Screenen naar dodelijke ziektes met moleculaire sponzen

Jorid
Smets

VOS in ons dagelijks leven

We zien ze niet, maar ze zijn overal om ons heen: vluchtige organische stoffen (VOS). Deze onzichtbare componenten kunnen ons informatie verschaffen over de luchtkwaliteit, versheid van voedsel en zelfs over onze gezondheid. Dit laatste vraagt om wat uitleg: iedereen heeft een bepaalde samenstelling van VOS in zijn adem. Het is aangetoond dat ziektes zoals longkanker, multiple sclerose en vele andere de relatieve aanwezigheid van deze componenten in de ademlucht kunnen aanpassen. Deze ontdekking maakt het mogelijk om te screenen naar deze ziektes, door de VOS-vingerafdruk van een persoon te bepalen. Om deze screening vlot te laten verlopen is er nood aan snelle doch betrouwbare sensoren.

image-20200923145600-1

 

Werking van een sensor

Detectie van VOS met behulp van een sensor verloopt in drie stappen:

Eerst moeten de VOS geabsorbeerd worden in een materiaal. Vervolgens dient de absorptie van deze stoffen omgezet te worden in een signaal. Ten slotte moet dit signaal verwerkt worden tot de informatie die we nodig hebben. In dit geval is dit het signaal omzetten in een concentratie van een bepaalde VOS in de lucht.

Maar de detectie van VOS staat voor een aantal uitdagingen:

  1. Selectiviteit: Wat wordt er preferentieel geabsorbeerd?
  2. Sensitiviteit: Hoe gevoelig is de sensor voor een concentratieverandering van VOS?
  3. Responstijd: Hoe snel reageert de sensor?

 

Een high-tech materiaal laat verbeteringen toe

Een belangrijke stap in dit proces is een geschikt materiaal vinden. Voor deze functie gebruikten we een moleculaire spons of metaal-organisch rooster (MOF, metal-organic framework). Zoals de naam zegt bestaat dit materiaal uit twee soorten bouwstenen: organische moleculen en metaalatomen. Het metaal vormt de knooppunten die verbonden worden door de organische moleculen (linkers). Een goede manier om je dit in te beelden is door te denken aan het magnetisch speelgoed met metalen bolletjes die je kan verbinden door middel van plastieken staafjes. Bij een MOF worden de metaalatomen verbonden met linkers om zo een rooster te vormen. Deze structuur van MOF’s resulteert in enkele opmerkelijke eigenschappen:

  1. Groot intern oppervlak: Door de roosterstructuur is er een enorme hoeveelheid vrij oppervlak binnenin de MOF (vaak meer dan 1000m2/g). Een groot intern oppervlak resulteert in een grote capaciteit om stoffen de absorberen zoals een spons. Hierdoor is er relatief meer van de VOS aanwezig in de MOF dan in de te analyseren lucht, wat het eenvoudiger maakt om de stof te detecteren. Dit kunnen we begrijpen met behulp  van een gedachte-experiment: als je moet inschatten of er een kleurstof aanwezig is in een glas water is dit eenvoudiger indien er meer kleurstof wordt toegevoegd, aangezien in dit geval de kleur intenser is en dus het signaal sterker. Het concentrerend effect van MOF’s resulteert in hetzelfde voordeel. In technische termen wil dit zeggen dat de sensitiviteit van de sensor verbetert.
  2. Afstelbaarheid van het materiaal: We kunnen de eigenschappen van de MOF aanpassen om zo preferentieel een bepaalde VOS te absorberen. Deze aanpasbaarheid volgt uit het organisch deel: we hebben de enorme waaier aan organische stoffen om naar hartenlust de linker te kiezen en deze zo optimaal te laten interageren met een bepaalde VOS. Deze aanpasbaarheid staat ons toe om de selectiviteit van de sensor aan te passen.

image-20200923145600-2

 

Laag na laag dunne films bouwen

We weten al dat we metaal-organische roosters kunnen gebruiken om de VOS te absorberen. Nu hebben we nog een goede manier nodig om hiervan een dunne film te maken om dit later als sensor te kunnen gebruiken. Deze dunne films zijn belangrijk voor de snelheid waarmee de meting kan gebeuren: hoe dunner de film, hoe minder lang de VOS molecule moet reizen om aan te komen op zijn finale plaats. De dikte van de film heeft dus een invloed op wat we de responstijd van de sensor noemen.

Een interessante manier om dunne films te maken van MOF’s is via moleculaire laag afzetting. Denk nog eens terug aan het hierboven vermelde magnetisch speelgoed. Beeld je in dat we eerst een rooster van de metalen bolletjes op tafel leggen, vervolgens zetten we al deze bolletjes vol met staafjes waardoor ze verbonden worden. Hierna kunnen we op de vrije staafjes weer bolletjes afzetten, waarna opnieuw staafjes kunnen worden afgezet (zie figuur onderaan). We kunnen dit proces blijven herhalen en op deze manier wordt het rooster laag-na-laag opgebouwd.

Eén laag van metaal en linker is in de grootteorde van een nanometer (0.000000001m), we moeten dus een microscopisch (of zelfs nanoscopisch) equivalent vinden van het hierboven beschreven proces. Een oplossing is het metaal en de linker als gas te pulsen over het oppervlak waar we de MOF willen opbouwen. Door de procesomstandigheden zorgvuldig te kiezen kunnen we met elke puls een perfecte monolaag afzetten (een laag van exact één metaalatoom/linker dik). Door het afwisselend pulsen van metaal en linker, is het mogelijk om het rooster laag-na-laag op te bouwen. Het grootste voordeel van deze techniek is dat we zeer precies de dikte van onze MOF film kunnen kiezen, waardoor we een extreem dunne film met de gewenste eigenschappen kunnen produceren.

 

Van absorptie naar signaal

Het hart van de sensor is reeds klaar, nu is er een manier nodig om de absorptie van de VOS om te zetten in een signaal. Hiervoor zijn verschillende technieken beschikbaar, bijvoorbeeld gebaseerd op lichtinteractie, ultragevoelige weegschalen, elektronische methoden, etc. Deze technieken doen uiteindelijk hetzelfde: ze lezen de film uit om zo een signaal te bekomen waar we verdere bewerkingen op kunnen doen om de VOS concentraties te bepalen.

 

Besluit

We hebben enkele basisprincipes toegelicht die de werking van een sensor kunnen verbeteren. Hierbij hebben we gefocust op de eerste basisstap van de werking van een sensor (absorberen van VOS) en hebben we deze stap geoptimaliseerd door gebruik te maken van moleculaire laag afzetting van metaal-organische roosters. Een techniek als deze stelt ons in staat om snelle, sensitieve en selectieve detectie te doen van vluchtige organische stoffen, wat ons de mogelijkheid biedt om verscheidene processen op te volgen en zelfs te screenen naar dodelijke ziektes.

image 248

Bibliografie

(1)      Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444. https://doi.org/10.1126/science.1230444.

(2)      Hönicke, I. M.; Senkovska, I.; Bon, V.; Baburin, I. A.; Bönisch, N.; Raschke, S.; Evans, J. D.; Kaskel, S. Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angewandte Chemie International Edition 2018, 57 (42), 13780–13783. https://doi.org/10.1002/anie.201808240.

(3)      Sung Cho, H.; Deng, H.; Miyasaka, K.; Dong, Z.; Cho, M.; Neimark, A. V; Ku Kang, J.; Yaghi, O. M.; Terasaki, O. Extra Adsorption and Adsorbate Superlattice Formation in Metal-Organic Frameworks. Nature 2015, 527, 503.

(4)      Czaja, A. U.; Trukhan, N.; Müller, U. Industrial Applications of Metal–Organic Frameworks. Chemical Society Reviews 2009, 38 (5), 1284–1293. https://doi.org/10.1039/B804680H.

(5)      Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastré, J. Metal–Organic Frameworks—Prospective Industrial Applications. Journal of Materials Chemistry 2006, 16 (7), 626–636. https://doi.org/10.1039/B511962F.

(6)      Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329 (5990), 424 LP – 428. https://doi.org/10.1126/science.1192160.

(7)      Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300 (5622), 1127 LP – 1129. https://doi.org/10.1126/science.1083440.

(8)      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–Organic Framework Materials as Catalysts. Chemical Society Reviews 2009, 38 (5), 1450–1459. https://doi.org/10.1039/B807080F.

(9)      Haldoupis, E.; Nair, S.; Sholl, D. S. Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations. Journal of the American Chemical Society 2010, 132 (21), 7528–7539. https://doi.org/10.1021/ja1023699.

(10)    Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336 (6084), 1018 LP – 1023. https://doi.org/10.1126/science.1220131.

(11)    Krishtab, M.; Stassen, I.; Stassin, T.; Cruz, A. J.; Okudur, O. O.; Armini, S.; Wilson, C.; De Gendt, S.; Ameloot, R. Vapor-Deposited Zeolitic Imidazolate Frameworks as Gap-Filling Ultra-Low-k Dielectrics. Nature Communications 2019, 10 (1), 3729. https://doi.org/10.1038/s41467-019-11703-x.

(12)    Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An Updated Roadmap for the Integration of Metal–Organic Frameworks with Electronic Devices and Chemical Sensors. Chemical Society Reviews 2017, 46 (11), 3185–3241. https://doi.org/10.1039/C7CS00122C.

(13)    Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Large-Scale Screening of Hypothetical Metal–Organic Frameworks. Nature Chemistry 2012, 4 (2), 83–89. https://doi.org/10.1038/nchem.1192.

(14)    Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; John Wiley & Sons, 2019.

(15)    Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402 (6759), 276–279. https://doi.org/10.1038/46248.

(16)    Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications. Journal of Materials Chemistry A 2014, 2 (40), 16811–16831. https://doi.org/10.1039/C4TA02984D.

(17)    Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58–67. https://doi.org/10.1021/ar900116g.

(18)    Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58–67. https://doi.org/10.1021/ar900116g.

(19)    Zhu, Y.; Ciston, J.; Zheng, B.; Miao, X.; Czarnik, C.; Pan, Y.; Sougrat, R.; Lai, Z.; Hsiung, C.-E.; Yao, K.; Pinnau, I.; Pan, M.; Han, Y. Unravelling Surface and Interfacial Structures of a Metal–Organic Framework by Transmission Electron Microscopy. Nature Materials 2017, 16, 532.

(20)    International Zeolite Association. November 23, 2019.

(21)    Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933–969. https://doi.org/10.1021/cr200304e.

(22)    Sun, Y.; Zhou, H.-C. Recent Progress in the Synthesis of Metal-Organic Frameworks. Science and technology of advanced materials 2015, 16 (5), 54202. https://doi.org/10.1088/1468-6996/16/5/054202.

(23)    Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321–330. https://doi.org/10.1039/C0DT00708K.

(24)    Cravillon, J.; Münzer, S.; Lohmeier, S.-J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chemistry of Materials 2009, 21 (8), 1410–1412. https://doi.org/10.1021/cm900166h.

(25)    Vakili, R.; Xu, S.; Al-Janabi, N.; Gorgojo, P.; Holmes, S. M.; Fan, X. Microwave-Assisted Synthesis of Zirconium-Based Metal Organic Frameworks (MOFs): Optimization and Gas Adsorption. Microporous and Mesoporous Materials 2018, 260, 45–53. https://doi.org/10.1016/j.micromeso.2017.10.028.

(26)    Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580–2582. https://doi.org/10.1021/cm900069f.

(27)    Campagnol, N.; Assche, T. R. C. V.; Li, M.; Stappers, L.; Dincă, M.; Denayer, J. F. M.; Binnemans, K.; Vos, D. E. D.; Fransaer, J. On the Electrochemical Deposition of Metal–Organic Frameworks. J. Mater. Chem. A 2016, 4 (10), 3914–3925. https://doi.org/10.1039/C5TA10782B.

(28)    Campagnol, N.; Van Assche, T.; Boudewijns, T.; Denayer, J.; Binnemans, K.; De Vos, D.; Fransaer, J. High Pressure, High Temperature Electrochemical Synthesis of Metal–Organic Frameworks: Films of MIL-100 (Fe) and HKUST-1 in Different Morphologies. Journal of Materials Chemistry A 2013, 1 (19), 5827–5830. https://doi.org/10.1039/C3TA10419B.

(29)    Li, M.; Dincă, M. On the Mechanism of MOF-5 Formation under Cathodic Bias. Chem. Mater. 2015, 27 (9), 3203–3206. https://doi.org/10.1021/acs.chemmater.5b00899.

(30)    Li, M.; Dincă, M. Reductive Electrosynthesis of Crystalline Metal–Organic Frameworks. J. Am. Chem. Soc. 2011, 133 (33), 12926–12929. https://doi.org/10.1021/ja2041546.

(31)    Friščić, T.; Halasz, I.; Beldon, P. J.; Belenguer, A. M.; Adams, F.; Kimber, S. A. J.; Honkimäki, V.; Dinnebier, R. E. Real-Time and in Situ Monitoring of Mechanochemical Milling Reactions. Nature Chemistry 2013, 5 (1), 66–73. https://doi.org/10.1038/nchem.1505.

(32)    Friščić, T.; Reid, D. G.; Halasz, I.; Stein, R. S.; Dinnebier, R. E.; Duer, M. J. Ion- and Liquid-Assisted Grinding: Improved Mechanochemical Synthesis of Metal–Organic Frameworks Reveals Salt Inclusion and Anion Templating. Angewandte Chemie International Edition 2010, 49 (4), 712–715. https://doi.org/10.1002/anie.200906583.

(33)    Mottillo, C.; Lu, Y.; Pham, M.-H.; Cliffe, M. J.; Do, T.-O.; Friščić, T. Mineral Neogenesis as an Inspiration for Mild, Solvent-Free Synthesis of Bulk Microporous Metal-Organic Frameworks from Metal (Zn, Co) Oxides. Green Chem. 2013, 15 (8), 2121–2131. https://doi.org/10.1039/C3GC40520F.

(34)    Cliffe, M. J.; Mottillo, C.; Stein, R. S.; Bučar, D.-K.; Friščić, T. Accelerated Aging: A Low Energy, Solvent-Free Alternative to Solvothermal and Mechanochemical Synthesis of Metal-Organic Materials. Chem. Sci. 2012, 3 (8), 2495–2500. https://doi.org/10.1039/C2SC20344H.

(35)    Katsenis, A. D.; Puškarić, A.; Štrukil, V.; Mottillo, C.; Julien, P. A.; Užarević, K.; Pham, M.-H.; Do, T.-O.; Kimber, S. A. J.; Lazić, P.; Magdysyuk, O.; Dinnebier, R. E.; Halasz, I.; Friščić, T. In Situ X-Ray Diffraction Monitoring of a Mechanochemical Reaction Reveals a Unique Topology Metal-Organic Framework. Nature Communications 2015, 6 (1). https://doi.org/10.1038/ncomms7662.

(36)    Stassen, I.; De Vos, D.; Ameloot, R. Vapor-Phase Deposition and Modification of Metal–Organic Frameworks: State-of-the-Art and Future Directions. Chemistry – A European Journal 2016, 22 (41), 14452–14460. https://doi.org/10.1002/chem.201601921.

(37)    Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3 (1), 13–19. https://doi.org/10.1021/acscentsci.6b00277.

(38)    Suslick, K. S. Sonochemistry. Science 1990, 247 (4949), 1439 LP – 1445. https://doi.org/10.1126/science.247.4949.1439.

(39)    Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S. Sonochemical Synthesis of MOF-5. Chemical Communications 2008, No. 47, 6336–6338. https://doi.org/10.1039/B814740J.

(40)    Metal organic framework | Sigma-Aldrich https://www.sigmaaldrich.com/catalog/search?term=Metal+organic+framewor… (accessed Dec 10, 2019).

(41)    Bétard, A.; Fischer, R. A. Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055–1083. https://doi.org/10.1021/cr200167v.

(42)    Zacher, D.; Shekhah, O.; Wöll, C.; Fischer, R. A. Thin Films of Metal–Organic Frameworks. Chemical Society Reviews 2009, 38 (5), 1418–1429. https://doi.org/10.1039/B805038B.

(43)    Öztürk, Z.; Filez, M.; Weckhuysen, B. M. Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy. Chemistry - A European Journal 2017, 23 (45), 10915–10924. https://doi.org/10.1002/chem.201702130.

(44)    Frederick, E.; Shaw, T. W.; Frith, M. G.; Bernasek, S. L. Synthesis of a Surface Mounted Metal–Organic Framework on Gold Using a Au–Carbene Self-Assembled Monolayer Linkage. Materials Chemistry Frontiers 2019, 3 (4), 636–639. https://doi.org/10.1039/C8QM00527C.

(45)    Gliemann, H.; Wöll, C. Epitaxially Grown Metal-Organic Frameworks. Materials Today 2012, 15 (3), 110–116. https://doi.org/10.1016/S1369-7021(12)70046-9.

(46)    Häkkinen, H. The Gold–Sulfur Interface at the Nanoscale. Nature Chemistry 2012, 4, 443.

(47)    Hermes, S.; Schröder, F.; Chelmowski, R.; Wöll, C.; Fischer, R. A. Selective Nucleation and Growth of Metal−Organic Open Framework Thin Films on Patterned COOH/CF3-Terminated Self-Assembled Monolayers on Au(111). Journal of the American Chemical Society 2005, 127 (40), 13744–13745. https://doi.org/10.1021/ja053523l.

(48)    Zou, X.; Zhu, G.; Zhang, F.; Guo, M.; Qiu, S. Facile Fabrication of Metal–Organic Framework Films Promoted by Colloidal Seeds on Various Substrates. CrystEngComm 2010, 12 (2), 352–354. https://doi.org/10.1039/B912470E.

(49)    Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Wöll, C. Step-by-Step Route for the Synthesis of Metal−Organic Frameworks. Journal of the American Chemical Society 2007, 129 (49), 15118–15119. https://doi.org/10.1021/ja076210u.

(50)    Edwards, G. A.; Bergren, A. J.; Porter, M. D. 8 - Chemically Modified Electrodes; Zoski, C. G. B. T.-H. of E., Ed.; Elsevier: Amsterdam, 2007; pp 295–327. https://doi.org/10.1016/B978-044451958-0.50021-5.

(51)    Katsiaflaka, M.; Rossos, A.; Noei, H.; Koenig, E.; Bücker, R.; Miller, R. J. D. Atomically Thin Monolayers of Metal Organic Frameworks (MOFs) through Implementing a Langmuir-Schaefer Method. AIP Conference Proceedings 2018, 2022 (1), 20007. https://doi.org/10.1063/1.5060687.

(52)    Cui, C.; Liu, Y.; Xu, H.; Li, S.; Zhang, W.; Cui, P.; Huo, F. Self-Assembled Metal-Organic Frameworks Crystals for Chemical Vapor Sensing. Small 2014, 10 (18), 3672–3676. https://doi.org/10.1002/smll.201302983.

(53)    12 Principles of Green Chemistry - American Chemical Society https://www.acs.org/content/acs/en/greenchemistry/principles/12-princip… (accessed Dec 9, 2019).

(54)    Fischer, D.; Meyer, L. V; Jansen, M.; Müller-Buschbaum, K. Highly Luminescent Thin Films of the Dense Framework 3∞[EuIm2] with Switchable Transparency Formed by Scanning Femtosecond-Pulse Laser Deposition. Angewandte Chemie International Edition 2014, 53 (3), 706–710. https://doi.org/10.1002/anie.201305648.

(55)    Fischer, D.; von Mankowski, A.; Ranft, A.; Vasa, S. K.; Linser, R.; Mannhart, J.; Lotsch, B. V. ZIF-8 Films Prepared by Femtosecond Pulsed-Laser Deposition. Chemistry of Materials 2017, 29 (12), 5148–5155. https://doi.org/10.1021/acs.chemmater.7b00611.

(56)    Stassen, I.; Styles, M.; Grenci, G.; Gorp, H. V.; Vanderlinden, W.; Feyter, S. D.; Falcaro, P.; Vos, D. De; Vereecken, P.; Ameloot, R. Chemical Vapour Deposition of Zeolitic Imidazolate Framework Thin Films. Nature Materials 2015, 15, 304.

(57)    Cruz, A. J.; Stassen, I.; Krishtab, M.; Marcoen, K.; Stassin, T.; Rodríguez-Hermida, S.; Teyssandier, J.; Pletincx, S.; Verbeke, R.; Rubio-Giménez, V.; Tatay, S.; Marti-Gastaldo, C.; Meersschaut, J.; Vereecken, P. M.; De Feyter, S.; Hauffman, T.; Ameloot, R. An Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate Framework Thin Films. Chemistry of Materials 2019. https://doi.org/10.1021/acs.chemmater.9b03435.

(58)    Li, W.; Su, P.; Li, Z.; Xu, Z.; Wang, F.; Ou, H.; Zhang, J.; Zhang, G.; Zeng, E. Ultrathin Metal–Organic Framework Membrane Production by Gel–Vapour Deposition. Nat Commun 2017, 8 (1), 406. https://doi.org/10.1038/s41467-017-00544-1.

(59)    Stassin, T.; Rodríguez-Hermida, S.; Schrode, B.; Cruz, A. J.; Carraro, F.; Kravchenko, D.; Creemers, V.; Stassen, I.; Hauffman, T.; Vos, D. D.; Falcaro, P.; Resel, R.; Ameloot, R. Vapour-Phase Deposition of Oriented Copper Dicarboxylate Metal–Organic Framework Thin Films. Chem. Commun. 2019, 55 (68), 10056–10059. https://doi.org/10.1039/C9CC05161A.

(60)    Stassin, T.; Stassen, I.; Marreiros, J.; Cruz, A. J.; Verbeke, R.; Tu, M.; Reinsch, H.; Dickmann, M.; Egger, W.; Vankelecom, I.; De Vos, D.; Ameloot, R. Solvent-Free Powder Synthesis and MOF-CVD Thin Films of the Mesoporous Metal-Organic Framework MAF-6. 2019. https://doi.org/10.26434/chemrxiv.9860891.v1.

(61)    Salmi, L. D.; Heikkilä, M. J.; Vehkamäki, M.; Puukilainen, E.; Ritala, M.; Sajavaara, T. Studies on Atomic Layer Deposition of IRMOF-8 Thin Films. Journal of Vacuum Science & Technology A 2014, 33 (1), 01A121. https://doi.org/10.1116/1.4901455.

(62)    Salmi, L.; Heikkilä, M.; Puukilainen, E.; Sajavaara, T.; Grosso, D.; Ritala, M. Studies on Atomic Layer Deposition of MOF-5 Thin Films. Microporous and Mesoporous Materials 2013, 182, 147–154. https://doi.org/10.1016/j.micromeso.2013.08.024.

(63)    Weber, M.; Graniel, O.; Balme, S.; Miele, P.; Bechelany, M. On the Use of MOFs and ALD Layers as Nanomembranes for the Enhancement of Gas Sensors Selectivity. Nanomaterials 2019, 9 (11), 1552. https://doi.org/10.3390/nano9111552.

(64)    Lausund, K. B.; Nilsen, O. All-Gas-Phase Synthesis of UiO-66 through Modulated Atomic Layer Deposition. Nature Communications 2016, 7 (1), 13578. https://doi.org/10.1038/ncomms13578.

(65)    Lausund, K. B.; Petrovic, V.; Nilsen, O. All-Gas-Phase Synthesis of Amino-Functionalized UiO-66 Thin Films. Dalton Transactions 2017, 46 (48), 16983–16992. https://doi.org/10.1039/C7DT03518G.

(66)    Ahvenniemi, E.; Karppinen, M. Atomic/Molecular Layer Deposition: A Direct Gas-Phase Route to Crystalline Metal–Organic Framework Thin Films. Chemical Communications 2016, 52 (6), 1139–1142. https://doi.org/10.1039/C5CC08538A.

(67)    Tanskanen, A.; Karppinen, M. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition. Scientific Reports 2018, 8 (1), 8976. https://doi.org/10.1038/s41598-018-27124-7.

(68)    Han, S.; Ciufo, R. A.; Meyerson, M. L.; Keitz, B. K.; Mullins, C. B. Solvent-Free Vacuum Growth of Oriented HKUST-1 Thin Films. Journal of Materials Chemistry A 2019, 7 (33), 19396–19406. https://doi.org/10.1039/C9TA05179A.

(69)    Barbour, L. J. Crystal Porosity and the Burden of Proof. Chem. Commun. 2006, No. 11, 1163. https://doi.org/10.1039/b515612m.

(70)    Krause, K. M.; Thommes, M.; Brett, M. J. Pore Analysis of Obliquely Deposited Nanostructures by Krypton Gas Adsorption at 87K. Microporous and Mesoporous Materials 2011, 143 (1), 166–173. https://doi.org/10.1016/j.micromeso.2011.02.023.

(71)    Krause, K. M.; Taschuk, M. T.; Harris, K. D.; Rider, D. A.; Wakefield, N. G.; Sit, J. C.; Buriak, J. M.; Thommes, M.; Brett, M. J. Surface Area Characterization of Obliquely Deposited Metal Oxide Nanostructured Thin Films. Langmuir 2010, 26 (6), 4368–4376. https://doi.org/10.1021/la903444e.

(72)    Thomas, K. M. Adsorption and Desorption of Hydrogen on Metal–Organic Framework Materials for Storage Applications: Comparison with Other Nanoporous Materials. Dalton Trans. 2009, No. 9, 1487–1505. https://doi.org/10.1039/B815583F.

(73)    Interactive 3D Chemistry Animations https://www.chemtube3d.com/ (accessed Dec 10, 2019).

(74)    Ahvenniemi, E.; Karppinen, M. In Situ Atomic/Molecular Layer-by-Layer Deposition of Inorganic–Organic Coordination Network Thin Films from Gaseous Precursors. Chemistry of Materials 2016, 28 (17), 6260–6265. https://doi.org/10.1021/acs.chemmater.6b02496.

(75)    Khayyami, A.; Philip, A.; Karppinen, M. Atomic/Molecular Layer Deposited Iron–Azobenzene Framework Thin Films for Stimuli-Induced Gas Molecule Capture/Release. Angewandte Chemie International Edition 2019, 58 (38), 13400–13404. https://doi.org/10.1002/anie.201908164.

(76)    Weckman, T.; Laasonen, K. Atomic Layer Deposition of Zinc Oxide: Diethyl Zinc Reactions and Surface Saturation from First-Principles. The Journal of Physical Chemistry C 2016, 120 (38), 21460–21471. https://doi.org/10.1021/acs.jpcc.6b06141.

(77)    Tynell, T.; Karppinen, M. Atomic Layer Deposition of ZnO: A Review. Semicond. Sci. Technol. 2014, 29 (4), 043001. https://doi.org/10.1088/0268-1242/29/4/043001.

(78)    Venables, J. A. Introduction to Surface and Thin Film Processes; Cambridge University Press: Cambridge, 2000. https://doi.org/DOI: 10.1017/CBO9780511755651.

(79)    Lau, J.; Trojniak, A. E.; Maraugha, M. J.; VanZanten, A. J.; Osterbaan, A. J.; Serino, A. C.; Ohnsorg, M. L.; Cheung, K. M.; Ashby, D. S.; Weiss, P. S.; Dunn, B. S.; Anderson, M. E. Conformal Ultrathin Film Metal–Organic Framework Analogues: Characterization of Growth, Porosity, and Electronic Transport. Chemistry of Materials 2019, 31 (21), 8977–8986. https://doi.org/10.1021/acs.chemmater.9b03141.

(80)    Parsons, G. N. Functional Model for Analysis of ALD Nucleation and Quantification of Area-Selective Deposition. Journal of Vacuum Science & Technology A 2019, 37 (2), 20911. https://doi.org/10.1116/1.5054285.

(81)    Baji, Z.; Lábadi, Z.; Horváth, Z. E.; Molnár, G.; Volk, J.; Bársony, I.; Barna, P. Nucleation and Growth Modes of ALD ZnO. Crystal Growth & Design 2012, 12 (11), 5615–5620. https://doi.org/10.1021/cg301129v.

(82)    Zhan, G.; Zeng, H. C. Hydrogen Spillover through Matryoshka-Type (ZIFs@)N−1ZIFs Nanocubes. Nature Communications 2018, 9 (1), 3778. https://doi.org/10.1038/s41467-018-06269-z.

(83)    Falcaro, P.; Okada, K.; Hara, T.; Ikigaki, K.; Tokudome, Y.; Thornton, A. W.; Hill, A. J.; Williams, T.; Doonan, C.; Takahashi, M. Centimetre-Scale Micropore Alignment in Oriented Polycrystalline Metal–Organic Framework Films via Heteroepitaxial Growth. Nature Materials 2016, 16, 342.

(84)    Kwon, H. T.; Jeong, H.-K.; Lee, A. S.; An, H. S.; Lee, J. S. Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances. Journal of the American Chemical Society 2015, 137 (38), 12304–12311. https://doi.org/10.1021/jacs.5b06730.

(85)    Yao, M.-S.; Xiu, J.-W.; Huang, Q.-Q.; Li, W.-H.; Wu, W.-W.; Wu, A.-Q.; Cao, L.-A.; Deng, W.-H.; Wang, G.-E.; Xu, G. Van Der Waals Heterostructured MOF-on-MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing. Angewandte Chemie International Edition 2019, 58 (42), 14915–14919. https://doi.org/10.1002/anie.201907772.

(86)    Sholl, D. S.; Lively, R. P. Defects in Metal–Organic Frameworks: Challenge or Opportunity? The Journal of Physical Chemistry Letters 2015, 6 (17), 3437–3444. https://doi.org/10.1021/acs.jpclett.5b01135.

(87)    Kim, R.; Ryu, U.; Jee, S.; Choi, K. M. Surface Coating of MOF Layers on the Nanocrystals of Other MOFs Using Nanoparticle Mediated Nucleation for the Efficient Removal of Formaldehyde. Applied Surface Science 2019, 144612. https://doi.org/10.1016/j.apsusc.2019.144612.

(88)    MAZET, L.; Yang, S. M.; Kalinin, S.; Schamm-Chardon, S.; Dubourdieu, C. A Review of Molecular Beam Epitaxy of Ferroelectric BaTiO3 Films on Si, Ge and GaAs Substrates and Their Applications. Science and Technology of Advanced Materials 2015, 16 (3), 036005. https://doi.org/10.1088/1468-6996/16/3/036005.

(89)    Pizzini, S.; Cagnoni, P.; Sandrinelli, A.; Anderle, M.; Canteri, R. Grain Boundary Segregation of Oxygen and Carbon in Polycrystalline Silicon. Appl. Phys. Lett. 1987, 51 (9), 676–678. https://doi.org/10.1063/1.98331.

(90)    Avci, C.; Liu, Y.; Pariente, J. A.; Blanco, A.; Lopez, C.; Imaz, I.; Maspoch, D. Template-Free, Surfactant-Mediated Orientation of Self-Assembled Supercrystals of Metal–Organic Framework Particles. Small 2019, 15 (31), 1902520. https://doi.org/10.1002/smll.201902520.

(91)    American Cancer Society | Cancer Facts & Statistics. American Cancer Society | Cancer Facts & Statistics. November 22, 2019.

(92)    Cao, W.; Duan, Y. Breath Analysis: Potential for Clinical Diagnosis and Exposure Assessment. Clinical Chemistry 2006, 52 (5), 800 LP – 811. https://doi.org/10.1373/clinchem.2005.063545.

(93)    Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; Hilbe, W.; Weiss, W.; Lukas, P.; Jamnig, H.; Hackl, M.; Haidenberger, A.; Buszewski, B.; Miekisch, W.; Schubert, J.; Amann, A. Noninvasive Detection of Lung Cancer by Analysis of Exhaled Breath. BMC Cancer 2009, 9 (1), 348. https://doi.org/10.1186/1471-2407-9-348.

(94)    Chapman, E. A.; Thomas, P. S.; Stone, E.; Lewis, C.; Yates, D. H. A Breath Test for Malignant Mesothelioma Using an Electronic Nose. Eur Respir J 2012, 40 (2), 448–454. https://doi.org/10.1183/09031936.00040911.

(95)    Lamote, K.; Hiddinga, B.; van Cleemput, J.; Nackaerts, K.; Thas, O.; van Meerbeeck, J. P. A Breath Test for Diagnosing Malignant Pleural Mesothelioma. Annals of Oncology 2014, 25, iv543. https://doi.org/10.1093/annonc/mdu357.4.

(96)    Eggins, B. R. Chemical Sensors and Biosensors; Chichester : Wiley, 2006.

(97)    Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, M. I.; Kiener, C.; Moos, R. Metal-Organic Frameworks for Sensing Applications in the Gas Phase. Sensors . 2009. https://doi.org/10.3390/s90301574.

(98)    Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105–1125. https://doi.org/10.1021/cr200324t.

(99)    Campbell, G. M.; Dincă, M. Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors . 2017. https://doi.org/10.3390/s17051108.

(100) Fang, X.; Zong, B.; Mao, S. Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Letters 2018, 10 (4), 64. https://doi.org/10.1007/s40820-018-0218-0.

(101) Puiu, M.; Bala, C. SPR and SPR Imaging: Recent Trends in Developing Nanodevices for Detection and Real-Time Monitoring of Biomolecular Events. Sensors 2016, 16 (6), 870. https://doi.org/10.3390/s16060870.

(102) Matavž, A.; Bobnar, V.; Malič, B. Extrinsic Contributions to a Measured Dielectric Response: Seminar I. 2016.

(103) Yuan, H.; Tao, J.; Li, N.; Karmakar, A.; Tang, C.; Cai, H.; Pennycook, S. J.; Singh, N.; Zhao, D. On-Chip Tailorability of Capacitive Gas Sensors Integrated with Metal–Organic Framework Films. Angewandte Chemie International Edition 2019, 58 (40), 14089–14094. https://doi.org/10.1002/anie.201906222.

(104) Ciofi, I.; Baklanov, M. R.; Tőkei, Z.; Beyer, G. P. Capacitance Measurements and K-Value Extractions of Low-k Films. Microelectronic Engineering 2010, 87 (11), 2391–2406. https://doi.org/10.1016/j.mee.2010.04.014.

(105) Broadband Dielectric Spectroscopy; Kremer, F., Schönhals, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2003. https://doi.org/10.1007/978-3-642-56120-7.

(106) Kao, K. C. 2 - Electric Polarization and Relaxation. In Dielectric Phenomena in Solids; Kao, K. C., Ed.; Academic Press: San Diego, 2004; pp 41–114. https://doi.org/10.1016/B978-012396561-5/50012-8.

(107) Yassine, O.; Shekhah, O.; Assen, A. H.; Belmabkhout, Y.; Salama, K. N.; Eddaoudi, M. H2S Sensors: Fumarate-Based Fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode. Angewandte Chemie International Edition 2016, 55 (51), 15879–15883. https://doi.org/10.1002/anie.201608780.

(108) Combination of RT‐qPCR testing and clinical features for diagnosis of COVID‐19 facilitates management of SARS‐CoV‐2 outbreak https://onlinelibrary-wiley-com.kuleuven.ezproxy.kuleuven.be/doi/epdf/1… (accessed Apr 1, 2020).

(109) Wang, M.; Wu, Q.; Xu, W.; Qiao, B.; Wang, J.; Zheng, H.; Jiang, S.; Mei, J.; Wu, Z.; Deng, Y.; Zhou, F.; Wu, W.; Zhang, Y.; Lv, Z.; Huang, J.; Guo, X.; Feng, L.; Xia, Z.; Li, D.; Xu, Z.; Liu, T.; Zhang, P.; Tong, Y.; Li, Y. Clinical Diagnosis of 8274 Samples with 2019-Novel Coronavirus in Wuhan; preprint; Infectious Diseases (except HIV/AIDS), 2020. https://doi.org/10.1101/2020.02.12.20022327.

(110) Development and Clinical Application of A Rapid IgM‐IgG Combined Antibody Test for SARS‐CoV‐2 Infection Diagnosis https://onlinelibrary-wiley-com.kuleuven.ezproxy.kuleuven.be/doi/epdf/1… (accessed Apr 2, 2020).

(111) Bioeasy Novel Coronavirus (2019-nCoV) Test Kits - Bioeasy http://en.bioeasy.com.tr/bioeasy-novel-coronavirus-2019-ncov-test-kits/ (accessed Apr 2, 2020).

(112) Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Chen, Y.; Su, J.; Lang, G.; Li, Y.; Zhao, H.; Xu, K.; Ruan, L.; Wu, W. Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia. 29.

(113) Emanuel, E. J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J. P. Fair Allocation of Scarce Medical Resources in the Time of Covid-19. N Engl J Med 2020, NEJMsb2005114. https://doi.org/10.1056/NEJMsb2005114.

(114) Barbieri, C.; Darnis, J.-P. Technology: An Exit Strategy for COVID-19? 2020, 6.

(115) Nakhleh, M. K.; Amal, H.; Jeries, R.; Broza, Y. Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-Shai, L.; Glass-Marmor, L.; Lejbkowicz, I.; Miller, A.; Badarny, S.; Winer, R.; Finberg, J.; Cohen-Kaminsky, S.; Perros, F.; Montani, D.; Girerd, B.; Garcia, G.; Simonneau, G.; Nakhoul, F.; Baram, S.; Salim, R.; Hakim, M.; Gruber, M.; Ronen, O.; Marshak, T.; Doweck, I.; Nativ, O.; Bahouth, Z.; Shi, D.; Zhang, W.; Hua, Q.; Pan, Y.; Tao, L.; Liu, H.; Karban, A.; Koifman, E.; Rainis, T.; Skapars, R.; Sivins, A.; Ancans, G.; Liepniece-Karele, I.; Kikuste, I.; Lasina, I.; Tolmanis, I.; Johnson, D.; Millstone, S. Z.; Fulton, J.; Wells, J. W.; Wilf, L. H.; Humbert, M.; Leja, M.; Peled, N.; Haick, H. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano 2017, 11 (1), 112–125. https://doi.org/10.1021/acsnano.6b04930.

(116) B, S.; S, P.; M, D.; C, R.; J, D.; T, F.; R, R.; O, W. GIDVis: A Comprehensive Software Tool for Geometry-Independent Grazing-Incidence X-Ray Diffraction Data Analysis and Pole-Figure Calculations. Journal of Applied Crystallography 2019, 52 (3), 683–689. https://doi.org/10.1107/S1600576719004485.

(117) Roisnel, T.; Rodríquez-Carvajal, J. WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis /MSF.378-381.118 (accessed Apr 22, 2020). https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.

(118) Cappelletti, G.; Ardizzone, S.; Meroni, D.; Soliveri, G.; Ceotto, M.; Biaggi, C.; Benaglia, M.; Raimondi, L. Wettability of Bare and Fluorinated Silanes: A Combined Approach Based on Surface Free Energy Evaluations and Dipole Moment Calculations. Journal of Colloid and Interface Science 2013, 389 (1), 284–291. https://doi.org/10.1016/j.jcis.2012.09.008.

(119) Krüss. Two-Component Surface Energy Characterization as a Predictor of Wettability and Dispersability, 2000.

(120) Kazarian, S. G.; Chan, K. L. A. Micro- and Macro-Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Imaging: Plenary Lecture at the 5th International Conference on Advanced Vibrational Spectroscopy, 2009, Melbourne, Australia. Appl Spectrosc 2010, 64 (5), 135A-152A. https://doi.org/10.1366/000370210791211673.

(121) Nelis, J. Molecular Layer Deposition of Zeolitic Imidazolate Framework Films towards Integrated Applications, 2019.

(122) Gakis, G. P.; Vergnes, H.; Scheid, E.; Vahlas, C.; Caussat, B.; Boudouvis, A. G. Computational Fluid Dynamics Simulation of the ALD of Alumina from TMA and H2O in a Commercial Reactor. Chemical Engineering Research and Design 2018, 132, 795–811. https://doi.org/10.1016/j.cherd.2018.02.031.

(123) Ylilammi, M. Monolayer Thickness in Atomic Layer Deposition. Thin Solid Films 1996, 279 (1–2), 124–130. https://doi.org/10.1016/0040-6090(95)08159-3.

(124) Ylilammi, M. Mass Transport in Atomic Layer Deposition Carrier Gas Reactors. J. Electrochem. Soc. 1995, 142 (7), 2474. https://doi.org/10.1149/1.2044323.

(125) Malandrino, G. Chemical Vapour Deposition. Precursors, Processes and Applications. Edited by Anthony C. Jones and Michael L. Hitchman. Angewandte Chemie International Edition 2009, 48 (41), 7478–7479. https://doi.org/10.1002/anie.200903570.

(126) Mao, Y.; Su, B.; Cao, W.; Li, J.; Ying, Y.; Ying, W.; Hou, Y.; Sun, L.; Peng, X. Specific Oriented Metal–Organic Framework Membranes and Their Facet-Tuned Separation Performance. ACS Appl. Mater. Interfaces 2014, 6 (18), 15676–15685. https://doi.org/10.1021/am5049702.

(127) Tao, J.; Wang, X.; Sun, T.; Cai, H.; Wang, Y.; Lin, T.; Fu, D.; Ting, L. L. Y.; Gu, Y.; Zhao, D. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity. Sci Rep 2017, 7 (1), 41640. https://doi.org/10.1038/srep41640.

(128) Yeung, H. H.-M.; Sapnik, A. F.; Massingberd‐Mundy, F.; Gaultois, M. W.; Wu, Y.; Fraser, D. A. X.; Henke, S.; Pallach, R.; Heidenreich, N.; Magdysyuk, O. V.; Vo, N. T.; Goodwin, A. L. Control of Metal–Organic Framework Crystallization by Metastable Intermediate Pre-Equilibrium Species. Angewandte Chemie International Edition 2019, 58 (2), 566–571. https://doi.org/10.1002/anie.201810039.

(129) Huang, J.-K.; Saito, N.; Cai, Y.; Wan, Y.; Cheng, C.-C.; Li, M.; Shi, J.; Tamada, K.; Tung, V. C.; Li, S.; Li, L.-J. Steam-Assisted Chemical Vapor Deposition of Zeolitic Imidazolate Framework. ACS Materials Lett. 2020, 485–491. https://doi.org/10.1021/acsmaterialslett.0c00026.

(130) Ballinger, P.; Long, F. A. Acid Ionization Constants of Alcohols. II. Acidities of Some Substituted Methanols and Related Compounds1,2. J. Am. Chem. Soc. 1960, 82 (4), 795–798. https://doi.org/10.1021/ja01489a008.

(131) Ebel, K.; Koehler, H.; Gamer, A. O.; Jäckh, R. Imidazole and Derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; American Cancer Society, 2000. https://doi.org/10.1002/14356007.a13_661.

(132) Zhang, K.; Lively, R. P.; Dose, M. E.; Brown, A. J.; Zhang, C.; Chung, J.; Nair, S.; Koros, W. J.; Chance, R. R. Alcohol and Water Adsorption in Zeolitic Imidazolate Frameworks. Chem. Commun. 2013, 49 (31), 3245. https://doi.org/10.1039/c3cc39116g.

(133) Zhang, C.; Han, C.; Sholl, D. S.; Schmidt, J. R. Computational Characterization of Defects in Metal–Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8. J. Phys. Chem. Lett. 2016, 7 (3), 459–464. https://doi.org/10.1021/acs.jpclett.5b02683.

(134) Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of Metal-Organic Frameworks by Water Adsorption. Microporous and Mesoporous Materials 2009, 120 (3), 325–330. https://doi.org/10.1016/j.micromeso.2008.11.020.

(135) Zhang, K.; Lively, R. P.; Zhang, C.; Koros, W. J.; Chance, R. R. Investigating the Intrinsic Ethanol/Water Separation Capability of ZIF-8: An Adsorption and Diffusion Study. J. Phys. Chem. C 2013, 117 (14), 7214–7225. https://doi.org/10.1021/jp401548b.

(136) Lim, G.; Parrish, W.; Ortiz, C.; Bellotto, M.; Hart, M. Grazing Incidence Synchrotron X-Ray Diffraction Method for Analyzing Thin Films. J. Mater. Res. 1987, 2 (4), 471–477. https://doi.org/10.1557/JMR.1987.0471.

(137) Kunz, C. Synchrotron Radiation. 1974. https://doi.org/10.5170/CERN-1974-009-V-1.155.

(138) Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Horisberger, R.; Huelsen, G.; Pohl, E.; Schmitt, B.; Schulze-Briese, C.; Suzuki, M.; Tomizaki, T.; Toyokawa, H.; Wagner, A. The PILATUS 1M Detector. J Synchrotron Rad 2006, 13 (2), 120–130. https://doi.org/10.1107/S0909049505038665.

(139) Hughes, J. T.; Bennett, T. D.; Cheetham, A. K.; Navrotsky, A. Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity. J. Am. Chem. Soc. 2013, 135 (2), 598–601. https://doi.org/10.1021/ja311237m.

(140) Gross, A. F.; Sherman, E.; Vajo, J. J. Aqueous Room Temperature Synthesis of Cobalt and Zinc Sodalite Zeolitic Imidizolate Frameworks. Dalton Trans. 2012, 41 (18), 5458. https://doi.org/10.1039/c2dt30174a.

(141) Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of Metal–Organic Frameworks at the Mesoscopic/Macroscopic Scale. Chem. Soc. Rev. 2014, 43 (16), 5700–5734. https://doi.org/10.1039/C4CS00106K.

(142) Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface Nano-Architecture of a Metal–Organic Framework. Nature Mater 2010, 9 (7), 565–571. https://doi.org/10.1038/nmat2769.

(143) Sexton, B. A.; Hughes, A. E. A COMPARISON OF WEAK MOLECULAR ADSORPTION OF ORGANIC MOLECULES ON CLEAN COPPER AND PLATINUM SURFACES. 22.

(144) Bewig, K. W.; Zisman, W. A. The Wetting of Gold and Platinum by Water. J. Phys. Chem. 1965, 69 (12), 4238–4242. https://doi.org/10.1021/j100782a029.

(145) Hashem, T.; Valadez Sánchez, E. P.; Weidler, P. G.; Gliemann, H.; Alkordi, M. H.; Wöll, C. Liquid-Phase Quasi-Epitaxial Growth of Highly Stable, Monolithic UiO-66-NH2 MOF Thin Films on Solid Substrates. ChemistryOpen 2020, n/a (n/a). https://doi.org/10.1002/open.201900324.

(146) Zhong, G.; Liu, D.; Zhang, J. The Application of ZIF-67 and Its Derivatives: Adsorption, Separation, Electrochemistry and Catalysts. J. Mater. Chem. A 2018, 6 (5), 1887–1899. https://doi.org/10.1039/C7TA08268A.

(147) Eslava, S.; Zhang, L.; Esconjauregui, S.; Yang, J.; Vanstreels, K.; Baklanov, M. R.; Saiz, E. Metal-Organic Framework ZIF-8 Films as Low-κ Dielectrics in Microelectronics. Chem. Mater. 2013, 25 (1), 27–33. https://doi.org/10.1021/cm302610z.

(148) Eslava, S.; Baklanov, M. R.; Kirschhock, C. E. A.; Iacopi, F.; Aldea, S.; Maex, K.; Martens, J. A. Characterization of a Molecular Sieve Coating Using Ellipsometric Porosimetry. Langmuir 2007, 23 (26), 12811–12816. https://doi.org/10.1021/la7028388.

(149) Nalaparaju, A.; Zhao, X. S.; Jiang, J. W. Molecular Understanding for the Adsorption of Water and Alcohols in Hydrophilic and Hydrophobic Zeolitic Metal−Organic Frameworks. J. Phys. Chem. C 2010, 114 (26), 11542–11550. https://doi.org/10.1021/jp1033273.

(150) The Diffusion of Gases through Metals. Proc. R. Soc. Lond. A 1935, 150 (869), 172–197. https://doi.org/10.1098/rspa.1935.0095.

(151) Leddy, J.; Bard, A. J.; Maloy, J. T.; Savéant, J. M. Kinetics of Film-Coated Electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1985, 187 (2), 205–227. https://doi.org/10.1016/0368-1874(85)85779-8.

(152) Heinke, L.; Kärger, J. Correlating Surface Permeability with Intracrystalline Diffusivity in Nanoporous Solids. Phys. Rev. Lett. 2011, 106 (7), 074501. https://doi.org/10.1103/PhysRevLett.106.074501.

(153) Hibbe, F.; Chmelik, C.; Heinke, L.; Pramanik, S.; Li, J.; Ruthven, D. M.; Tzoulaki, D.; Kärger, J. The Nature of Surface Barriers on Nanoporous Solids Explored by Microimaging of Transient Guest Distributions. J. Am. Chem. Soc. 2011, 133 (9), 2804–2807. https://doi.org/10.1021/ja108625z.

(154) Heinke, L.; Gu, Z.; Wöll, C. The Surface Barrier Phenomenon at the Loading of Metal-Organic Frameworks. Nat Commun 2014, 5 (1), 4562. https://doi.org/10.1038/ncomms5562.

(155) Marreiros, J.; Dommelen, L. V.; Fleury, G.; Oliveira‐Silva, R. de; Stassin, T.; Iacomi, P.; Furukawa, S.; Sakellariou, D.; Llewellyn, P. L.; Roeffaers, M.; Ameloot, R. Vapor-Phase Linker Exchange of the Metal–Organic Framework ZIF-8: A Solvent-Free Approach to Post-Synthetic Modification. Angewandte Chemie International Edition 2019, 58 (51), 18471–18475. https://doi.org/10.1002/anie.201912088.

(156) Hughes, J. T.; Bennett, T. D.; Cheetham, A. K.; Navrotsky, A. Thermochemistry of Zeolitic Imidazolate Frameworks of Varying Porosity. Journal of the American Chemical Society 2013, 135 (2), 598–601. https://doi.org/10.1021/ja311237m.

Download scriptie (34.04 KB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2020
Promotor(en)
Rob Ameloot