Hergebruiken we binnenkort ons douchewater?

Seppe
Ongena

Door klimaatsverandering zijn waterschaarste en -overlast steeds toenemende problemen. Dat Vlaanderen waterschaarste ervaart is niet verwonderend, wetende dat we per jaar gemiddeld gezien meer dan 80% van onze natuurlijk beschikbare hoeveelheid water verbruiken. Om deze impact te beperken is lokale waterrobuustheid een prioriteit, bijvoorbeeld door waterhergebruik bij huishoudens. Waterhergebruik leidt tot een lagere druk op onze watervoorraden en hierdoor stappen we af van de huidige lineaire infrastructuur, waarbij kostbaar regenwater en gezuiverd afvalwater zeewaarts wordt afgevoerd.

Een drinkglas dat met kraanwater gevuld wordt en heftig overloopt

Verschillende bronnen kunnen aangewend worden voor waterhergebruik, afhankelijk  van hun oorsprong in het huishouden. Op het hoogste niveau wordt onderscheid gemaakt tussen grijs- en zwartwater. Zwartwater is het afvalwater komende van een toilet, terwijl grijswater alle andere afvalwaterstromen bevat. Grijswater is dus een combinatie van afvalwaters komende van bijvoorbeeld de douche, het bad, de wasmachine, de vaatwas, wastafels en de gootsteen uit de keuken. Het is het meest aantrekkelijk afvalwater voor zuivering en hergebruik, aangezien het een minimale hoeveelheid aan fecale pathogenen en vaste materie bevat. Indien al het grijswater in Vlaanderen zou hergebruikt worden, kan dit een besparing van 183 miljard liter drinkbaar water betekenen, wat equivalent is aan 73 000 olympische zwembaden.

We verbruiken in Vlaanderen meer dan 80% van onze beschikbare hoeveelheid water. Het hergebruik van grijswater kan jaarlijks 183 miljard liter drinkbaar water besparen.

Het zuiveringsproces

Tijdens deze thesis werd het hergebruik van grijswater voor niet-drinkbare toepassingen bestudeerd met behulp van kleinschalige membraanbioreactoren (MBR) en UV-desinfectie. Dit reactortype is dus een samenvloeiing van membranen en biologie (actief slib) die instaan voor de effectieve waterzuivering, waarna het gezuiverde water gedesinfecteerd wordt met een UV-lamp om de hygiëne te kunnen garanderen. De biologie zorgt voor de verwijdering van organische stoffen en nutriënten, en de membranen vormen een fysieke barrière voor vaste deeltjes en pathogenen.

Een overzicht van het zuiveringssysteem voor grijswater

Membranen worden gemaakt uit zeer fijne, poreuze materialen, met twee categorieën: de polymerische en keramische materialen. De polymerische membranen zijn vervaardigd uit organische polymeren zoals gechloreerd polyethyleen (C-PE) en hebben een papierachtig uitzicht. Ze zijn hét dominante membraantype in de waterzuivering door hun lage kost. De duurdere keramische membranen zijn gemaakt uit anorganische materialen zoals siliciumcarbide (SiC) en doen eerder denken aan de textuur en stevigheid van een terracotta bloempot.  Ze hebben als voordeel chemisch en thermisch stabieler te zijn, waardoor ze voor specifieke toepassingen gebruikt worden. Ze zijn echter ook zeer resistent tegen biologische bevuiling (fouling) en hebben een veel langere levensduur dan polymerische membranen.   Aangezien de eindtoepassing op huishoudelijke schaal zou zijn, moet onderhoud zo veel mogelijk beperkt worden en biologische bevuiling geminimaliseerd worden.  

Het experiment

Een directe vergelijking tussen polymerische en keramische membranen voor grijswaterzuivering was niet beschikbaar in de wetenschappelijke literatuur. Daarom werd synthetisch grijswater gedurende 204 dagen gezuiverd door de MBRs op laboschaal. Dit synthetisch grijswater is een zelfgemaakt medium dat bestond uit verscheidene verzorgingsproducten, detergenten en nutriënten. De gebruikte membranen waren C-PE polymerische en SiC keramische membranen.  De snelheid van fouling werd bepaald door opvolging van de zuigdruk over de membranen bij een constante pompsnelheid, aangezien de opbouw van een laag bevuiling zal leiden tot een grotere benodigde zuigdruk.

Algemene waterkwaliteitsparameters werden geanalyseerd, zoals chemische zuurstofvraag (een maat voor de "vervuiling" van het water), stikstofspeciatie en troebelheid. Verder werd de logaritmische verwijdering van Escherichia coli  (een fecale indicator) bepaald voor de membranen en de UV-lamp, wat het logaritme is van de verhouding tussen de concentratie aan E. coli in het gezuiverd en ongezuiverd grijswater. Voor de UV-lamp werd bovendien de toegediende UV dosis bepaald, omdat de desinfectiegraad en dus de log-verwijdering afhangt van de toegediende dosis. Deze dosis is vergelijkbaar met het principe van chloorconcentratie en contacttijd bij drinkwater.

En de resultaten?

De SiC membranen vertoonden een 6.85 keer lagere fouling-snelheid, veroorzaakt door de verschillen in oppervlaktemateriaal en -ruwheid tussen de twee membraantypes. Hierdoor moesten de keramische membranen niet schoongemaakt worden gedurende 3 maanden, terwijl dit bij de polymerische gemiddeld elke 6.7 dagen moest gebeuren.

Het gezuiverde grijswater werd afgetoetst aan de 7 strengste standaarden, richtlijnen en wetgevingen voor onbeperkt hergebruik voor niet-drinkwatertoepassingen. Aan alle kwaliteitseisen werd voldaan, naast de procentuele stikstofverwijdering van ISO-standaard 30500:2018 en een occasionele overschrijding van de maximale ammoniumconcentratie uit de Italiaanse wetgeving. 

Bij de keramische membranen waren hoge verwijderingsefficiënties waargenomen van 99.2%, 94.7%, 53% en 95.7% voor troebelheid, chemische zuurstofvraag, totale stikstof en ammoniumstikstof, met gelijkaardige resultaten voor de polymerische membranen.  E. coli werd niet gedetecteerd in het gezuiverd water, met log-verwijdering van respectievelijk 2.7–3.0 en 3.1–3.7 voor de keramische en polymerische membranen, en een log-verwijdering voor de UV-lamp van >10 bij een dosis van 726 joules per liter. Voor grijswater is een log-verwijdering nodig van minstens 6. De >13 log-verwijdering van het totale systeem kan bijgevolg de gezondheid van de eindgebruiker garanderen.

Water is een basisrecht. Daarom moeten we ons wapenen tegen waterschaarste, een belangrijk gevolg van klimaatsverandering.

Deze resultaten wijzen op een hoge geschiktheid van MBR met keramische membranen als decentraal zuiveringssysteem voor het hergebruik van grijswater op kleine schaal. Zulke systemen bestaan reeds op commerciële schaal, maar staan nog in hun kinderschoenen. Sterke optimalisaties zijn mogelijk, voornamelijk op vlak van monitoring en onderhoud. De bevindingen uit deze thesis kunnen een verlaging van onderhoudsfrequentie en -kosten betekenen. Zo kunnen we ons beter wapenen tegen waterschaarste, een belangrijk effect van klimaatsverandering met sociale impact, aangezien water een basisrecht is. De twee reactoren van elk 10 L zouden samen het grijswater kunnen zuiveren van 3 personen, wat betekent dat dit zeer compact reactorvolume reeds zou volstaan voor een klein gezin.

Bibliografie

Abdel-Shafy, H.I., Al-Sulaiman, A.M., 2014. Assessment of Physico-chemical Processes for Treatment and Reuse of Greywater. Egyptian Journal of Chemistry 57(3) 215–231, doi:https://doi.org/10.21608/ejchem.2014.1042.

Abdullayev, A., Bekheet, M.F., Hanaor, D.A.H., Gurlo, A., 2019. Materials and Applications for Low-Cost Ceramic Membranes. Membranes 9(9) 105, doi:https : / / doi . org / 10 . 3390 /

membranes9090105.

Abed, S.N., Almuktar, S.A., Scholz, M., 2020. Impact of Storage Time on Characteristics of Synthetic Greywater for Two Different Pollutant Strengths to Be Treated or Recycled. Water, Air, and Soil Pollution 231(5) 211, doi:https://doi.org/10.1007/s11270-020-04602-1.

Ahm, M., Thorndahl, S., Nielsen, J.E., Rasmussen, M.R., 2016. Estimation of combined sewer overflow discharge: a software sensor approach based on local water level measurements.

Water Science and Technology 74(11) 2683–2696, doi:https://doi.org/10.2166/wst.2016. 361.

Ahn, K.H., Song, J.H., Cha, H.Y., 1998. Application of tubular ceramic membranes for reuse of wastewater from buildings. Water Science and Technology 38(4-5) 373–382, doi:https:

//doi.org/10.2166/wst.1998.0671.

Aiyuk, S., Verstraete, W., 2004. Sedimentological evolution in an UASB treating SYNTHES, a new representative synthetic sewage, at low loading rates. Bioresource Technology 93(3)

269–278, doi:https://doi.org/10.1016/j.biortech.2003.11.006.

Alcalde Sanz, L., Gawlik, B., European Comission Joint Research Centre, 2014. Water reuse in Europe: relevant guidelines, needs for and barriers to innovation., Publications Office of the European Union, Luxembourg, doi:https://www.doi.org/10.2788/29234.

Alim, M.A., Rahman, A., Tao, Z., Samali, B., Khan, M.M., Shirin, S., 2020. Feasibility analysis of a small-scale rainwater harvesting system for drinking water production at Werrington, New South Wales, Australia. Journal of Cleaner Production 270 122437, doi:https://doi.org/10.1016/j.jclepro.2020.122437.

Alloul, A., Ganigué, R., Spiller, M., Meerburg, F., Cagnetta, C., Rabaey, K., Vlaeminck, S., 2018. Capture-ferment-upgrade : a three-step approach for the valorization of sewage

organics as commodities. Environmental Science & Technology 52(12) 6729–6742, doi: http://doi.org/10.1021/acs.est.7b05712.

American Public Health Association, Baird, R., Eaton, A.D., Rice, E.W., Bridgewater, L.,

American Water Works Association, Water Environment Federation, 2017. Standard Methods for the Examination of Water and Wastewater, American Water Works Association.

Arndt, F., Ehlen, F., Schütz, S., Anlauf, H., Nirschl, H., 2016. Influence of operating parameters and membrane materials on fouling of ceramic hollow fibre membranes. Separation and

Purification Technology 171 289–296, doi:https://doi.org/10.1016/j.seppur.2016.07.046.

Asano, T., Burton, F.L., Leverenz, H.L., Tsuchihashi, R., Tchobanoglous, G., 2007. Water Reuse: Issues, Technologies, and Applications, Metcalf & Eddy (AECOM), McGraw-Hill,

New York.

Atanasova, N., Dalmau, M., Comas, J., Poch, M., Rodriguez-Roda, I., Buttiglieri, G., 2017. Optimized MBR for greywater reuse systems in hotel facilities. Journal of Environmental Management 193 503–511, doi:https://doi.org/10.1016/j.jenvman.2017.02.041.

Atasoy, E., Murat, S., Baban, A., Tiris, M., 2007. Membrane Bioreactor (MBR) Treatment of Segregated Household Wastewater for Reuse. CLEAN – Soil, Air, Water 35(5) 465–472,

doi:https://doi.org/10.1002/clen.200720006.

Azimi, Y., Allen, D.G., Seto, P., Farnood, R., 2014. Effect of Activated Sludge Retention Time, Operating Temperature, and Influent Phosphorus Deficiency on Floc Physicochemical

Characteristics and UV Disinfection. Industrial & Engineering Chemistry Research 53(31) 12485–12493, doi:https://doi.org/10.1021/ie5012068.

Baghaei Lakeh, R., Andrade, D., Miller, K.J., Du, B., Pham, J., Modabernia, M.M., Ng, P.Y., Nguyen, T.N., Nguyen, J.L., Mena, C., Anderson, K.R., Sharbatmaleki, M., 2017. A Case Study of Decentralized Off-Grid Water Treatment Using Reverse Osmosis, in Volume 5: Education and Globalization, American Society of Mechanical Engineers, doi:https://doi.org/10.1115/IMECE2017-70828.

Beard, J.E., Bierkens, M.F.P., Bartholomeus, R.P., 2019. Following the Water: Characterising de facto Wastewater Reuse in Agriculture in the Netherlands. Sustainability 11(21) 5936,

doi:https://doi.org/10.3390/su11215936.

Benami, M., Busgang, A., Gillor, O., Gross, A., 2016. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems. Science of The Total Environment 562 344–352, doi:https://doi.org/10.1016/j.scitotenv.2016.03.200.

Besson, M., Berger, S., Tiruta-barna, L., Paul, E., Spérandio, M., 2021. Environmental assessment of urine, black and grey water separation for resource recovery in a new district compared to centralized wastewater resources recovery plant. Journal of Cleaner Production 301 126868, doi:https://doi.org/10.1016/j.jclepro.2021.126868.

Bhattacharya, P., Sarkar, S., Ghosh, S., Majumdar, S., Mukhopadhyay, A., Bandyopadhyay, S., 2013. Potential of ceramic microfiltration and ultrafiltration membranes for the treatment of

gray water for an effective reuse. Desalination and Water Treatment 51(22-24) 4323–4332, doi:https://doi.org/10.1080/19443994.2013.770198.

Biesterbos, J.W.H., Dudzina, T., Delmaar, C.J.E., Bakker, M.I., Russel, F.G.M., von Goetz, N., Scheepers, P.T.J., Roeleveld, N., 2013. Usage patterns of personal care products: Important

factors for exposure assessment. Food and Chemical Toxicology 55 8–17, doi:https://doi.org/10.1016/j.fct.2012.11.014.

Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., Galvão, A., Pisoeiro, J., Rizzo, A., Masi, F., 2020. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of The Total Environment 711 134731, doi:https://doi.org/10.1016/j.scitotenv.2019.134731.

Bonthuys, G.J., Blom, P., van Dijk, M., 2020. Leveraging Asset Management Data for Energy Recovery and Leakage Reduction, in J.P. Liyanage, J. Amadi-Echendu, J. Mathew, eds., Engineering Assets and Public Infrastructures in the Age of Digitalization, 309–317, Springer International Publishing, doi:https://doi.org/10.1007/978-3-030-48021-9_35.

Brown, R.R., Keath, N., Wong, T.H.F., 2009. Urban water management in cities: historical, current and future regimes. Water Science and Technology 59(5) 847–855, doi:https://doi.

org/10.2166/wst.2009.029.

Bu, Q., Wang, B., Huang, J., Deng, S., Yu, G., 2013. Pharmaceuticals and personal care products in the aquatic environment in China: A review. Journal of Hazardous Materials 262 189–211, doi:https://doi.org/10.1016/j.jhazmat.2013.08.040.

Buekenhoudt, A., 2008. Stability of Porous Ceramic Membranes, in Inorganic Membranes: Synthesis, Characterization and Applications, Volume 13 of Membrane Science and Technology, 1–31, Elsevier, doi:https://doi.org/10.1016/S0927-5193(07)13001-1.

Burek, P., Satoh, Y., Fischer, G., Kahil, M.T., Scherzer, A., Tramberend, S., Nava, L.F., Wada, Y., Eisner, S., Flörke, M., Hanasaki, N., Magnuszewski, P., Cosgrove, B., Wiberg, D., 2016.

Water Futures and Solution - Fast Track Initiative (Final Report), IIASA Working Paper, IIASA, Laxenburg, Austria.

Burmistrov, I., Agarkov, D., Bredikhin, S., Nepochatov, Y., Tiunova, O., Zadorozhnaya, O., 2013. Multilayered Electrolyte-Supported SOFC Based on NEVZ-Ceramics Membrane. ECS Transactions 57(1) 917–923, doi:https://doi.org/10.1149/05701.0917ecst.

Butler, D., Friedler, E., Gatt, K., 1995. Characterising the quantity and quality of domestic wastewater inflows. Water Science and Technology 31(7) 13–24, doi:https://doi.org/10. 1016/0273-1223(95)00318-H.

Cai, Y.H., Schäfer, A.I., 2020. Renewable energy powered membrane technology: Impact of solar irradiance fluctuation on direct osmotic backwash. Journal of Membrane Science 598

117666, doi:https://doi.org/10.1016/j.memsci.2019.117666.

California Department of Water Resources, 2016. Municipal Recycled Water: A Resource Management Strategy of the California Water Plan, , California natural resources agency.

Collivignarelli, M., Abbà, A., Benigna, I., Sorlini, S., Torretta, V., 2017. Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Sustainability

10(2) 86, doi:https://doi.org/10.3390/su10010086.

Coördinatiecommissie Integraal Waterbeleid, 2019. Evaluatierapport waterschaarste en droogte 2018 (Dutch), retrieved 29/12/2020.

URL https : / / www . integraalwaterbeleid . be / nl / nieuws / downloads - van nieuwsberichten / tussentijds - evaluatierapport - waterschaarste - en - droogte 2018-1/view

Cornejo, P.K., Zhang, Q., Mihelcic, J.R., 2016. How Does Scale of Implementation Impact the Environmental Sustainability of Wastewater Treatment Integrated with Resource Recovery?

Environmental Science & Technology 50(13) 6680–6689, doi:https://doi.org/10.1021/acs.est.5b05055.

Crook, M.J., Jefferson, B., Autin, O., MacAdam, J., Nocker, A., 2014. Comparison of ultraviolet light emitting diodes with traditional UV for greywater disinfection. Journal of Water

Reuse and Desalination 5(1) 17–27, doi:https://doi.org/10.2166/wrd.2014.022.

Cruz, H., Law, Y.Y., Gues, J.S., Rabaey, K., Batstone, D., Laycock, B., Verstraete, W., Pikaar, I., 2019. Mainstream ammonium recovery to advance sustainable urban wastewater management. Environmental Science & Technology 53(19) 11066–11079, doi:http ://doi.org/10.1021/acs.est.9b00603.

Dahlgren, E., Göçmen, C., Lackner, K., van Ryzin, G., 2013. Small Modular Infrastructure. The Engineering Economist 58(4) 231–264, doi:https://doi.org/10.1080/0013791X.2013.

825038.

Daigger, G.T., 2009. Evolving Urban Water and Residuals Management Paradigms: Water Reclamation and Reuse, Decentralization, and Resource Recovery. Water Environment Research 81(8) 809–823, doi:https://doi.org/10.2175/106143009X425898.

Das, D., Baitalik, S., Haldar, B., Saha, R., Kayal, N., 2018. Preparation and characterization of macroporous SiC ceramic membrane for treatment of waste water. Journal of Porous

Materials 25(4) 1183–1193, doi:https://doi.org/10.1007/s10934-017-0528-5.

Databank Ondergrond Vlaanderen, s.d. Actuele  grondwaterstandindicator (Dutch), retrieved 29/12/2020. URL https://www.dov.vlaanderen.be/page/actuele-grondwaterstandindicator

Daud, S.M., Daud, W.R.W., Kim, B.H., Somalu, M.R., Bakar, M.H.A., Muchtar, A., Jahim, J.M., Lim, S.S., Chang, I.S., 2018. Comparison of performance and ionic concentration gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and cation exchange membrane (CEM) as separators. Electrochimica Acta 259 365–376, doi:https ://doi.org/10.1016/j.electacta.2017.10.118.

De Nocker, L., Liekens, I., Broekx, S., 2017. Water, een kostbaar goed. Uitgevoerd in opdracht van de VMM (Dutch)., , Vlaams Instelling voor Technologisch Onderzoek.

URL https://www.integraalwaterbeleid.be/nl/publicaties/afbeeldingen/vitorap…

De Paepe, J., De Paepe, K., Gòdia, F., Rabaey, K., Vlaeminck, S.E., Clauwaert, P., 2020. Bioelectrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery

from urine through membrane aerated nitrification. Water Research 185 116223, doi:https://doi.org/10.1016/j.watres.2020.116223.

De Watergroep, 2019. Proefproject drinkwater uit regenwater (Dutch), retrieved 15/11/2020.

URL https : / / www . dewatergroep . be / nl - be / over - de - watergroep / nieuws /proefproject-drinkwater-uit-regenwater

de Wit, P., Kappert, E.J., Lohaus, T., Wessling, M., Nijmeijer, A., Benes, N.E., 2015. Highly permeable and mechanically robust silicon carbide hollow fiber membranes. Journal of Membrane Science 475 480–487, doi:https://doi.org/10.1016/j.memsci.2014.10.045.

Delgado, N., Bermeo, L., Hoyos, D.A., Peñuela, G.A., Capparelli, A., Marino, D., Navarro, A.,Casas-Zapata, J.C., 2020. Occurrence and removal of pharmaceutical and personal care products using subsurface horizontal flow constructed wetlands. Water Research 187 116448, doi:https://doi.org/10.1016/j.watres.2020.116448.

di Chen, Y., Duan, X., Zhou, X., Wang, R., Wang, S., qi Ren, N., Ho, S.H., 2021. Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. Chemical Engineering Journal 409 128207, doi:https://doi.org/10.1016/j.cej.2020.128207.

Diaz-Elsayed, N., Rezaei, N., Guo, T., Mohebbi, S., Zhang, Q., 2019. Wastewater-based resource recovery technologies across scale: A review. Resources, Conservation and Recycling

145 94–112, doi:https://doi.org/10.1016/j.resconrec.2018.12.035.

Ding, A., Liang, H., Li, G., Derlon, N., Szivak, I., Morgenroth, E., Pronk, W., 2016. Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water. Journal of Membrane Science 510 382–390, doi:https://doi.org/10.1016/j.memsci.2016.03.025.

Domènech, L., Saurí, D., 2010. Socio-technical transitions in water scarcity contexts: Public acceptance of greywater reuse technologies in the Metropolitan Area of Barcelona. Resources, Conservation and Recycling 55(1) 53–62, doi:https://doi.org/10.1016/j.resconrec.2010.07.001.

Domènech, L., Saurí, D., 2011. A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the Metropolitan Area of Barcelona (Spain): social experience, drinking water savings and economic costs. Journal of Cleaner Production 19(67) 598–608, doi:https://doi.org/10.1016/j.jclepro.2010.11.010.

Domínguez Henao, L., Turolla, A., Antonelli, M., 2018. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review. Chemosphere 213 25–40, doi:https://doi.org/10.1016/j.chemosphere.2018.09.005.

Driesen, N., 2021. Aiming for a water independent household by direct reuse of greywater using an integrated MBBR-EC treatment train, [unpublished master’s thesis], Ghent University.

Dubowski, Y., Alfiya, Y., Gilboa, Y., Sabach, S., Friedler, E., 2020. Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor. Environmental Science and Pollution Research 27(7) 7578–7587, doi:https://doi.org/10.1007/s11356-019-07399-7.

Eggimann, S., Truffer, B., Feldmann, U., Maurer, M., 2018. Screening European market potentials for small modular wastewater treatment systems - an inroad to sustainability transitions in urban water management? Land Use Policy 78 711–725, doi:https://doi.org/10.1016/j.landusepol.2018.07.031.

Eggimann, S., Truffer, B., Maurer, M., 2016. Economies of density for on-site waste water treatment. Water Research 101 476–489, doi:https://doi.org/10.1016/j.watres.2016.06.011.

Emmerton, C.A., Cooke, C.A., Hustins, S., Silins, U., Emelko, M.B., Lewis, T., Kruk, M.K., Taube, N., Zhu, D., Jackson, B., Stone, M., Kerr, J.G., Orwin, J.F., 2020. Severe western Canadian wildfire affects water quality even at large basin scales. Water Research 183 116071, doi:https://doi.org/10.1016/j.watres.2020.116071.

Eom, J.H., Yeom, H.J., Kim, Y.W., Song, I.H., 2015. Ceramic Membranes Prepared from a Silicate and Clay-mineral Mixture for Treatment of Oily Wastewater. Clays and Clay Minerals 63(3) 222–234, doi:https://doi.org/10.1346/CCMN.2015.0630305.

Eriksson, E., Andersen, H.R., Madsen, T.S., Ledin, A., 2009. Greywater pollution variability and loadings. Ecological Engineering 35(5) 661–669, doi:https://doi.org/10.1016/j.ecoleng.

2008.10.015.

Escudero, J., Muñoz, J.L., Morera-Herreras, T., Hernandez, R., Medrano, J., DomingoEchaburu, S., Barceló, D., Orive, G., Lertxundi, U., 2021. Antipsychotics as environmental pollutants: An underrated threat? Science of The Total Environment 769 144634, doi:https://doi.org/10.1016/j.scitotenv.2020.144634.

Etchepare, R., van der Hoek, J.P., 2015. Health risk assessment of organic micropollutants in greywater for potable reuse. Water Research 72 186–198, doi:https://doi.org/10.1016/j.watres.2014.10.048.

Fang, J., Liu, H., Shang, C., Zeng, M., Ni, M., Liu, W., 2014. E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes. Frontiers of Environmental Science & Engineering 8(4) 547–552, doi:https://doi.org/10.1007/s11783013-0620-2.

Fenner, R.A., Komvuschara, K., 2005. A New Kinetic Model for Ultraviolet Disinfection of Greywater. Journal of Environmental Engineering 131(6) 850–864, doi:https://doi.org/10.

1061/(ASCE)0733-9372(2005)131:6(850).

Ficheux, A.S., Gomez-Berrada, M.P., Roudot, A.C., Ferret, P.J., 2019. Consumption and exposure to finished cosmetic products: A systematic review. Food and Chemical Toxicology 124 280–299, doi:https://doi.org/10.1016/j.fct.2018.11.060.

Fielding, K.S., Dolnicar, S., Schultz, T., 2019. Public acceptance of recycled water. International Journal of Water Resources Development 35(4) 551–586, doi:https://doi.org/10.1080/

07900627.2017.1419125.

Finley, S., Barrington, S., Lyew, D., 2009. Reuse of Domestic Greywater for the Irrigation of Food Crops. Water, Air, and Soil Pollution 199(1-4) 235–245, doi:https://doi.org/10.1007/

s11270-008-9874-x.

Flint, C.G., Koci, K.R., 2021. Local resident perceptions of water reuse in Northern Utah. Water Environment Research 93(1) 123–135, doi:https://doi.org/10.1002/wer.1367.

Fogler, H.S., 2016. Elements of Chemical Reaction Engineering, Chapter Residence Time Distributions of Chemical Reactors, 767–806, Prentice Hall, Boston, fifth Edition.

Folkman, S., 2018. Water main break rates in the USA and Canada: A comprehensive study. Mechanical and Aerospace Engineering Faculty Publications. .

Fountoulakis, M.S., Markakis, N., Petousi, I., Manios, T., 2016. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Science of The Total

Environment 551-552 706–711, doi:https://doi.org/10.1016/j.scitotenv.2016.02.057.

French, A.P., Taylor, E.F., 1978. An Introduction to Quantum Physics, M.I.T. Introductory Physics Series, CRC Press, Taylor & Francis Group, Roca Raton, Florida, first Edition.

Friedler, E., F. Chavez, D., Alfiya, Y., Gilboa, Y., Gross, A., 2021. Impact of Suspended Solids and Organic Matter on Chlorine and UV Disinfection Efficiency of Greywater. Water 13(2)

214, doi:https://doi.org/10.3390/w13020214.

Friedler, E., Gilboa, Y., 2010. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing. Science of The Total Environment

408(9) 2109–2117, doi:https://doi.org/10.1016/j.scitotenv.2010.01.051.

Friedler, E., Shwartzman, Z., Ostfeld, A., 2008. Assessment of the reliability of an on-site MBR system for greywater treatment and the associated aesthetic and health risks. Water Science

and Technology 57(7) 1103–1110, doi:https://doi.org/10.2166/wst.2008.248.

Gao, M., Zhang, L., Guo, B., Zhang, Y., Liu, Y., 2019. Enhancing biomethane recovery from source-diverted blackwater through hydrogenotrophic methanogenesis dominant pathway.

Chemical Engineering Journal 378 122258, doi:https://doi.org/10.1016/j.cej.2019.122258.

Garcia-Hidalgo, E., von Goetz, N., Siegrist, M., Hungerbühler, K., 2017. Use-patterns of personal care and household cleaning products in Switzerland. Food and Chemical Toxicology

99 24–39, doi:https://doi.org/10.1016/j.fct.2016.10.030.

García-Sánchez, M., Güereca, L.P., 2019. Environmental and social life cycle assessment of urban water systems: The case of Mexico City. Science of The Total Environment 693 133464,

doi:https://doi.org/10.1016/j.scitotenv.2019.07.270.

Gassie, L.W., Englehardt, J.D., 2017. Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: A review. Water Research 125 384–399, doi:https://doi.org/10.

1016/j.watres.2017.08.062.

Giresunlu, E., Beler Baykal, B., 2016. A case study of the conversion of grey water to a flush water source in a Turkish student residence hall. Water Supply 16(6) 1659–1667, doi:https:

//doi.org/10.2166/ws.2016.078.

Gitis, V., Rothenberg, G., 2016. Ceramic Membranes: New Opportunities and Practical Applications, Wiley, doi:https://www.doi.org/10.1002/9783527696550.

Gomez, V., Majamaa, K., Pocurull, E., Borrull, F., 2012. Determination and occurrence of organic micropollutants in reverse osmosis treatment for advanced water reuse. Water Science and Technology 66(1) 61–71, doi:https://doi.org/10.2166/wst.2012.166.

Gomez-Berrada, M.P., Ficheux, A.S., Dahmoul, Z., Roudot, A.C., Ferret, P.J., 2017. Exposure assessment of family cosmetic products dedicated to babies, children and adults. Food and

Chemical Toxicology 103 56–65, doi:https://doi.org/10.1016/j.fct.2017.02.024.

Gonçalves, R.F., de Oliveira Vaz, L., Peres, M., Merlo, S.S., 2020. Microbiological risk from non-potable reuse of greywater treated by anaerobic filters associated to vertical constructed

wetlands. Journal of Water Process Engineering 39 101751, doi:https://doi.org/10.1016/j.jwpe.2020.101751.

Goodwin, D., Raffin, M., Jeffrey, P., Smith, H.M., 2019. Collaboration on risk management: The governance of a non-potable water reuse scheme in London. Journal of Hydrology 573

1087–1095, doi:https://doi.org/10.1016/j.jhydrol.2017.07.020.

Gorgich, M., Mata, T.M., Martins, A., Caetano, N.S., Formigo, N., 2020. Application of domestic greywater for irrigating agricultural products: A brief study. Energy Reports 6 811–817, doi:https://doi.org/10.1016/j.egyr.2019.11.007.

Gross, A., Maimon, A., Alfiya, Y., Friedler, E., 2015. Greywater Reuse, CRC Press, Boca Raton, FL. Guo, T., Englehardt, J., Wu, T., 2014. Review of cost versus scale: Water and wastewater

treatment and reuse processes. Water Science and Technology 69(2) 223–234, doi:https ://doi.org/10.2166/wst.2013.734.

Hartley, K., Tortajada, C., Biswas, A.K., 2019. A formal model concerning policy strategies to build public acceptance of potable water reuse. Journal of Environmental Management 250

109505, doi:https://doi.org/10.1016/j.jenvman.2019.109505.

Hasan, M.M., Shafiquzzaman, M., Nakajima, J., Ahmed, A.K.T., Azam, M.S., 2015. Application of a Low Cost Ceramic Filter to a Membrane Bioreactor for Greywater Treatment. Water Environment Research 87(3) 233–241, doi:https://doi.org/10.1002/j.15547531.2015.tb00141.x.

Hasik, V., Anderson, N.E., Collinge, W.O., Thiel, C.L., Khanna, V., Wirick, J., Piacentini, R., Landis, A.E., Bilec, M.M., 2017. Evaluating the Life Cycle Environmental Benefits and Trade-Offs of Water Reuse Systems for Net-Zero Buildings. Environmental Science & Technology 51(3) 1110–1119, doi:https://doi.org/10.1021/acs.est.6b03879.

Health Canada, 2010. Canadian Guidelines for Domestic Reclaimed Water for Use in Toilet and Urinal Flushing, Working Group on Domestic Reclaimed Water of the Federal-ProvincialTerritorial Committee on Health and the Environment, Ottawa, Ont.

Hering, J.G., Waite, T.D., Luthy, R.G., Drewes, J.E., Sedlak, D.L., 2013. A Changing Framework for Urban Water Systems. Environmental Science & Technology 47(19) 10721–10726,

doi:https://doi.org/10.1021/es4007096.

Hernández Leal, L., Temmink, H., Zeeman, G., Buisman, C.J.N., 2010. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts. Bioresource

Technology 101(23) 9065–9070, doi:https://doi.org/10.1016/j.biortech.2010.07.047.

Hijnen, W.A.M., Beerendonk, E.F., Medema, G.J., 2006. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research 40(1) 3–22, doi:https://doi.org/10.1016/j.watres.2005.10.030.

Hocaoglu, S.M., Atasoy, E., Baban, A., Orhon, D., 2013. Modeling biodegradation characteristics of grey water in membrane bioreactor. Journal of Membrane Science 429 139–146,

doi:https://doi.org/10.1016/j.memsci.2012.11.012.

Hocaoglu, S.M., Insel, G., Cokgor, E.U., Orhon, D., 2011. Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water.

Bioresource Technology 102(6) 4333–4340, doi:https://doi.org/10.1016/j.biortech.2010.11.096.

Hocaoglu, S.M., Orhon, D., 2010. Fate of proteins and carbohydrates in membrane bioreactor operated at high sludge age. Journal of Environmental Science and Health 45(9) 1101–1108, doi:https://doi.org/10.1080/10934529.2010.486342.

Hoffmann, S., Feldmann, U., Bach, P.M., Binz, C., Farrelly, M., Frantzeskaki, N., Hiessl, H., Inauen, J., Larsen, T.A., Lienert, J., Londong, J., Lüthi, C., Maurer, M., Mitchell, C., Morgenroth, E., Nelson, K.L., Scholten, L., Truffer, B., Udert, K.M., 2020. A Research Agenda for the Future of Urban Water Management: Exploring the Potential of Nongrid, Small-Grid, and Hybrid Solutions. Environmental Science & Technology 54(9) 5312–5322, doi:http://doi.org/10.1021/acs.est.9b05222.

Hofs, B., Ogier, J., Vries, D., Beerendonk, E.F., Cornelissen, E.R., 2011. Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Separation and

Purification Technology 79(3) 365–374, doi:https://doi.org/10.1016/j.seppur.2011.03.025.

Hourlier, F., Masse, A., Jaouen, P., Lakel, A., Gerente, C., Faur, C., Le Cloirec, P., 2010. Formulation of synthetic greywater as an evaluation tool for wastewater recycling technologies. Environmental Technology 31(2) 215–223, doi:https://doi.org/10.1080/09593330903431547.

Huang, X., Qu, Y., Cid, C.A., Finke, C., Hoffmann, M.R., Lim, K., Jiang, S.C., 2016. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. Water Research

92 164–172, doi:https://doi.org/10.1016/j.watres.2016.01.040.

Hubadillah, S.K., Othman, M.H.D., Matsuura, T., Ismail, A.F., Rahman, M.A., Harun, Z., Jaafar, J., Nomura, M., 2018. Fabrications and applications of low cost ceramic membrane

from kaolin: A comprehensive review. Ceramics International 44(5) 4538–4560, doi:https://doi.org/10.1016/j.ceramint.2017.12.215.

Huelgas, A., Funamizu, N., 2010. Flat-plate submerged membrane bioreactor for the treatment of higher-load graywater. Desalination 250(1) 162–166, doi:https://doi.org/10.1016/j.desal.

2009.05.007.

Huelgas-Orbecido, A., Funamizu, N., 2019. Membrane System for Gray Water, 185–193, Springer Japan, Tokyo, doi:https://doi.org/10.1007/978-4-431-56835-3_13.

Hyde, K., Smith, M., 2018. Greywater Recycling and Reuse, Chapter 16, 211–221, John Wiley & Sons, Ltd, doi:https://doi.org/10.1002/9781119260493.ch16.

Hyde, K., Smith, M.J., Adeyeye, K., 2016. Developments in the quality of treated greywater supplies for buildings, and associated user perception and acceptance. International Journal

of Low-Carbon Technologies 12(2) 136–140, doi:https://doi.org/10.1093/ijlct/ctw006.

Ice, G.G., Neary, D.G., Adams, P.W., 2004. Effects of Wildfire on Soils and Watershed Processes. Journal of Forestry 102(6) 16–20, doi:https://doi.org/10.1093/jof/102.6.16.

International Standards Organisation, 2014. ISO 9308-1:2014. Water quality - Enumeration of Escherichia coli and coliform bacteria - Part 1: Membrane filtration method for waters

with low bacterial background flora, International Organization for Standardization, Geneva, Switzerland.

International Standards Organisation, 2018. ISO 30500:2018. Non-sewered sanitation systems - Prefabricated integrated treatment units - General safety and performance requirements for design and testing., International Organization for Standardization, Geneva, Switzerland.

Issaoui, M., Limousy, L., 2019. Low-cost ceramic membranes: Synthesis, classifications, and applications. Comptes Rendus Chimie 22(2-3) 175–187, doi:https://doi.org/10.1016/j.crci.

2018.09.014.

Issaoui, M., Limousy, L., Lebeau, B., Bouaziz, J., Fourati, M., 2016. Design and characterization of flat membrane supports elaborated from kaolin and aluminum powders. Comptes

Rendus Chimie 19(4) 496–504, doi:https://doi.org/10.1016/j.crci.2015.10.011.

Jabornig, S., 2014. Overview and feasibility of advanced grey water treatment systems for single households. Urban Water Journal 11(5) 361–369, doi:https://doi.org/10.1080/1573062X.

2013.783086.

Jabornig, S., Favero, E., 2013. Single household greywater treatment with a moving bed biofilm membrane reactor (MBBMR). Journal of Membrane Science 446 277–285, doi:https://doi.org/10.1016/j.memsci.2013.06.049.

Jabornig, S., Podmirseg, S.M., 2015. A novel fixed fibre biofilm membrane process for onsite greywater reclamation requiring no fouling control. Biotechnology and Bioengineering 112(3) 484–493, doi:https://doi.org/10.1002/bit.25449.

Jedidi, I., Saïdi, S., Khemakhem, S., Larbot, A., Elloumi-Ammar, N., Fourati, A., Charfi, A., Salah, A.B., Amar, R.B., 2009. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment. Journal of Hazardous Materials 172(1) 152–158, doi:https://doi.org/10.1016/j.jhazmat.2009.06.151.

Jeong, H., Broesicke, O.A., Drew, B., Crittenden, J.C., 2018. Life cycle assessment of smallscale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia. Journal of Cleaner Production 174 333–342, doi:https ://doi.org/10.1016/j.jclepro.2017.10.193.

Judd, S., 2011. The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment, Butterworth-Heinemann, Oxford, second Edition.

Karanfil, T., Erdogan, I., Schlautman, M.A., 2003. Selecting Filter Membranes for measuring DOC and UV254. Journal - American Water Works Association 95(3) 86–100, doi:https:

//doi.org/10.1002/j.1551-8833.2003.tb10317.x.

Khemakhem, S., Ben Amar, R., Larbot, A., 2007. Synthesis and characterization of a new inorganic ultrafiltration membrane composed entirely of Tunisian natural illite clay. Desalination

206(1-3) 210–214, doi:https://doi.org/10.1016/j.desal.2006.03.567.

Kiparsky, M., Sedlak, D.L., Thompson Jr, B.H., Truffer, B., 2013. The innovation deficit in urban water: the need for an integrated perspective on institutions, organizations, and technology. Environmental Engineering Science 30(8) 395–408, doi:https://doi.org/10.1089/ees.2012.0427.

Kiparsky, M., Thompson, B.H., Binz, C., Sedlak, D.L., Tummers, L., Truffer, B., 2016. Barriers to Innovation in Urban Wastewater Utilities: Attitudes of Managers in California. Environmental Management 57(6) 1204–1216, doi:https://doi.org/10.1007/s00267-016-0685-3.

Kowalski, W., 2009. Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection, Springer Berlin Heidelberg, doi:https://doi.org/10.1007/978-3-642-01999-9.

Kroll, S., Weemaes, M., Van Impe, J., Willems, P., 2018. A Methodology for the Design of RTC Strategies for Combined Sewer Networks. Water 10(11) 1675, doi:https://doi.org/10.

3390/w10111675.

Kusumawardhana, A., Zlatanovic, L., Bosch, A., van der Hoek, J.P., 2021. Microbiological Health Risk Assessment of Water Conservation Strategies: A Case Study in Amsterdam.

International Journal of Environmental Research and Public Health 18(5) 2595, doi:https://doi.org/10.3390/ijerph18052595.

Kwarciak-Kozłowska, A., 2020. Methods used for the removal of disinfection by-products from water, in M.N.V. Prasad, ed., Disinfection By-products in Drinking Water, 1–21, Elsevier,

doi:https://doi.org/10.1016/B978-0-08-102977-0.00001-9.

Lamine, M., Samaali, D., Ghrabi, A., 2012. Greywater treatment in a submerged membrane bioreactor with gravitational filtration. Desalination and Water Treatment 46(1-3) 182–187,

doi:https://doi.org/10.1080/19443994.2012.677553.

Lane, P.N.J., Feikema, P.M., Sherwin, C.B., Peel, M.C., Freebairn, A.C., 2010. Modelling the long term water yield impact of wildfire and other forest disturbance in Eucalypt forests.

Environmental Modelling & Software 25(4) 467–478, doi:https://doi.org/10.1016/j.envsoft.2009.11.001.

Larsen, T.A., Gujer, W., 1996. Separate management of anthropogenic nutrient solutions (human urine). Water Science and Technology 34(3-4) 87–94, doi:https://doi.org/10.2166/wst.

1996.0420.

Larsen, T.A., Hoffmann, S., Lüthi, C., Truffer, B., Maurer, M., 2016. Emerging solutions to the water challenges of an urbanizing world. Science 352(6288) 928–933, doi:https://doi.org/

10.1126/science.aad8641.

Larsen, T.A., Udert, K.M., Lienert, J., 2013. Source Separation and Decentralization for Wastewater Management, IWA Publishing, doi:https://doi.org/10.2166/9781780401072.

Lemos, D., Dias, A.C., Gabarrell, X., Arroja, L., 2013. Environmental assessment of an urban water system. Journal of Cleaner Production 54 157–165, doi:https://doi.org/10.1016/j.

jclepro.2013.04.029.

Leong, C., Lebel, L., 2020. Can conformity overcome the yuck factor? explaining the choice for recycled drinking water. Journal of Cleaner Production 242 118196, doi:https://doi.org/

10.1016/j.jclepro.2019.118196.

Li, G.Q., Wang, W.L., Huo, Z.Y., Lu, Y., Hu, H.Y., 2017. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.

Water Research 126 134–143, doi:https://doi.org/10.1016/j.watres.2017.09.030.

Li, K., 2007. Ceramic Membranes for Separation and Reaction, John Wiley & Sons, Ltd, doi:https://www.doi.org/10.1002/9780470319475.

Liberman, N., Shandalov, S., Forgacs, C., Oron, G., Brenner, A., 2016. Use of MBR to sustain active biomass for treatment of low organic load grey water. Clean Technologies and Environmental Policy 18(4) 1219–1224, doi:https://www.doi.org/10.1007/s10098-016-1112-4.

Lienert, J., Bürki, T., Escher, B.I., 2007. Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Science and Technology 56(5) 87–96, doi:https://doi.org/10.2166/wst.2007.560.

Lin, H., Gao, W., Meng, F., Liao, B.Q., Leung, K.T., Zhao, L., Chen, J., Hong, H., 2012. Membrane Bioreactors for Industrial Wastewater Treatment: A Critical Review. Critical Reviews in Environmental Science and Technology 42(7) 677–740, doi:https://doi.org/10.1080/10643389.2010.526494.

Linden, K.G., Mohseni, M., 2014. Advanced Oxidation Processes: Applications in Drinking Water Treatment, in S. Ahuja, ed., Comprehensive Water Quality and Purification, 148–172,

Elsevier, Waltham, doi:https://doi.org/10.1016/B978-0-12-382182-9.00031-1.

Lindqvist, K., Lidén, E., 1997. Preparation of alumina membranes by tape casting and dip coating. Journal of the European Ceramic Society 17(2-3) 359–366, doi:https://doi.org/10.

1016/S0955-2219(96)00107-0.

Liu, D., 2019. Escherichia coli, in T.M. Schmidt, ed., Encyclopedia of Microbiology (Fourth Edition), 171–182, Academic Press, Oxford, fourth Edition, doi:https://doi.org/10.1016/

B978-0-12-801238-3.02291-1.

Lundie, S., Peters, G.M., Beavis, P.C., 2004. Life Cycle Assessment for Sustainable Metropolitan Water Systems Planning. Environmental Science & Technology 38(13) 3465–3473, doi:

https://doi.org/10.1021/es034206m.

Luo, T., Young, R., Reig, P., 2015. Aqueduct Projected Water Stress Country Rankings, ,World Resources Institute.

Ma, J., Dai, R., Chen, M., Khan, S.J., Wang, Z., 2018. Applications of membrane bioreactors for water reclamation: Micropollutant removal, mechanisms and perspectives. Bioresource Technology 269 532–543, doi:https://doi.org/10.1016/j.biortech.2018.08.121.

Madsen, T., Miljøstyrelsen, D., 2001. Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Danish Environmenal Protection

Agency.

Marlow, D.R., Moglia, M., Cook, S., Beale, D.J., 2013. Towards sustainable urban water management: A critical reassessment. Water Research 47(20) 7150–7161, doi:https ://doi.org/10.1016/j.watres.2013.07.046.

Masi, F., Bresciani, R., Rizzo, A., Edathoot, A., Patwardhan, N., Panse, D., Langergraber, G., 2016. Green walls for greywater treatment and recycling in dense urban areas: a casestudy in Pune. Journal of Water, Sanitation and Hygiene for Development 6(2) 342–347, doi:https://doi.org/10.2166/washdev.2016.019.

Maurer, M., 2009. Specific net present value: An improved method for assessing modularisation costs in water services with growing demand. Water Research 43(8) 2121–2130, doi:

https://doi.org/10.1016/j.watres.2009.02.008.

Maurer, M., Wolfram, M., Anja, H., 2010. Factors affecting economies of scale in combined sewer systems. Water Science and Technology 62(1) 36–41, doi:https://doi.org/10.2166/wst.

2010.241.

Mbavarira, T.M., Grimm, C., 2021. A Systemic View on Circular Economy in the Water Industry: Learnings from a Belgian and Dutch Case. Sustainability 13(6) 3313, doi: https://doi.org/10.3390/su13063313.

McCarty, P.L., Bae, J., Kim, J., 2011. Domestic Wastewater Treatment as a Net Energy Producer - Can This be Achieved? Environmental Science & Technology 45(17) 7100–7106,

doi:https://doi.org/10.1021/es2014264.

McDonald, R.I., Weber, K., Padowski, J., Flörke, M., Schneider, C., Green, P.A., Gleeson, T., Eckman, S., Lehner, B., Balk, D., Boucher, T., Grill, G., Montgomery, M., 2014. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global Environmental Change 27 96–105, doi:https://doi.org/10.1016/j.gloenvcha.2014.04.022.

Meindertsma, W., van Sark, W.G.J.H.M., Lipchin, C., 2010. Renewable energy fueled desalination in Israel. Desalination and Water Treatment 13(1-3) 450–463, doi:https://doi.org/10.

5004/dwt.2010.1004.

Merlet, R.B., Pizzoccaro-Zilamy, M.A., Nijmeijer, A., Winnubst, L., 2020. Hybrid ceramic membranes for organic solvent nanofiltration: State-of-the-art and challenges. Journal of

Membrane Science 599 117839, doi:https://doi.org/10.1016/j.memsci.2020.117839.

Metcalf & Eddy, Burton, F.L., Stensel, H.D., Tchobanoglous, G., 2013. Wastewater engineering: treatment and resource recovery, New York : McGraw-Hill Higher Education ; London : McGraw-Hill, fifth Edition.

Molden, D., ed., 2007. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture, Comprehensive assessment of water management in agriculture, Earthscan; International Water Management Institute.

Müller, A., Stahl, M.R., Greiner, R., Posten, C., 2014. Performance and dose validation of a coiled tube UV-C reactor for inactivation of microorganisms in absorbing liquids. Journal of Food Engineering 138 45–52, doi:https://doi.org/10.1016/j.jfoodeng.2014.04.013.

Naddeo, V., Scannapieco, D., Belgiorno, V., 2013. Enhanced drinking water supply through harvested rainwater treatment. Journal of Hydrology 498 287–291, doi:https://doi.org/10.

1016/j.jhydrol.2013.06.012.

Napoli, C., Rioux, B., 2016. Evaluating the economic viability of solar-powered desalination: Saudi Arabia as a case study. International Journal of Water Resources Development 32(3)

412–427, doi:https://doi.org/10.1080/07900627.2015.1109499.

Nel, N., Jacobs, H.E., 2019. Investigation into untreated greywater reuse practices by suburban households under the threat of intermittent water supply. Journal of Water, Sanitation and

Hygiene for Development 9(4) 627–634, doi:https://doi.org/10.2166/washdev.2019.055.

Nyamutswa, L., Zhu, B., Navaratna, D., Collins, S., Duke, M., 2018. Proof of Concept for Light Conducting Membrane Substrate for UV-Activated Photocatalysis as an Alternative to Chemical Cleaning. Membranes 8(4) 122, doi:https://doi.org/10.3390/membranes8040122.

Öberg, G., Metson, G.S., Kuwayama, Y., A. Conrad, S., 2020. Conventional Sewer Systems Are Too Time-Consuming, Costly and Inflexible to Meet the Challenges of the 21st Century.

Sustainability 12(16) 6518, doi:https://doi.org/10.3390/su12166518.

Opher, T., Friedler, E., 2016. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. Journal of Environmental Management 182 464–476,

doi:https://doi.org/10.1016/j.jenvman.2016.07.080.

Oteng-Peprah, M., de Vries, N.K., Acheampong, M.A., 2018. Greywater characterization and generation rates in a peri urban municipality of a developing country. Journal of Environmental Management 206 498–506, doi:https://doi.org/10.1016/j.jenvman.2017.10.068.

Pabi, S., Amarnath, A., Goldstein, R., Reekie, L., 2013. Electricity use and management in the municipal water supply and wastewater industries, , Electric Power Research Institute and

Water Research Foundation.

Palmarin, M.J., Young, S., 2019. Comparison of the treatment performance of a hybrid and conventional membrane bioreactor for greywater reclamation. Journal of Water Process Engineering 28 54–59, doi:https://doi.org/10.1016/j.jwpe.2018.12.012.

Palmarin, M.J., Young, S., Chan, J., 2020. Recovery of a hybrid and conventional membrane bioreactor following long-term starvation. Journal of Water Process Engineering 34 101027,

doi:https://doi.org/10.1016/j.jwpe.2019.101027.

Palmer, N., 2011. Desalination ’Comes of Age’ Across Arid Australia. Water and Wastewater International 26(3) 54–61.

Park, H.D., Chang, I.S., Lee, K.J., 2015. Principles of Membrane Bioreactors for Wastewater Treatment, Taylor & Francis Ltd.

Penn, R., Schütze, M., Alex, J., Friedler, E., 2017. Impacts of onsite greywater reuse on wastewater systems. Water Science and Technology 75(8) 1862–1872, doi:https://doi.org/10.2166/

wst.2017.057.

Puchongkawarin, C., Gomez-Mont, C., Stuckey, D.C., Chachuat, B., 2015. Optimization-based methodology for the development of wastewater facilities for energy and nutrient recovery.

Chemosphere 140 150–158, doi:https://doi.org/10.1016/j.chemosphere.2014.08.061.

Rabaey, K., Van De Walle, A., 2020. De "water-kilometer" kan een instrument zijn om Vlaanderen beter te wapenen tegen de droogte (Dutch), In: Knack.

URL https : / / www . knack . be / nieuws / belgie / de - water - kilometer - kan - een instrument-zijn-om-vlaanderen-beter-te-wapenen-tegen-de-droogte/articleopinion-1604231.html

Rabaey, K., Vandekerckhove, T., Van de Walle, A., Sedlak, D.L., 2020. The third route: Using extreme decentralization to create resilient urban water systems. Water Research 185 116276,

doi:https://doi.org/10.1016/j.watres.2020.116276.

Ragazzo, P., Chiucchini, N., Piccolo, V., Spadolini, M., Carrer, S., Zanon, F., Gehr, R., 2020. Wastewater disinfection: long-term laboratory and full-scale studies on performic acid in comparison with peracetic acid and chlorine. Water Research 184 116169, doi:https://doi.org/10.1016/j.watres.2020.116169.

Rahn, R.O., 1997. Potassium Iodide as a Chemical Actinometer for 254 nm Radiation: Use of lodate as an Electron Scavenger. Photochemistry and Photobiology 66(4) 450–455, doi:

https://doi.org/10.1111/j.1751-1097.1997.tb03172.x.

Rahn, R.O., Stefan, M.I., Bolton, J.R., Goren, E., Shaw, P.S., Lykke, K.R., 2003. Quantum Yield of the Iodide–Iodate Chemical Actinometer: Dependence on Wavelength and Concentration. Photochemistry and Photobiology 78(2) 146, doi:https://doi.org/10.1562/00318655(2003)078<0146:qyotic>2.0.co;2.

Ramprasad, C., Smith, C.S., Memon, F.A., Philip, L., 2017. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland: GROW. Ecological Engineering 106 55–65, doi:https://doi.org/10.1016/j.ecoleng.2017.05.022.



Ray, P.A., Kirshen, P.H., Vogel, R.M., 2010. Integrated Optimization of a Dual Quality Water and Wastewater System. Journal of Water Resources Planning and Management 136(1) 37–47, doi:https://doi.org/10.1061/(ASCE)WR.1943-5452.0000004.

Reynaert, E., Greenwood, E.E., Ndwandwe, B., Riechmann, M.E., Sindall, R.C., Udert, K.M., Morgenroth, E., 2020. Practical implementation of true on-site water recycling systems for

hand washing and toilet flushing. Water Research 7 100051, doi:https://doi.org/10.1016/j.wroa.2020.100051.

Reynaert, E., Hess, A., Morgenroth, E., 2021. Making Waves: Why water reuse frameworks need to co-evolve with emerging small-scale technologies. Water Research 11 100094, doi:

https://doi.org/10.1016/j.wroa.2021.100094.

Rezaei, N., Diaz-Elsayed, N., Mohebbi, S., Xie, X., Zhang, Q., 2019. A multi-criteria sustainability assessment of water reuse  applications: a case study in Lakeland, Florida. Environmental Science: Water Research and Technology 5(1) 102–118, doi:https://doi.org/10.1039/c8ew00336j.

Rice, J., Wutich, A., White, D.D., Westerhoff, P., 2016. Comparing actual de facto wastewater reuse and its public acceptability: A three city case study. Sustainable Cities and Society 27

467–474, doi:https://doi.org/10.1016/j.scs.2016.06.007.

Richardson, T.G., Bailey, H., 1995. Indirect potable reuse - a watershed management technique, Volume 2, 1031–1035.

Richter, H., Voigt, I., Fischer, G., Puhlfürß, P., 2003. Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries. Separation and Purification Technology

32(1-3) 133–138, doi:https://doi.org/10.1016/S1383-5866(03)00025-X.

Rittmann, B., 2001. Environmental biotechnology : principles and applications, McGraw-Hill, Boston.

Rodda, N., Salukazana, L., Jackson, S.A.F., Smith, M.T., 2011. Use of domestic greywater for small-scale irrigation of food crops: Effects on plants and soil. Physics and Chemistry of the

Earth, Parts A/B/C 36(14-15) 1051–1062, doi:https://doi.org/10.1016/j.pce.2011.08.002.

Rodríguez-Chueca, J., Ormad, M.P., Mosteo, R., Sarasa, J., Ovelleiro, J.L., 2015. Conventional and Advanced Oxidation Processes Used in Disinfection of Treated Urban Wastewater. Water Environment Research 87(3) 281–288, doi:https : / / doi . org / 10 . 2175 /106143014X13987223590362.

Royal Meteorological Institute of Belgium, s.d. Klimaatatlas: Gemiddelde Jaarlijkse Neerslag 1981-2010 (Dutch), retrieved 15/11/2020.

URL https://www.meteo.be/nl/klimaat/klimaatatlas/klimaatkaarten/neerslag/ne…

Sahoo, G.C., Halder, R., Jedidi, I., Oun, A., Nasri, H., Roychoudhurry, P., Majumdar, S., Bandyopadhyay, S., Amar, R.B., 2016. Preparation and characterization of microfiltration

apatite membrane over low cost clay-alumina support for decolorization of dye solution. Desalination and Water Treatment 57(57) 1–10, doi:https://doi.org/10.1080/19443994.2016.

1186565.

Santasmasas, C., Rovira, M., Clarens, F., Valderrama, C., 2013. Grey water reclamation by decentralized MBR prototype. Resources, Conservation and Recycling 72 102–107, doi:https://doi.org/10.1016/j.resconrec.2013.01.004.

Scheumann, R., Kraume, M., 2009. Influence of hydraulic retention time on the operation of a submerged membrane sequencing batch reactor (SM-SBR) for the treatment of greywater. Desalination 246(1-3) 444–451, doi:https://doi.org/10.1016/j.desal.2008.03.066.

Schoen, M.E., Jahne, M.A., Garland, J., 2018. Human health impact of non-potable reuse of distributed wastewater and greywater treated by membrane bioreactors. Microbial Risk

Analysis 9 72–81, doi:https://doi.org/10.1016/j.mran.2018.01.003.

Schoen, M.E., Jahne, M.A., Garland, J., 2020. A risk-based evaluation of onsite, non-potablereuse systems developed in compliance with conventional water quality measures. Journal

of Water and Health 18(3) 331–344, doi:https://doi.org/10.2166/wh.2020.221.

Schuetze, T., 2013. Rainwater harvesting and management - policy and regulations in Germany. Water Supply 13(2) 376–385, doi:https://doi.org/10.2166/ws.2013.035.

Schwaller, C., Keller, Y., Helmreich, B., Drewes, J.E., 2021. Estimating the agricultural irrigation demand for planning of non-potable water reuse projects. Agricultural Water Management 244 106529, doi:https://doi.org/10.1016/j.agwat.2020.106529.

Sedlak, D.L., Drewes, J.E., Luthy, R.G., 2013. Introduction: Reinventing Urban Water Infrastructure. Environmental Engineering Science 30(8) 393–394, doi:https://doi.org/10.1089/

ees.2013.3008.

Shabangu, T.H., Hamam, Y., Adedeji, K.B., 2020. Decision support systems for leak control in urban water supply systems: A literature synopsis. Procedia CIRP 90 579–583, doi:https:

//doi.org/10.1016/j.procir.2020.01.120.

Shaikh, I.N., Ahammed, M.M., 2020. Quantity and quality characteristics of greywater: A review. Journal of Environmental Management 261 110266, doi:https://doi.org/10.1016/j.

jenvman.2020.110266.

Sharvelle, S., Ashbolt, N., Clerico, E., Holquist, R., Levernz, H., Olivieri, A., 2017. RiskBased Framework for the Development of Public Health Guidance for Decentralized NonPotable Water Systems. Proceedings of the Water Environment Federation 6(8) 3799–3809, doi:https://doi.org/10.2175/193864717822158189.

Shukla, P.R., Skea, J., Slade, R., van Diemen, R., Haughey, E., Malley, J., Pathak, M., Portugal Pereira, J., eds., 2019. Climate Change and Land: an IPCC special report on climate

change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, Chapter Technical Summary, Intergovernmental Panel on Climate Change.

Shukla, S., Tare, V., 2019. Handbook of Environmental Materials Management, Chapter Assessment of Some Aspects of Provisioning Sewerage Systems: A Case Study of Urban Agglomerations in Ganga River Basin, 3–34, Springer International Publishing, Cham, doi: 10.1007/978-3-319-73645-7_3.

Siggins, A., Burton, V., Ross, C., Lowe, H., Horswell, J., 2016. Effects of long-term greywater disposal on soil: A case study. Science of The Total Environment 557-558 627–635, doi:

https://doi.org/10.1016/j.scitotenv.2016.03.084.

Simpson, N.P., Simpson, K.J., Shearing, C.D., Cirolia, L.R., 2019. Municipal finance and resilience lessons for urban infrastructure management: a case study from the Cape Town drought. International Journal of Urban Sustainable Development 11(3) 257–276, doi:https://doi.org/10.1080/19463138.2019.1642203.

Skambraks, A.K., Kjerstadius, H., Meier, M., Åsa Davidsson, Wuttke, M., Giese, T., 2017. Source separation sewage systems as a trend in urban wastewater management: Drivers for the implementation of pilot areas in Northern Europe. Sustainable Cities and Society 28 287–296, doi:https://doi.org/10.1016/j.scs.2016.09.013.

Sun, C., Leiknes, T., Weitzenböck, J., Thorstensen, B., 2010. Development of a biofilm-MBR for shipboard wastewater treatment: The effect of process configuration. Desalination 250(2) 745–750, doi:https://doi.org/10.1016/j.desal.2008.11.034.

Tadkaew, N., Hai, F.I., McDonald, J.A., Khan, S.J., Nghiem, L.D., 2011. Removal of trace organics by MBR treatment: The role of molecular properties. Water Research 45(8) 2439–

2451, doi:https://doi.org/10.1016/j.watres.2011.01.023.

Tang, X., Wen, Y., He, Y., Jiang, H., Dai, X., Bi, X., Wagner, M., Chen, H., 2020. Full-scale semi-centralized wastewater treatment facilities for resource recovery: operation, problems and resolutions. Water Science and Technology 82(2) 303–314, doi:https://doi.org/10.2166/wst.2020.169.

Tay, M.F., Lee, S., Xu, H., Jeong, K., Liu, C., Cornelissen, E.R., Wu, B., Chong, T.H., 2020. Impact of salt accumulation in the bioreactor on the performance of nanofiltration membrane

bioreactor (NF-MBR)+Reverse osmosis (RO) process for water reclamation. Water Research 170 115352, doi:https://doi.org/10.1016/j.watres.2019.115352.

Ternes, T., Joss, A., 2006. Human Pharmaceuticals, Hormones and Fragrances - The Challenge of Micropollutants in Urban Water Management, IWA Publishing, doi:10 . 2166 /

9781780402468.

Tideway, 2020. Tideway Annual Report FY 2019-20, , Bazalgette Tunnel Ltd., Cottons Centre, Cottons Lane, London. URL https://www.tideway.london

Trinh, T., van den Akker, B., Coleman, H.M., Stuetz, R.M., Le-Clech, P., Khan, S.J., 2012. Removal of endocrine disrupting chemicals and microbial indicators by a decentralised membrane bioreactor for water reuse. Journal of Water Reuse and Desalination 2(2) 67–73, doi: https://doi.org/10.2166/wrd.2012.010.

UNESCO World Water Assessment Programme, 2015. The United Nations world water development report 2015: water for a sustainable world, UNESCO World Water assessment Programme, United Nations Educational, Scientific and Cultural Organization, Paris, France.

UNESCO World Water Assessment Programme, 2018. The United Nations world water development report 2018: nature-based solutions for water, United Nations Educational, Scientific

and Cultural Organization, Paris, France.

United Nations, Department of Economic and Social Affairs, Population Division, 2018. World Urbanization Prospects: The 2018 Revision, United Nations, New York NY.

United Nations, Department of Economic and Social Affairs, Population Division, 2019a. World Population Prospects 2019, custom data acquired via website.

United Nations, Department of Economic and Social Affairs, Population Division, 2019b. World Population Prospects 2019: Highlights, United Nations, New York NY.

U.S. EPA, 2012. 2012 Guidelines for Water Reuse. EPA/600/R-12/618.

Van Houtte, E., Verbauwhede, J., 2008. Operational experience with indirect potable reuse at the Flemish Coast. Desalination 218(1-3) 198–207, doi:https://doi.org/10.1016/j.desal.2006.

08.028.

Verliefde, A., Cornelissen, E., Amy, G., Van der Bruggen, B., van Dijk, H., 2007. Priority organic micropollutants in water sources in Flanders and the Netherlands and assessment of removal possibilities with nanofiltration. Environmental Pollution 146(1) 281–289, doi: https://doi.org/10.1016/j.envpol.2006.01.051.

Vlaamse Milieumaatschappij, 2018. Watergebruik door huishoudens - het watergebruik in 2016 bij de Vlaming thuis (Dutch), retrieved 29/12/2020.

URL https://www.vlaanderen.be/publicaties/watergebruik-door-huishoudenshet-…

Vlaamse Milieumaatschappij, 2019a. Drinkwatervoorziening in Vlaanderen: organisatie en een blik vooruit (Dutch).

URL https : / / www . vmm . be / water / drinkwater / drinkwatervoorziening _ in _vlaanderen_organisatie_en_een_blik_vooruit_tw.pdf/view

Vlaamse Milieumaatschappij, 2019b. Riolerings- en zuiveringsgraden (Dutch). URL https://www.vmm.be/data/riolerings-en-zuiveringsgraden

Vlaamse Milieumaatschappij, 2020a. Afwegingskader prioritair watergebruik tijdens droogte (Dutch), retrieved 29/12/2020.

URL https : / / www . vmm . be / water / projecten / afwegingskader - prioritair watergebruik-tijdens-droogte

Vlaamse Milieumaatschappij, 2020b. Hittegolven en andere temperatuursextremen (Dutch), retrieved 31/12/2020.

URL https : / / www . milieurapport . be / milieuthemas / klimaatverandering /temperatuur/hittegolven-en-temperatuursextremen

Vlaamse Milieumaatschappij, 2020c. Impact droogte op drinkwater (Dutch), retrieved 31/12/2020.

URL https://www.vmm.be/water/droogte/impact-droogte-op-drinkwater

von Recklinghausen, M., 1914. The ultra-violet rays and their application for the sterilization of water. Journal of the Franklin Institute 178(6) 681–704, doi:https://doi.org/10.1016/S00160032(14)90419-7.

Vuppaladadiyam, A.K., Merayo, N., Prinsen, P., Luque, R., Blanco, A., Zhao, M., 2019. A review on greywater reuse: quality, risks, barriers and global scenarios. Reviews in Environmental Science and Bio/Technology 18(1) 77–99, doi:https://doi.org/10.1007/s11157-0189487-9.

Wang, S., Liu, H., Gu, J., Sun, H., Zhang, M., Liu, Y., 2019. Technology feasibility and economic viability of an innovative integrated ceramic membrane bioreactor and reverse osmosis process for producing ultrapure water from municipal wastewater. Chemical Engineering Journal 375 122078, doi:https://doi.org/10.1016/j.cej.2019.122078.

Weber, K.T., Yadev, R., Davis, J., Blair, K., Schnase, J., Carroll, M., Gill, R., 2017. The NASARECOVER Decision Support System: Geography of Wildfires Across the West, , The National Aeronautics and Space Administration.

Western Australia Department of Health, 2011. Guidelines for the Non-potable Uses of Recycled Water in Western Australia 2011.

Westhof, L., Köster, S., Reich, M., 2016. Occurrence of micropollutants in the wastewater streams of cruise ships. Emerging Contaminants 2(4) 178–184, doi:https://doi.org/10.1016/j.emcon.2016.10.001.

Willems, P., Renson, I., 2019. We spelen met water (Dutch), retrieved 31/12/2020.

URL https://www.standaard.be/cnt/dmf20191208_04756786?

Winward, G.P., Avery, L.M., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., Jefferson, B., 2008. A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological Engineering 32(2) 187–197, doi:https://doi.org/10.1016/j.ecoleng.2007.11.001.

World Health Organization, 2006. Excreta and greywater use in agriculture, in Guidelines for the safe use of wastewater, excreta and greywater, Volume 4, WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland.

Wu, B., 2019. Membrane-based technology in greywater reclamation: A review. Science of The Total Environment 656 184–200, doi:https://doi.org/10.1016/j.scitotenv.2018.11.347.

Yang, B., Zhang, S., Pang, X., Lu, J., Wu, Z., Yue, Y., Wang, T., Jiang, Z., Lv, J., 2020.

Separation of serum proteins and micellar casein from skim goat milk by pilot-scale 0.05-µm pore-sized ceramic membrane at 50◦ C. Journal of Food Process Engineering 43(2) e13334,

doi:https://doi.org/10.1111/jfpe.13334.

Yangali-Quintanilla, V., Maeng, S.K., Fujioka, T., Kennedy, M., Amy, G., 2010. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. Journal of Membrane Science 362(1-2) 334–345, doi:https://doi.org/10.1016/j.memsci.2010.06.058.

Yazdanshenas, M., Soltanieh, M., Tabatabaei Nejad, S.A.R., Fillaudeau, L., 2010. Cross-flow microfiltration of rough non-alcoholic beer and diluted malt extract with tubular ceramic

membranes: Investigation of fouling mechanisms. Journal of Membrane Science 362(1-2) 306–316, doi:https://doi.org/10.1016/j.memsci.2010.06.041.

Yu, M., Bishop, T., Ogtrop, F.V., 2019. Assessment of the Decadal Impact of Wildfire on Water Quality in Forested Catchments. Water 11(3) 533, doi:https://doi.org/10.3390/w11030533.

Yusuf, Z., Abdul Wahab, N., Sahlan, S., 2015. Fouling control strategy for submerged membrane bioreactor filtration processes using aeration airflow, backwash, and relaxation: a review. Desalination and Water Treatment 57(38) 17683–17695, doi:https://doi.org/10.1080/19443994.2015.1086893.

Zang, J., Kumar, M., Werner, D., 2021. Real-world sustainability analysis of an innovative decentralized water system with rainwater harvesting and wastewater reclamation. Journal of Environmental Management 280 111639, doi:https://doi.org/10.1016/j.jenvman.2020.111639.

Zeuner, B., Ovtar, S., Persson, Å.H., Foghmoes, S., Berendt, K., Ma, N., Kaiser, A., Negra, M.D., Pinelo, M., 2020. Surface treatments and functionalization of metal-ceramic membranes for improved enzyme immobilization performance. Journal of Chemical Technology and Biotechnology 95(4) 993–1007, doi:https://doi.org/10.1002/jctb.6278.

 

Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2021
Promotor(en)
Prof. dr. ir. Korneel Rabaey, Prof. dr. Arne Verliefde