disease patients and cognitively normal older adults at 3.0 Tesla MR imaging. J Alzheimers Dis. 2011;23(4):655-64.

197.  Mandal PK, Mahajan R, Dinov ID. Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. J Alzheimers Dis. 2012;31 Suppl 3(0 3):S169-88.

198.  Goldman M. Statistics for  Bioinformatics. 2008  [cited 25/10/2019]. Springer, [cited 25/10/2019]. Available from: https://www.stat.berkeley.edu/~mgoldman/Section0402.pdf.

199.  AAL3 User guide, edited by GIN (E5, IMN UMR 5293, CEA-CNRS-Université de Bordeaux) 2019 [Available from: http://www.gin.cnrs.fr/wp-content/uploads/aal3-user-guide-gin-imn.pdf.

200.  Depreitere B, Plets C, Van Loon J, Geens P. Sectional Anatomy of the Human Brain. 1st edition ed. Leuven: Acco; 2008.

 

Universiteit of Hogeschool
Geneeskunde
Publicatiejaar
2020
Promotor(en)
Prof. Dr. Maarten Moens
Kernwoorden
Share this on: