Wat gekko’s en aardbevingen gemeen hebben

Evelyne
Ringoot

Met zijn plakkende pootjes loopt een klein hagedisachtig beestje over muren en plafonds aan een razend tempo: de gekko lijkt alle wetten van de fysica te tarten. Een even mysterieus proces vindt plaats in de aardkorst onder ons: tektonische platen schuiven over elkaar en veroorzaken zo aardbevingen. Hoe kunnen we deze bewegingen nu verklaren? De loopbeweging van de gekko vertoont verrassende gelijkenissen met de schuifbeweging van de tektonische platen. In beide gevallen zien we oppervlakken die loskomen en zich weer vasthechten. Een beter inzicht hierin laat toe om allerlei glijdende systemen beter te begrijpen. Van klimmende robots met plakkende voetjes, tot plakband om een hart te herstellen: de toepassingen zijn eindeloos.

image-20201004153220-1

Afbeelding ter illustratie: een gekko klimt omhoog door zijn klevende pootjes vast te hechten aan oppervlakken (bron https://unsplash.com/photos/DBwodkh8ong)

De gekko is een bijzonder beestje: het diertje hangt ondersteboven aan een plafond en kan zich 20 keer per seconde losmaken en verderop weer vasthechten. Wetenschappers proberen al lang om deze beweging te begrijpen en na te bootsen.  Robots met plakkende voetjes lopen vandaag al rond in de ruimte en inspecteren schepen onder water: gevaarlijke taken voor de mens. Ook voor de reparatie van een hart gebruiken dokters al plakkende strookjes. De precieze controle van de beweging van de plakkende pootjes en strookjes, is voorlopig echter een proces van ‘gissen en missen’.

Voor het onderzoek naar deze beweging in een labo, gebruiken we een soort plakkende stevige gels of zachte rubbers die we aan glas vastkleven. Na het vastkleven, wordt het plakkende materiaal losgetrokken. Zo kunnen we dan zien hoe dit strookje precies loskomt, waar en hoe het zichzelf weer vasthecht.

Afbeelding van een van de zachte plakkende materialen gebruikt voor onderzoek naar glijdende, plakkende systemen

image-20201004153220-2image-20201004153220-3

Verrassend genoeg vertoont deze beweging niet enkel gelijkenissen met gekko-pootjes. Ook wanneer in de aardkorst tektonische platen over elkaar schuiven, komen verliezen beide platen even contact en hechten ze zich even later weer vast. De bewegingen van tektonische platen zijn een van de oorzaken van aardbevingen. Dit beter begrijpen, zou dus heel wat mensenleed kunnen besparen.

Computersimulaties zorgen voor nieuwe inzichten

Experimenten met zachte plakkende materialen verraden dan wel meteen hoe een beweging plaatsvindt, ze beantwoorden helaas niet de vraag waarom dit gebeurt. We kunnen bijvoorbeeld niet zien welke krachten er op het materiaal werken. Mechanische formules in computersimulaties bieden wél een antwoord hierop. Met deze formules kunnen we berekenen hoeveel er binnenin het materiaal gedrukt wordt of hoeveel eraan getrokken wordt, op basis van hoe hard we trekken aan de zijkant van het materiaal. Omdat de oplossingen van deze formules benaderingen zijn, splitst de ‘eindige elementen methode’ het materiaal op in kleinere stukjes. Vergelijk het met een gebogen lijn die we benaderen met meerdere rechte lijnen: met één rechte lijn lukt het niet, maar naarmate we meer lijnen gebruiken, benaderen we de gebogen lijn beter.

Voor deze thesis is een eindig elementen model ontwikkeld dat de aanhechting van een zacht klevend materiaal aan glas weergeeft. Bijzondere oppervlakteformules, zogenaamde ‘cohesive laws’ bepalen wanneer een oppervlak loskomt. Gewoonlijk is deze breuk onomkeerbaar. In deze simulatie werd echter heraanhechting van het oppervlak toegelaten door de oppervlakteformules aan te passen.

Waarom heraanhechting zo belangrijk is

Heraanhechting blijkt cruciaal om de beweging correct te kunnen weergeven. De oorzaak hiervan is de beweging tijdens het loskomen van het materiaal. Het klevend materiaal komt eerst los bij het eind waaraan getrokken wordt. Als het verder loskomt, veroorzaakt de beweging van het loskomen een soort terugslag. Die terugslag is dan op zijn beurt de reden dat een deel van het oppervlak zich weer vasthecht.

image-20201004153220-4

In experimenten zien we dat de klevende materialen op twee verschillende manieren loskomen. De eerste manier is stabiel: het materiaal komt stukje per stukje los. De tweede manier daarentegen is instabiel: het volledige materiaal komt plots los. De simulaties verklaren nu hoe beide manieren ontstaan. Bij de stabiele manier van loskomen concentreren de trekkrachten zich op een deel van het oppervlak. Wanneer dit loskomt, gebeurt een terugslag die heraanhechting veroorzaakt. Bij de instabiele manier van loskomen, verspreiden trekkrachten zich over het volledige oppervlak. Wanneer dit volledig loskomt, gebeurt er geen terugslagbeweging en dus geen heraanhechting van het oppervlak. Welke manier van loskomen we observeren, hangt af van de eigenschappen van het materiaal zoals hoe makkelijk het vervormt of hoe sterk de aanhechting is.

image-20201004153220-5

 

Op naar betere klimmende robots en meer inzicht in aardbevingen

De unieke klimcapaciteiten van de gekko stelden de wetenschap lang voor een raadsel. Vele andere glijdende oppervlakken blijken gelijkaardige bewegingen te vertonen. Dankzij computersimulaties begrijpen we nu welke waarom en in welke omstandigheden zulke glijdende oppervlakken loskomen en zich nadien weer vastkleven. Hiermee kunnen we in de toekomst de manier van loskomen van klimmende robots of medische plakband preciezer manipuleren. Daar stopt het echter niet. We kunnen nu ook de vele andere glijdende oppervlakken beter begrijpen. Misschien kunnen we in de toekomst zelfs het ontstaan van aardbevingen door tektonische-plaatbewegingen verklaren…

Bibliografie

Rohan Abeyaratne. Continuum Mechanics: Volume II of Lecture Notes on the Mechanics of Solids, volume 2. Electronic Publication, Cambridge, MA 02139-4307, USA, 1 edition, 7 1988. ISBN 978-0-9791865-1-6. http://web.mit.edu/abeyaratne/Volumes/RCA_Vol_II.pdf [Accessed: 2020].

J. Ahrens, Berk Geveci, and Charles Law. Paraview: An end-user tool for large data visualization. Visualization Handbook, 01 2005.

Ammar A. Alsheghri and Rashid K. Abu Al-Rub. Thermodynamic-based cohesive zone healing model for self-healing materials. Mechanics Research Communications, 70:102 – 113, 2015. ISSN 0093-6413. doi: https://doi.org/10.1016/j.mechrescom.2015.10.003.

Ammar A. Alsheghri and Rashid K. Abu Al-Rub. Finite element implementation and application of a cohesive zone damage-healing model for self-healing materials. Engineering Fracture Mechanics, 163:1 – 22, 2016. ISSN 0013-7944. doi: https://doi.org/10.1016/j.engfracmech.2016.06.010.

Nicolas Amouroux, Jérôme Petit, and Liliane Léger. Role of interfacial resistance to shear stress on adhesive peel strength. Langmuir, 17(21):6510–6517, Oct 2001. ISSN 0743-7463. doi: 10.1021/la010146r.

Konstantinos N. Anyfantis and Nicholas G. Tsouvalis. A novel traction–separation law for the prediction of the mixed mode response of ductile adhesive joints. International Journal of Solids and Structures, 49(1):213 – 226, 2012. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2011.10.001.

K Autumn, A Dittmore, D Santos, M Spenko, and M Cutkosky. Frictional adhesion: A new angle on gecko attachment. The Journal of experimental biology, 209(Pt 18):3569—3579, September 2006. ISSN 0022-0949. doi: 10.1242/jeb.02486.

Kellar Autumn, Metin Sitti, Yiching A. Liang, Anne M. Peattie, Wendy R. Hansen, Simon Sponberg, Thomas W. Kenny, Ronald Fearing, Jacob N. Israelachvili, and Robert J. Full. Evidence for van der waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 99(19):12252–12256, 2002. ISSN 0027-8424. doi: 10.1073/pnas.192252799.

Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization Application. Kitware, Inc., USA, 2015. ISBN 1930934300, 9781930934306.

Sangyul Baik, Heon Joon Lee, Da Wan Kim, Ji Won Kim, Youngkwan Lee, and Changhyun Pang. Bioinspired adhesive architectures: From skin patch to integrated bioelectronics. Advanced Materials, 31(34):1803309, 2019. doi: 10.1002/adma.201803309.

E. Barthel and G. Haiat. Approximate model for the adhesive contact of viscoelastic spheres. Langmuir, 18(24):9362–9370, 2002. doi: 10.1021/la025959+.

Michael D. Bartlett, Andrew B. Croll, Daniel R. King, Beth M. Paret, Duncan J. Irschick, and Alfred J. Crosby. Looking beyond fibrillar features to scale gecko-like adhesion. Advanced Materials, 24(8):1078–1083, 2012. doi: 10.1002/adma.201104191.

T. Baumberger, C. Caroli, and O. Ronsin. Self-healing slip pulses and the friction of gelatin gels. The European Physical Journal E, 11(1):85–93, May 2003. ISSN 1292-8941. doi: 10.1140/epje/i2003-10009-7.

Tristan Baumberger, Christiane Caroli, and Olivier Ronsin. Self-healing slip pulses along a gel glass interface. Phys. Rev. Lett., 88:075509, Feb 2002. doi: 10.1103/PhysRevLett.88.075509.

Matthew R. Begley, Rachel R. Collino, Jacob N. Israelachvili, and Robert M. McMeeking. Peeling of a tape with large deformations and frictional sliding. Journal of the Mechanics and Physics of Solids, 61(5):1265 – 1279, 2013. ISSN 0022-5096. doi: https://doi.org/10.1016/j.jmps.2012.09.014.

A. Biel and U. Stigh. Cohesive zone modelling of nucleation, growth and coalesce of cavities. International Journal of Fracture, 204(2):159–174, Apr 2017. ISSN 1573-2673. doi: 10.1007/s10704-016-0168-9.

Guido Borino and Francesco Parrinello. Multiple surface cracking and debonding failure for thin thermal coatings. Procedia Structural Integrity, 18:866 – 874, 2019. ISSN 2452-3216. doi: https://doi.org/10.1016/j.prostr.2019.08.237. 25th International Conference on Fracture and Structural Integrity.

Silviya Boyadzhieva, Katharina Sorg, Martin Danner, Sarah C. L. Fischer, René Hensel, Bernhard Schick, Gentiana Wenzel, Eduard Arzt, and Klaus Kruttwig. A self-adhesive elastomeric wound scaffold for sensitive adhesion to tissue. Polymers, 11(6), 2019. ISSN 2073-4360. doi: 10.3390/polym11060942.

F. Brochard-Wyart and P.-G. de Gennes. Naive model for stick-slip processes. The European Physical Journal E, 23(4):439–444, Aug 2007. ISSN 1292-895X. doi: 10.1140/epje/i2007-10215-3.

D Brodoceanu, C T Bauer, E Kroner, E Arzt, and T Kraus. Hierarchical bioinspired adhesive surfaces—a review. Bioinspiration & Biomimetics, 11(5):051001, aug 2016. doi: 10.1088/1748-3190/11/5/051001.

G.T. Camacho and M. Ortiz. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 33(20):2899 – 2938, 1996. ISSN 0020-7683. doi: https://doi.org/10.1016/0020-7683(95)00255-3.

R.D.S.G. Campilho, M.D. Banea, J.A.B.P. Neto, and L.F.M. da Silva. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion and Adhesives, 44:48 – 56, 2013. ISSN 0143-7496. doi: https://doi.org/10.1016/j.ijadhadh.2013.02.006.

Q. H. Cheng, B. Chen, H. J. Gao, and Y. W. Zhang. Sliding-induced non-uniform pre-tension governs robust and reversible adhesion: a revisit of adhesion mechanisms of geckos. Journal of The Royal Society Interface, 9(67):283–291, 2012. doi: 10.1098/rsif.2011.0254.

Kilwon Cho, Daeho Lee, Tae Oan Ahn, Kyung Hoon Seo, and Han Mo Jeong. Adhesion behavior of pdms-containing polyimide to glass. Journal of Adhesion Science and Technology, 12(3):253–269, 1998. doi: 10.1163/156856198X00867.

Julien Chopin, Richard Villey, David Yarusso, Etienne Barthel, Costantino Creton, and Matteo Ciccotti. Nonlinear viscoelastic modeling of adhesive failure for polyacrylate pressure-sensitive adhesives. Macromolecules, 51(21):8605–8610, Nov 2018. ISSN 0024-9297. doi: 10.1021/acs.macromol.8b01374.

Marius Cocou, Mathieu Schryve, and Michel Raous. A dynamic unilateral contact problem with adhesion and friction in viscoelasticity. Zeitschrift für angewandte Mathematik und Physik, 61(4):721–743, Aug 2010. ISSN 1420-9039. doi: 10.1007/s00033-009-0027-x.

Tal Cohen, Chon U Chan, and L. Mahadevan. Competing failure modes in finite adhesive pads. Soft Matter, 14(10):1771–1779, 2018. ISSN 1744-683X, 1744-6848. doi: 10.1039/C7SM02378B.

Rachel R. Collino, Noah R. Philips, Michael N. Rossol, Robert M. McMeeking, and Matthew R. Begley. Detachment of compliant films adhered to stiff substrates via van der waals interactions: role of frictional sliding during peeling. Journal of The Royal Society Interface, 11(97):20140453, 2014. doi: 10.1098/rsif.2014.0453.

William M. Coombs, Tim J. Charlton, Michael Cortis, and Charles E. Augarde. Overcoming volumetric locking in material point methods. Computer Methods in Applied Mechanics and Engineering, 333:1 – 21, 2018. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2018.01.010.

Pierre-Philippe Cortet, Matteo Ciccotti, and Loïc Vanel. Imaging the stick-slip peeling of an adhesive tape under a constant load. Journal of Statistical Mechanics Theory and Experiment, 2007, 03 2007. doi: 10.1088/1742-5468/2007/03/P03005.

Pierre-Philippe Cortet, Marie-Julie Dalbe, Claudia Guerra, Caroline Cohen, Matteo Ciccotti, Stéphane Santucci, and Loïc Vanel. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller. Phys. Rev. E, 87:022601, Feb 2013. doi: 10.1103/PhysRevE.87.022601.

Costantino Creton and Matteo Ciccotti. Fracture and adhesion of soft materials: a review. Reports on Progress in Physics, 79(4):046601, mar 2016. doi: 10.1088/0034-4885/79/4/046601.

Andrew B. Croll, Nasibeh Hosseini, and Michael D. Bartlett. Switchable adhesives for multifunctional interfaces. Advanced Materials Technologies, 4(8):1900193, 2019. doi: 10.1002/admt.201900193.

Marie-Julie Dalbe, Pierre-Philippe Cortet, Matteo Ciccotti, Loic Vanel, and Stéphane Santucci. Multiscale stick-slip dynamics of adhesive tape peeling. Physical Review Letters, 115, 09 2015. doi: 10.1103/PhysRevLett.115.128301.

Saurabh Das, Sathya Chary, Jing Yu, John Tamelier, Kimberly L. Turner, and Jacob N. Israelachvili. Jkr theory for the stick–slip peeling and adhesion hysteresis of gecko mimetic patterned surfaces with a smooth glass surface. Langmuir, 29(48):15006–15012, Dec 2013. ISSN 0743-7463. doi: 10.1021/la403420f.

René de Borst and Clemens V. Verhoorsel. Damage, material instabilities and failure. In Ltd. John Wiley & Sons, editor, Encyclopedia of Computational Mechanics Second Edition, page 50. John Wiley & Sons Ltd., 2017.

Audelia G. Dharmawan, Priti Xavier, Hassan H. Hariri, Gim Song Soh, Avinash Baji, Roland Bouffanais, Shaohui Foong, Hong Yee Low, and Kristin L. Wood. Design, Modeling, and Experimentation of a Bio-Inspired Miniature Climbing Robot With Bilayer Dry Adhesives. Journal of Mechanisms and Robotics, 11(2), 02 2019. ISSN 1942-4302. doi: 10.1115/1.4042457. 020902.

R. Dimitri, M. Trullo, L. De Lorenzis, and G. Zavarise. Coupled cohesive zone models for mixed-mode fracture: A comparative study. Engineering Fracture Mechanics, 148:145 – 179, 2015. ISSN 0013-7944. doi: https://doi.org/10.1016/j.engfracmech.2015.09.029.

John Dolbow and Ted Belytschko. Volumetric locking in the element free galerkin method. International Journal for Numerical Methods in Engineering, 46(6):925–942, 1999. doi: 10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y.

Jeffrey Eisenhaure and Seok Kim. A review of the state of dry adhesives: Biomimetic structures and the alternative designs they inspire. Micromachines, 8(4):125, Apr 2017. ISSN 2072-666X. doi: 10.3390/mi8040125.

Jeffrey Eisenhaure and Seok Kim. High-strain shape memory polymers as practical dry adhesives. International Journal of Adhesion and Adhesives, 81:74 – 78, 2018. ISSN 0143-7496. doi: https://doi.org/10.1016/j.ijadhadh.2017.11.008.

M. Elices, G.V. Guinea, J. Gómez, and J. Planas. The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics, 69(2):137 – 163, 2002. ISSN 0013-7944. doi: https://doi.org/10.1016/S0013-7944(01)00083-2.

Walter Federle and David Labonte. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1784):20190199, 2019. doi: 10.1098/rstb.2019.0199.

Lorena M. Fernández-Cañadas, Inés Iváñez, and Sonia Sanchez-Saez. Influence of the cohesive law shape on the composite adhesively-bonded patch repair behaviour. Composites Part B: Engineering, 91:414 – 421, 2016. ISSN 1359-8368. doi: https://doi.org/10.1016/j.compositesb.2016.01.056.

Gaetano Festa, Jean-Pierre Vilotte, Michel Raous, and Carole Henninger. Scale-Dependent Friction and Damage Interface law: implications for effective earthquake rupture dynamics and radiation. In EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, page 11647, May 2010.

Toshinori Fujie, Noriyuki Matsutani, Manabu Kinoshita, Yosuke Okamura, Akihiro Saito, and Shinji Takeoka. Adhesive, flexible, and robust polysaccharide nanosheets integrated for tissue-defect repair. Advanced Functional Materials, 19(16):2560–2568, 2009. doi: 10.1002/adfm.200900103.

Y. Fukahori, P. Gabriel, and J.J.C. Busfield. How does rubber truly slide between schallamach waves and stick–slip motion? Wear, 269(11):854 – 866, 2010. ISSN 0043-1648. doi: https://doi.org/10.1016/j.wear.2010.08.016.

P. Gabriel, Y. Fukahori, A. G. Thomas, and J. J. C. Busfield. FEA MODELING OF SCHALLAMACH WAVES. Rubber Chemistry and Technology, 83(4):358–367, 12 2010. ISSN 0035-9475. doi: 10.5254/1.3481697.

J Galeano, P Español, and M. A Rubio. Experimental and theoretical results of stress relaxations in a model of earthquake dynamics. Europhysics Letters (EPL), 49(4):410–416, feb 2000. doi: 10.1209/epl/i2000-00164-y.

A. Galliano, S. Bistac, and J. Schultz. Adhesion and friction of pdms networks: molecular weight effects. Journal of Colloid and Interface Science, 265(2):372 – 379, 2003. ISSN 0021-9797. doi: https://doi.org/10.1016/S0021-9797(03)00458-2.

Kevin C. Galloway, Kaitlyn P. Becker, Brennan Phillips, Jordan Kirby, Stephen Licht, Dan Tchernov, Robert J. Wood, and David F. Gruber. Soft robotic grippers for biological sampling on deep reefs. Soft Robotics, 3(1):23–33, 2016. doi: 10.1089/soro.2015.0019.

Huajian Gao, Xiang Wang, Haimin Yao, Stanislav Gorb, and Eduard Arzt. Mechanics of hierarchical adhesion structures of geckos. Mechanics of Materials, 37(2):275 – 285, 2005. ISSN 0167-6636. doi: https://doi.org/10.1016/j.mechmat.2004.03.008. New Directions in Mechanics and Selected Articles in Micromechanics of Materials.

Ravinu Garg and Naresh V Datla. Peeling of heterogeneous thin films: Effect of bending stiffness, adhesion energy, and level of heterogeneity. The Journal of Adhesion, 95(3):169–186, 2019. doi: 10.1080/00218464.2017.1396215.

AK Geim, SV Dubonos, IV Grigorieva, KS Novoselov, AA Zhukov, and S Yu Shapoval. Microfabricated adhesive mimicking gecko foot-hair. Nature materials, 2(7):461—463, July 2003. ISSN 1476-1122. doi: 10.1038/nmat917.

Eric Gerde and M. Marder. Friction and fracture. Nature, 413(6853):285–288, Sep 2001. ISSN 1476-4687. doi: 10.1038/35095018.

Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79:1309 – 1331, 09 2009. doi: 10.1002/nme.2579.

Ana M. Girão Coelho. Finite element guidelines for simulation of delamination dominated failures in composite materials validated by case studies. Archives of Computational Methods in Engineering, 23(2):363–388, Jun 2016. ISSN 1886-1784. doi: 10.1007/s11831-015-9144-1.

Saipraneeth Gouravaraju, Roger A. Sauer, and Sachin Singh Gautam. On the presence of a critical detachment angle in gecko spatula peeling - a numerical investigation using an adhesive friction model. The Journal of Adhesion, 0(0):1–21, 2020. doi: 10.1080/00218464.2020.1746652.

Mark W. Grinstaff. Designing hydrogel adhesives for corneal wound repair. Biomaterials, 28(35):5205 – 5214, 2007. ISSN 0142-9612. doi: https://doi.org/10.1016/j.biomaterials.2007.08.041.

Zhen Gu, Siheng Li, Feilong Zhang, and Shutao Wang. Understanding surface adhesion in nature: A peeling model. Advanced Science, 3(7):1500327, 2016. doi: 10.1002/advs.201500327.

Jingyi Guo. Constitutive Modeling and Fracture Mechanics of a Self-Healing Hydrogel with Chemical and Physical Cross-Links. PhD thesis, Cornell, 2019.

Martin D. Hager. Self-healing Materials, chapter 9, pages 201–225. American Cancer Society, 2017. ISBN 9783527691036. doi: 10.1002/9783527691036.hsscvol6016.

F. L. Hammond, R. K. Kramer, Q. Wan, R. D. Howe, and R. J. Wood. Soft tactile sensor arrays for force feedback in micromanipulation. IEEE Sensors Journal, 14(5):1443–1452, 2014.

Liwen He, Jia Lou, Sritawat Kitipornchai, Jie Yang, and Jianke Du. Peeling mechanics of hyperelastic beams: Bending effect. International Journal of Solids and Structures, 167:184 – 191, 2019a. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2019.03.011.

Xiaocong He. A review of finite element analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives, 31(4):248 – 264, 2011. ISSN 0143-7496. doi: https://doi.org/10.1016/j.ijadhadh.2011.01.006.

Yiqian He, Di Zuo, Klaus Hackl, Haitian Yang, S. Jamaleddin Mousavi, and Stéphane Avril. Gradient-enhanced continuum models of healing in damaged soft tissues. Biomechanics and Modeling in Mechanobiology, 18(5):1443–1460, Oct 2019b. ISSN 1617-7940. doi: 10.1007/s10237-019-01155-z.

Thomas H. Heaton. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64(1):1 – 20, 1990. ISSN 0031-9201. doi: https://doi.org/10.1016/0031-9201(90)90002-F.

M. Heidari-Rarani and A.R. Ghasemi. Appropriate shape of cohesive zone model for delamination propagation in enf specimens with r-curve effects. Theoretical and Applied Fracture Mechanics, 90:174 – 181, 2017. ISSN 0167-8442. doi: https://doi.org/10.1016/j.tafmec.2017.04.009.

Ismail Honsali. Propagation of peeling finite adhesive pads. Master’s thesis, Ecole Polytechnique Federale de Lausanne, 2018.

Jen-Hsuan Hsiao, Jen-Yuan (James) Chang, and Chao-Min Cheng. Soft medical robotics: clinical and biomedical applications, challenges, and future directions. Advanced Robotics, 33(21):1099–1111, 2019. doi: 10.1080/01691864.2019.1679251.

Nguyen-Xuan Hung, Stéphane Pierre Alain Bordas, and Nguyen-Dang Hung. Addressing volumetric locking and instabilities by selective integration in smoothed finite elements. Communications in Numerical Methods in Engineering, 25(1):19–34, 2009. doi: 10.1002/cnm.1098.

Anthony R. Ingraffea and René de Borst. Computational fracture mechanics. In Ltd. John Wiley & Sons, editor, Encyclopedia of Computational Mechanics Second Edition, page 26. John Wiley & Sons Ltd., 2017.

A. Jagota, S. J. Bennison, and C. A. Smith. Analysis of a compressive shear test for adhesion between elastomeric polymers and rigid substrates. International Journal of Fracture, 104(2):105–130, Jul 2000. ISSN 1573-2673. doi: 10.1023/A:1007617102311.

Anand Jagota and Chung-Yuen Hui. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Materials Science and Engineering: R: Reports, 72(12):253 – 292, 2011. ISSN 0927-796X. doi: https://doi.org/10.1016/j.mser.2011.08.001.

Etelvina Javierre. Modeling self-healing mechanisms in coatings: Approaches and perspectives. Coatings, 9(2):122, Feb 2019. ISSN 2079-6412. doi: 10.3390/coatings9020122.

Jefferson, Anthony, Selvarajoo, Tharmesh, Freeman, Brubeck, and Davies, Robert. An experimental and numerical study on vascular self-healing cementitious materials. MATEC Web Conf., 289:01004, 2019. doi: 10.1051/matecconf/201928901004.

K. L. Johnson. Contact Mechanics. Cambridge University Press, 1985. doi: 10.1017/CBO9781139171731.

M. Karimi, H. Bayesteh, and S. Mohammadi. An adapting cohesive approach for crack-healing analysis in sma fiber-reinforced composites. Computer Methods in Applied Mechanics and Engineering, 349:550 – 575, 2019. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2019.02.019.

M. Khajeh Salehani, N. Irani, and L. Nicola. Modeling adhesive contacts under mixed-mode loading. Journal of the Mechanics and Physics of Solids, 130:320 – 329, 2019. ISSN 0022-5096. doi: https://doi.org/10.1016/j.jmps.2019.06.010.

H. Khoramishad, M. Hamzenejad, and R.S. Ashofteh. Characterizing cohesive zone model using a mixed-mode direct method. Engineering Fracture Mechanics, 153:175 – 189, 2016. ISSN 0013-7944. doi: https://doi.org/10.1016/j.engfracmech.2015.10.045.

Tae Kyung Kim, Jeong Koo Kim, and Ok Chan Jeong. Measurement of nonlinear mechanical properties of pdms elastomer. Microelectronic Engineering, 88(8):1982 – 1985, 2011a. ISSN 0167-9317. doi: 10.1016/j.mee.2010.12.108. Proceedings of the 36th International Conference on Micro- and Nano-Engineering (MNE).

Tae Kyung Kim, Jeong Koo Kim, and Ok Chan Jeong. Measurement of nonlinear mechanical properties of pdms elastomer. Microelectronic Engineering, 88(8):1982 – 1985, 2011b. ISSN 0167-9317. doi: https://doi.org/10.1016/j.mee.2010.12.108. Proceedings of the 36th International Conference on Micro- and Nano-Engineering (MNE).

Wolfgang G. Knauss. A review of fracture in viscoelastic materials. International Journal of Fracture, 196(1):99–146, Nov 2015. ISSN 1573-2673. doi: 10.1007/s10704-015-0058-6.

Jayaprakash Krishnasamy, Sathiskumar A. Ponnusami, Sergio Turteltaub, and Sybrand van der Zwaag. Modelling the fracture behaviour of thermal barrier coatings containing healing particles. Materials & Design, 157:75 – 86, 2018. ISSN 0264-1275. doi: https://doi.org/10.1016/j.matdes.2018.07.026.

G. J. Lake and A. Stevenson. Wave phenomena in low angle peeling. The Journal of Adhesion, 12(1):13–22, 1981. doi: 10.1080/00218468108071185.

Sung Ho Lee, Insol Hwang, Bong Su Kang, Hoon Eui Jeong, and Moon Kyu Kwak. Highly flexible and self-adaptive dry adhesive end-effectors for precision robotics. Soft Matter, 15:5827–5834, 2019. doi: 10.1039/C9SM00431A.

J. Lengiewicz, M. de Souza, M.A. Lahmar, C. Courbon, D. Dalmas, S. Stupkiewicz, and J. Scheibert. Finite deformations govern the anisotropic shear-induced area reduction of soft elastic contacts. Journal of the Mechanics and Physics of Solids, 143:104056, Oct 2020. ISSN 0022-5096. doi: 10.1016/j.jmps.2020.104056.

Tamran H. Lengyel, Yuan Qi, Peter Schiavone, and Rong Long. Interface crack between a compressible elastomer and a rigid substrate with finite slippage. Journal of the Mechanics and Physics of Solids, 90:142 – 159, 2016. ISSN 0022-5096. doi: https://doi.org/10.1016/j.jmps.2016.02.006.

Yasong Li, Jeffrey Krahn, and Carlo Menon. Bioinspired dry adhesive materials and their application in robotics: A review. Journal of Bionic Engineering, 13(2):181 – 199, 2016. ISSN 1672-6529. doi: https://doi.org/10.1016/S1672-6529(16)60293-7.

Yu-Yun Lin and C. Y. Hui. Mechanics of contact and adhesion between viscoelastic spheres: An analysis of hysteresis during loading and unloading. Journal of Polymer Science Part B: Polymer Physics, 40(9):772–793, 2002. doi: 10.1002/polb.10140.

Zezhou Liu, Helen Minsky, Costantino Creton, Matteo Ciccotti, and Chung-Yuen Hui. Mechanics of zero degree peel test on a tape — effects of large deformation, material nonlinearity, and finite bond length. Extreme Mechanics Letters, 32:100518, 2019. ISSN 2352-4316. doi: https://doi.org/10.1016/j.eml.2019.100518.

Satoru Maegawa and Ken Nakano. Mechanism of stick-slip associated with schallamach waves. Wear, 268(7):924 – 930, 2010. ISSN 0043-1648. doi: https://doi.org/10.1016/j.wear.2009.12.018.

Satoru Maegawa, Fumihiro Itoigawa, and Takashi Nakamura. Dynamics in sliding friction of soft adhesive elastomer: Schallamach waves as a stress-relaxation mechanism. Tribology International, 96:23 – 30, 2016. ISSN 0301-679X. doi: https://doi.org/10.1016/j.triboint.2015.11.034.

Spandan Maiti and Philippe H. Geubelle. Cohesive modeling of fatigue crack retardation in polymers: Crack closure effect. Engineering Fracture Mechanics, 73(1):22 – 41, 2006. ISSN 0013-7944. doi: https://doi.org/10.1016/j.engfracmech.2005.07.005.

G. Marckmann and E. Verron. Comparison of hyperelastic models for rubber-like materials. Rubber Chemistry and Technology, 79(5):835–858, 2006. doi: 10.5254/1.3547969.

P. A. L. S. Martins, R. M. Natal Jorge, and A. J. M. Ferreira. A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain, 42(3):135–147, 2006. doi: 10.1111/j.1475-1305.2006.00257.x.

Luthfi M. Mauludin, Xiaoying Zhuang, and Timon Rabczuk. Computational modeling of fracture in encapsulation-based self-healing concrete using cohesive elements. Composite Structures, 196:63 – 75, 2018. ISSN 0263-8223. doi: https://doi.org/10.1016/j.compstruct.2018.04.066.

J. Patrick McGarry, Eamonn O Mairtin, Guillaume Parry, and Glenn E. Beltz. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. part i: Theoretical analysis. Journal of the Mechanics and Physics of Solids, 63:336 – 362, 2014. ISSN 0022-5096. doi: https://doi.org/10.1016/j.jmps.2013.08.020.

Edvin Memet, Feodor Hilitski, Zvonimir Dogic, and L. Mahadevan. Static adhesion hysteresis in elastic structures, 2020.

C. Menon, M. Murphy, and M. Sitti. Gecko inspired surface climbing robots. In 2004 IEEE International Conference on Robotics and Biomimetics, pages 431–436, Aug 2004. doi: 10.1109/ROBIO.2004.1521817.

Janine C. Mergel, Riad Sahli, Julien Scheibert, and Roger A. Sauer. Continuum contact models for coupled adhesion and friction. The Journal of Adhesion, 95(12):1101–1133, 2019. doi: 10.1080/00218464.2018.1479258.

Janine C. Mergel, Julien Scheibert, and Roger A. Sauer. Contact with coupled adhesion and friction: Computational framework, applications, and new insights, 2020.

Nachiketa Mishra, Nigam Chandra Parida, and Soumyendu Raha. Time scales of the stick slip dynamics of the peeling of an adhesive tape. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2174):20140399, 2015a. doi: 10.1098/rspa.2014.0399.

Nachiketa Mishra, Nigam Chandra Parida, and Soumyendu Raha. Time scales of the stick–slip dynamics of the peeling of an adhesive tape. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2174):20140399, Feb 2015b. ISSN 1471-2946. doi: 10.1098/rspa.2014.0399.

A. Mitchell and David Griffiths. The Finite Difference Method in Partial Differential Equations. Wiley, 01 1980.

Idris Mohammed, Maria Charalambides, and Anthony Kinloch. Modelling the peeling of a pressure sensitive adhesive film using cohesive zones. ResearchGate, 03 2013.

Idris K. Mohammed, Anthony J. Kinloch, and Maria N. Charalambides. Modelling the peeling behavior of soft adhesives. Procedia Structural Integrity, 2:326 – 333, 2016. ISSN 2452-3216. doi: https://doi.org/10.1016/j.prostr.2016.06.042. 21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy.

Ahmad R. Mojdehi, Douglas P. Holmes, and David A. Dillard. Revisiting the generalized scaling law for adhesion: role of compliance and extension to progressive failure. Soft Matter, 13:7529–7536, 2017a. doi: 10.1039/C7SM01098B.

Ahmad R. Mojdehi, Douglas P. Holmes, and David A. Dillard. Friction of extensible strips: An extended shear lag model with experimental evaluation. International Journal of Solids and Structures, 124:125 – 134, 2017b. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2017.06.021.

Rabibrata Mukherjee and Ashutosh Sharma. Instability, self-organization and pattern formation in thin soft films. Soft Matter, 11:8717–8740, 2015. doi: 10.1039/C5SM01724F.

Angelina Müller, Matthias C. Wapler, and Ulrike Wallrabe. A quick and accurate method to determine the poisson’s ratio and the coefficient of thermal expansion of pdms. Soft Matter, 15:779–784, 2019. doi: 10.1039/C8SM02105H.

Ken Nakano and Satoru Maegawa. Stick-slip in sliding systems with tangential contact compliance. Tribology International, 42(11):1771 – 1780, 2009. ISSN 0301-679X. doi: https://doi.org/10.1016/j.triboint.2009.04.039. Special Issue: 35th Leeds-Lyon Symposium.

Hadi Noori, Mukesh Jain, Kent Nielsen, and Frank Brandys. Significance of peel test speed on interface strength in cohesive zone modeling. The Journal of Adhesion, 92(1):39–51, 2016. doi: 10.1080/00218464.2014.993755.

M. Ortiz and A. Pandolfi. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 44(9):1267–1282, 1999. doi: 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7.

Chahmi Oucif and Luthfi Mauludin. Continuum damage-healing and super healing mechanics in brittle materials: A state-of-the-art review. Applied Sciences, 8(12):2350, Nov 2018. ISSN 2076-3417. doi: 10.3390/app8122350.

Shingo Ozaki, Toshio Osada, and Wataru Nakao. Finite element analysis of the damage and healing behavior of self-healing ceramic materials. International Journal of Solids and Structures, 100-101:307 – 318, 2016. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2016.08.026.

Veli Ozbolat, Madhuri Dey, Bugra Ayan, Adomas Povilianskas, Melik C. Demirel, and Ibrahim T. Ozbolat. 3d printing of pdms improves its mechanical and cell adhesion properties. ACS Biomaterials Science and Engineering, 4(2):682–693, February 2018. ISSN 2373-9878. doi: 10.1021/acsbiomaterials.7b00646.

R. D. O’Rorke, T. W. J. Steele, and H. K. Taylor. Bioinspired fibrillar adhesives: a review of analytical models and experimental evidence for adhesion enhancement by surface patterns. Journal of Adhesion Science and Technology, 30(4):362–391, 2016. doi: 10.1080/01694243.2015.1101183.

Xia-Hui Pan, Shi-Qing Huang, Shou-Wen Yu, and Xi-Qiao Feng. Interfacial slippage effect on the surface instability of a thin elastic film under van der waals force. Journal of Physics D: Applied Physics, 42(5):055302, feb 2009. doi: 10.1088/0022-3727/42/5/055302.

A. Papangelo and M. Ciavarella. On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials. Journal of the Mechanics and Physics of Solids, 124:159 – 171, 2019. ISSN 0022-5096. doi: https://doi.org/10.1016/j.jmps.2018.10.011.

Kyoungsoo Park and Glaucio H. Paulino. Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces. Applied Mechanics Reviews, 64(6), 02 2013. ISSN 0003-6900. doi: 10.1115/1.4023110. 060802.

Kyoungsoo Park, Glaucio H. Paulino, and Jeffery R. Roesler. A unified potential-based cohesive model of mixed-mode fracture. Journal of the Mechanics and Physics of Solids, 57(6):891 – 908, 2009. ISSN 0022-5096. doi: https://doi.org/10.1016/j.jmps.2008.10.003.

Zhilong Peng and Shaohua Chen. Effect of bending stiffness on the peeling behavior of an elastic thin film on a rigid substrate. Phys. Rev. E, 91:042401, Apr 2015. doi: 10.1103/PhysRevE.91.042401.

Zhilong Peng, Hanbin Yin, Yin Yao, and Shaohua Chen. Effect of thin-film length on the peeling behavior of film-substrate interfaces. Phys. Rev. E, 100:032804, Sep 2019. doi: 10.1103/PhysRevE.100.032804.

Noshir S. Pesika, Yu Tian, Boxin Zhao, Kenny Rosenberg, Hongbo Zeng, Patricia McGuiggan, Kellar Autumn, and Jacob N. Israelachvili. Peel-zone model of tape peeling based on the gecko adhesive system. The Journal of Adhesion, 83(4):383–401, 2007. doi: 10.1080/00218460701282539.

J.-M. Piau, G. Ravilly, and C. Verdier. Peeling of polydimethylsiloxane adhesives at low velocities: Cohesive failure. Journal of Polymer Science Part B: Polymer Physics, 43(2):145–157, 2005. doi: 10.1002/polb.20318.

Suomi Ponce, José Bico, and Benoît Roman. Effect of friction on the peeling test at zero-degrees. Soft Matter, 11:9281–9290, 2015. doi: 10.1039/C5SM01203A.

Sathiskumar A. Ponnusami, Jayaprakash Krishnasamy, Sergio Turteltaub, and Sybrand van der Zwaag. A cohesive-zone crack healing model for self-healing materials. International Journal of Solids and Structures, 134:249 – 263, 2018. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2017.11.004.

Shabnam Raayai-Ardakani, Zhantao Chen, Darla Rachelle Earl, and Tal Cohen. Volume-controlled cavity expansion for probing of local elastic properties in soft materials. Soft Matter, 15:381–392, 2019. doi: 10.1039/C8SM02142B.

P. Rahulkumar, A. Jagota, S.J. Bennison, and S. Saigal. Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers. International Journal of Solids and Structures, 37(13):1873 – 1897, 2000. ISSN 0020-7683. doi: https://doi.org/10.1016/S0020-7683(98)00339-4.

L.D.C. Ramalho, R.D.S.G. Campilho, J. Belinha, and L.F.M. da Silva. Static strength prediction of adhesive joints: A review. International Journal of Adhesion and Adhesives, 96:102451, 2020. ISSN 0143-7496. doi: https://doi.org/10.1016/j.ijadhadh.2019.102451.

Charles J. Rand and Alfred J. Crosby. Insight into the periodicity of schallamach waves in soft material friction. Applied Physics Letters, 89(26):261907, 2006. doi: 10.1063/1.2408640.

Michel Raous. Interface models coupling adhesion and friction. Comptes Rendus Mécanique, 339(7):491 – 501, 2011. ISSN 1631-0721. doi: https://doi.org/10.1016/j.crme.2011.05.007. Surface mechanics : facts and numerical models.

Giovanni Rateni, Matteo Cianchetti, Gastone Ciuti, Arianna Menciassi, and Cecilia Laschi. Design and development of a soft robotic gripper for manipulation in minimally invasive surgery: a proof of concept. Meccanica, 50(11):2855–2863, Nov 2015. ISSN 1572-9648. doi: 10.1007/s11012-015-0261-6.

N. Richart and J.F. Molinari. Implementation of a parallel finite-element library: Test case on a non-local continuum damage model. Finite Elements in Analysis and Design, 100:41–46, 2015. ISSN 0168-874X. doi: https://doi.org/10.1016/j.finel.2015.02.003.

Nicolas Richart. Akantu - User’s Guide, 2016.

Jared Risan, Andrew B. Croll, and Fardad Azarmi. Compliance switching for adhesion control. Journal of Polymer Science Part B: Polymer Physics, 53(1):48–57, 2015. doi: 10.1002/polb.23624.

L. Roldán, J.J. Muñoz, and P. Sáez. Computational modeling of epithelial wound healing: Short and long term chemo-mechanical mechanisms. Computer Methods in Applied Mechanics and Engineering, 350:28 – 56, 2019. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2019.02.018.

O. Ronsin, T. Baumberger, and C. Y. Hui. Nucleation and propagation of quasi-static interfacial slip pulses. The Journal of Adhesion, 87(5):504–529, 2011. doi: 10.1080/00218464.2011.575342.

Rahul Sahay, Hong Yee Low, Avinash Baji, Shaohui Foong, and Kristin L. Wood. A state-of-the-art review and analysis on the design of dry adhesion materials for applications such as climbing micro-robots. RSC Adv., 5:50821–50832, 2015. doi: 10.1039/C5RA06770G.

J.A. Sanz-Herrera, A. Aliko-Benitez, and A.M. Fadrique-Contreras. Numerical investigation of the coupled mechanical behavior of self-healing materials under cyclic loading. International Journal of Solids and Structures, 160:232 – 246, 2019. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2018.10.029.

Jayati Sarkar and Ashutosh Sharma. A unified theory of instabilities in viscoelastic thin films: From wetting to confined films, from viscous to elastic films, and from short to long waves. Langmuir, 26(11):8464–8473, 2010. doi: 10.1021/la9049007. PMID: 20205403.

Carlos Sarrado, Frank A. Leone, and Albert Turon. Finite-thickness cohesive elements for modeling thick adhesives. Engineering Fracture Mechanics, 168:105 – 113, 2016. ISSN 0013-7944. doi: https://doi.org/10.1016/j.engfracmech.2016.03.020. Modeling of fracture and damage in composite materials.

Roger A. Sauer. The peeling behavior of thin films with finite bending stiffness and the implications on gecko adhesion. The Journal of Adhesion, 87(7-8):624–643, 2011a. doi: 10.1080/00218464.2011.596084.

Roger A. Sauer. Enriched contact finite elements for stable peeling computations. International Journal for Numerical Methods in Engineering, 87(6):593–616, 2011b. doi: 10.1002/nme.3126.

Roger A. Sauer. Local finite element enrichment strategies for 2D contact computations and a corresponding post-processing scheme. Computational Mechanics, 52(2):301–319, August 2013. doi: 10.1007/s00466-012-0813-8.

Roger A. Sauer. A survey of computational models for adhesion. The Journal of Adhesion, 92(2):81–120, 2016. doi: 10.1080/00218464.2014.1003210.

A. Schallamach. How does rubber slide? Wear, 17(4):301 – 312, 1971. ISSN 0043-1648. doi: https://doi.org/10.1016/0043-1648(71)90033-0.

R.A. Schapery. A model for the prediction of rubber friction with schallamach waves. Tribology International, 143:106018, 2020. ISSN 0301-679X.

E. Serrano. Glued-in rods for timber structures—an experimental study of softening behaviour. Materials and Structures, 34(4):228–234, May 2001. ISSN 1871-6873. doi: 10.1007/BF02480593.

Jun Shintake, Vito Cacucciolo, Dario Floreano, and Herbert Shea. Soft robotic grippers. Advanced Materials, 30(29):1707035, 2018. doi: 10.1002/adma.201707035.

Ben H. Skopic and Hannes C. Schniepp. Peeling in biological and bioinspired adhesive systems. JOM, 72(4):1509–1522, Apr 2020. ISSN 1543-1851. doi: 10.1007/s11837-020-04037-3.

Leonardo Snozzi and Jean-François Molinari. A cohesive element model for mixed mode loading with frictional contact capability. International Journal for Numerical Methods in Engineering, 93(5):510–526, 2013. doi: 10.1002/nme.4398.

Aarash Sofla, Erkin Seker, James P. Landers, and Matthew R. Begley. PDMS-Glass Interface Adhesion Energy Determined Via Comprehensive Solutions for Thin Film Bulge/Blister Tests. Journal of Applied Mechanics, 77(3), 02 2010. ISSN 0021-8936. doi: 10.1115/1.4000428. 031007.

Ala Tabiei and Wenlong Zhang. Composite Laminate Delamination Simulation and Experiment: A Review of Recent Development. Applied Mechanics Reviews, 70(3), 06 2018. ISSN 0003-6900. doi: 10.1115/1.4040448. 030801.

M.D. Thouless and Q.D. Yang. A parametric study of the peel test. International Journal of Adhesion and Adhesives, 28(4):176 – 184, 2008. ISSN 0143-7496. doi: https://doi.org/10.1016/j.ijadhadh.2007.06.006. Peel testing.

Koji Uenishi and James R. Rice. Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. Journal of Geophysical Research: Solid Earth, 108(B1), 2003. doi: 10.1029/2001JB001681.

V. Venzal, S. Morel, T. Parent, and F. Dubois. Frictional cohesive zone model for quasi-brittle fracture: Mixed-mode and coupling between cohesive and frictional behaviors. International Journal of Solids and Structures, 198:17 – 30, 2020. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2020.04.023.

Richard Villey, Costantino Creton, Pierre-Philippe Cortet, Marie-Julie Dalbe, Thomas Jet, Baudouin Saintyves, Stéphane Santucci, Loïc Vanel, David J. Yarusso, and Matteo Ciccotti. Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter, 11:3480–3491, 2015. doi: 10.1039/C5SM00260E.

Koushik Viswanathan, Narayan K. Sundaram, and Srinivasan Chandrasekar. Slow wave propagation in soft adhesive interfaces. Soft Matter, 12:9185–9201, 2016a. doi: 10.1039/C6SM01960A.

Koushik Viswanathan, Narayan K. Sundaram, and Srinivasan Chandrasekar. Stick-slip at soft adhesive interfaces mediated by slow frictional waves. Soft Matter, 12:5265–5275, 2016b. doi: 10.1039/C6SM00244G.

M. Vocialta, N. Richart, and J.-F. Molinari. 3d dynamic fragmentation with parallel dynamic insertion of cohesive elements. International Journal for Numerical Methods in Engineering, 109(12):1655–1678, 2016. doi: 10.1002/nme.5339.

K. Y. Volokh. Comparison between cohesive zone models. Communications in Numerical Methods in Engineering, 20(11):845–856, 2004. doi: 10.1002/cnm.717.

Kelin Wang and Anne M. Tréhu. Invited review paper: Some outstanding issues in the study of great megathrust earthquakes—the cascadia example. Journal of Geodynamics, 98:1 – 18, 2016. ISSN 0264-3707. doi: https://doi.org/10.1016/j.jog.2016.03.010.

L. Wang, D.C. Li, J.S. Yang, F. Shao, X.H. Zhong, H.Y. Zhao, K. Yang, S.Y. Tao, and Y. Wang. Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: A review. Journal of the European Ceramic Society, 36(6):1313 – 1331, 2016. ISSN 0955-2219. doi: https://doi.org/10.1016/j.jeurceramsoc.2015.12.038.

Q Jane Wang and Yip-Wah Chung, editors. Encyclopedia of Tribology. Springer, 2013. ISBN 9780387928982.

Julie F. Waters and Pradeep R. Guduru. Mode-mixity-dependent adhesive contact of a sphere on a plane surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2117):1303–1325, 2010. doi: 10.1098/rspa.2009.0461.

Yueguang Wei. Modeling nonlinear peeling of ductile thin films–critical assessment of analytical bending models using fe simulations. International Journal of Solids and Structures, 41(18):5087 – 5104, 2004. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2004.04.026.

John A. Williams and James J. Kauzlarich. Application of the bulk properties of a silicone psa to peeling. International Journal of Adhesion and Adhesives, 28(4):192 – 198, 2008. ISSN 0143-7496. doi: https://doi.org/10.1016/j.ijadhadh.2007.06.007. Peel testing.

S.M. Xia, L. Ponson, G. Ravichandran, and K. Bhattacharya. Adhesion of heterogeneous thin films—i: Elastic heterogeneity. Journal of the Mechanics and Physics of Solids, 61(3):838 – 851, 2013. ISSN 0022-5096. doi: https://doi.org/10.1016/j.jmps.2012.10.014.

Yangjian Xu, Yuvraj Singh, Changliang Pan, and Ganesh Subbarayan. Adhesive toughness and instability in bonded heterogeneous films. International Journal of Solids and Structures, 169:41 – 54, 2019. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2019.04.003.

Caihong Xue, Wengui Li, Jianchun Li, and Kejin Wang. Numerical investigation on interface crack initiation and propagation behaviour of self-healing cementitious materials. Cement and Concrete Research, 122:1 – 16, 2019. ISSN 0008-8846. doi: https://doi.org/10.1016/j.cemconres.2019.04.012.

Tetsuo Yamaguchi, Yoshinori Sawae, and Shmuel M. Rubinstein. Effects of loading angles on stick–slip dynamics of soft sliders. Extreme Mechanics Letters, 9:331 – 335, 2016. ISSN 2352-4316. doi: https://doi.org/10.1016/j.eml.2016.09.008.

H.B. Yin, L.H. Liang, Y.G. Wei, Z.L. Peng, and S.H. Chen. Determination of the interface properties in an elastic film substrate system. International Journal of Solids and Structures, 191-192:473 – 485, 2020. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2020.01.003.

Jun Zhang, Jiaqi Wang, Zhenwei Yuan, and Hong Jia. Effect of the cohesive law shape on the modelling of adhesive joints bonded with brittle and ductile adhesives. International Journal of Adhesion and Adhesives, 85:37 – 43, 2018. ISSN 0143-7496. doi: https://doi.org/10.1016/j.ijadhadh.2018.05.017.

Liang Zhang and Jyhwen Wang. A generalized cohesive zone model of the peel test for pressure-sensitive adhesives. International Journal of Adhesion and Adhesives, 29(3):217 – 224, 2009. ISSN 0143-7496. doi: https://doi.org/10.1016/j.ijadhadh.2008.05.002.

Yiming Zhang and Xiaoying Zhuang. A softening-healing law for self-healing quasi-brittle materials: Analyzing with strong discontinuity embedded approach. Engineering Fracture Mechanics, 192:290 – 306, 2018. ISSN 0013-7944. doi: https://doi.org/10.1016/j.engfracmech.2017.12.018.

Yongde Zhang and Mingyue Lu. A review of recent advancements in soft and flexible robots for medical applications. The International Journal of Medical Robotics and Computer Assisted Surgery, 16(3):e2096, 2020. doi: 10.1002/rcs.2096.

Ming Zhou, Noshir Pesika, Hongbo Zeng, Yu Tian, and Jacob Israelachvili. Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces. Friction, 1(2):114–129, Jun 2013. ISSN 2223-7704. doi: 10.1007/s40544-013-0011-5.

W. Zhu, L. Yang, J.W. Guo, Y.C. Zhou, and C. Lu. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. International Journal of Plasticity, 64:76 – 87, 2015. ISSN 0749-6419. doi: https://doi.org/10.1016/j.ijplas.2014.08.003.

Yong Zhu, Kenneth M. Liechti, and K. Ravi-Chandar. Direct extraction of rate-dependent traction–separation laws for polyurea/steel interfaces. International Journal of Solids and Structures, 46(1):31 – 51, 2009. ISSN 0020-7683. doi: https://doi.org/10.1016/j.ijsolstr.2008.08.019.

Zhongmeng Zhu, Yan Xia, Jian Li, Chengkai Jiang, and Han Jiang. Rate dependent shear debonding between a highly stretchable elastomer and a rigid substrate: Delayed debonding and pre-stretch effect. Engineering Fracture Mechanics, 222:106743, 2019. ISSN 0013-7944. doi: https://doi.org/10.1016/j.engfracmech.2019.106743.

A. Zosel. Effect of cross-linking on tack and peel strength of polymers. The Journal of Adhesion, 34(1-4):201–209, 1991. doi: 10.1080/00218469108026514.

V. Zotti, K. Rapina, P.-P Cortet, L. Vanel, and Stéphane Santucci. Bending to kinetic energy transfer in adhesive peel front microinstability. Physical Review Letters, 122, 02 2019. doi: 10.1103/PhysRevLett.122.068005.

Download scriptie (16.45 MB)
Universiteit of Hogeschool
Vrije Universiteit Brussel
Thesis jaar
2020
Promotor(en)
Professor Tal Cohen, Professor Thierry J. Massart, Professor Jean-François Molinari, Thibault Roch