Deze thesis presenteert een nieuwe aanpak voor het creëren van een geperforeerd gevelpaneel met behulp van 3D-betonprinttechnologie. Het gebruik van perforaties in de gevel maakt zonwering mogelijk en zorgt tegelijkertijd voor voldoende daglicht binnenshuis. Met de toenemende populariteit van digitale bouwmethoden is de constructie van geperforeerde gevels toegankelijker geworden, 3D-betonprinten is een veelbelovende methode voor maatwerk op grote schaal in deze categorie. Echter heeft deze nog niet bewezen efficiënt te zijn voor het creëren van perforaties. In deze scriptie wordt de geschiktheid van een 3D-betonprinter om een geperforeerd gevelpaneel te creëren geanalyseerd. Verschillende toolpath-technieken voor het creëren van perforaties worden getest door middel van praktische testprints. De meest veelbelovende toolpath-techniek wordt verder onderzocht om het algoritme voor het creëren van de perforaties te optimaliseren. Verwachte resultaten van dit onderzoek zijn onder andere een gevalideerd algoritme voor het creëren en regelen van perforaties met een 3D-betonprinter, met de mogelijkheid om een ruw oppervlaktetextuur te creëren, alsook variaties en patronen met de perforaties te creëren. Daarnaast zal een set ontwerpcriteria worden vastgesteld om specifieke esthetische en functionele resultaten te behalen. Dit gaat samen met een beter begrip van de beperkingen en uitdagingen van de technologie voor architecturale toepassingen, specifiek voor geperforeerde panelen. Deze scriptie zal een beter begrip bieden van het potentieel en de beperkingen van de technologie voor architecturale toepassingen, met name gericht op het creëren van geperforeerde panelen.
3D Potter. (n.d.). Continuous Flow High Volume Pump Overview. 3D Potter. Retrieved June 4, 2023, from https://3dpotter.com/continuous-flow-high-volume-pumps
ABB. (2004). Technical reference manual RAPID Instructions, Functions and Data types.
ABB. (2020). IRB 6660 Product specification. https://search.abb.com/library/Download.aspx?DocumentID=3HAC028207-001&…
Addanki, S., Amiri, I. S., & Yupapin, P. (2018). Review of optical fibers-introduction and applications in fiber lasers. Results in Physics, 10, 743–750. https://doi.org/https://doi.org/10.1016/j.rinp.2018.07.028
Bekkering Adams Architecten. (2017). Firewall. Studio Adams. https://www.studioadams.nl/projects/69/firewall
Bekkering, J., Kuit, B., Biffi, A., & Ahmed, Z. Y. (2020). Architectonic Explorations of the Possibilities of 3D Concrete Printing: The Historic Building Fragment as Inspiration for New Applications with 3D Concrete Printing in Architecture. In F. P. Bos, S. S. Lucas, R. J. M. Wolfs, & T. A. M. Salet (Eds.), Second RILEM International Conference on Concrete and Digital Fabrication (pp. 1078–1090). Springer International Publishing.
Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55(2), 155–162. https://doi.org/https://doi.org/10.1016/j.bushor.2011.11.003
Bernier, C. (2021, November 10). Six-Axis Robots: Applications, Benefits, and Cost Analysis. #HowToRobot. https://howtorobot.com/expert-insight/six-axis-robots
Bhushan, M. P., Johnson, D., Pasha, M. A. B., & Prasanthi, K. (2013). Optical fibres in the modeling of translucent concrete blocks. International Journal of Engineering Research and Applications, 3(3), 13–17.
Chen, S. (2019, July 11). Can Robots Solve the Affordable Housing Crisis? . PoliticoMagazine. https://www.politico.com/magazine/story/2019/07/11/robots-solve-afforda…
Chi, P., & Doris, A. (2019). A Comprehensive Evaluation of Perforated Façades for Daylighting and Solar Shading Performance: Effects of Matrix, Thickness and Separation Distance. Journal of Daylighting, 6(2), 97–111. https://doi.org/10.15627/jd.2019.10
Claire Im, H., Alothman, S., & García del Castillo, J. L. (2018). Responsive Spatial Print. Clay 3D printing of spatial lattices using real-time model recalibration. 286–293. https://doi.org/10.52842/conf.acadia.2018.286
Constructions-3D. (n.d.). Maxi Printer. Aniwaa. Retrieved March 3, 2023, from https://www.aniwaa.fr/produit/imprimantes-3d/machines-3d-3d-constructor/
Costantino, D., Grimaldi, A., & Pepe, M. (2022). 3D modelling of buildings and urban areas using grasshopper and rhinoceros. Geographia Technica, 17(1/2022), 167–176. https://doi.org/10.21163/GT_2022.171.13
Cybe Construction. (2018). 3D concrete printers. https://cybe.eu/3d-concrete-printing/printers/
Dreamstime. (n.d.). Seamless stone border stock image. Dreamstime. Retrieved March 12, 2023, from https://www.dreamstime.com/seamless-stone-border-greek-style-ancient-ma…
Egonis. (n.d.). LiTraCon – przezierny beton. Architektura Dla Każdego. Retrieved July 6, 2022, from http://architekturadlakazdego.blogspot.com/2011/05/litracon-przezierny-…
Ghasemieshkaftaki, M., A Ortiz, M., & Bluyssen, P. (2021). An overview of transparent and translucent 3D-printed façade prototypes and technologies. Paper Presented at Healthy Buildings Europe 2021 Online.
GRZ Software. (n.d.). Toolpath. Retrieved November 23, 2023, from https://www.grzsoftware.com/learn-cnc/terms/toolpath/
Hull, C. W. (2015). The Birth of 3D Printing. Research-Technology Management, 58(6), 25–30. https://doi.org/10.5437/08956308X5806067
Institute of Structural Design. (n.d.). Robotics Design Laboratory. TU Graz. Retrieved March 13, 2023, from https://www.tugraz.at/en/institutes/ite/robotics-design-laboratory/
Kim, J., Jung, J., Kim, S., & Kim, S.-A. (2017). Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade. International Journal of Architectural and Environmental Engineering, 11(11), 1602–1609.
Knuff, A. (2017). Pattern Research Project: An Investigation of The Pattern And Printing Process - Greek Key (Pattern Research Project).
Ko, C.-H. (2021). Constraints and limitations of concrete 3D printing in architecture. Journal of Engineering, Design and Technology, 20(5), 1334–1348. https://doi.org/10.1108/JEDT-11-2020-0456
Kosky, P., Balmer, R., Keat, W., & Wise, G. (2021). Manufacturing Engineering. In P. Kosky, R. Balmer, W. Keat, & G. Wise (Eds.), Exploring Engineering (5th ed., pp. 259–291). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-815073-3.00012-0
Malaeb, Z., AlSakka, F., & Hamzeh, F. (2019). 3D Concrete Printing: Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups. In J. G. Sanjayan, A. Nazari, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 115–136). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-815481-6.00006-3
Mendonça, P., & Macieira, M. R. F. (2019). Architectural Membranes for improving the functional performance of buildings. SMC Magazine, 3, 27–38.
Oxford Languages. (n.d.). 3D printing. Retrieved November 19, 2022, from https://www.google.com/search?q=3D+printing+define&oq=3D+printing+defin…
Paoletti, I. (2017). Mass Customization with Additive Manufacturing: New Perspectives for Multi Performative Building Components in Architecture. Procedia Engineering, 180, 1150–1159. https://doi.org/https://doi.org/10.1016/j.proeng.2017.04.275
Ranveer, A., Bhanuse, M., & Babar, A. (2016). Smart Light Translucent Concrete By Using Optical Fiber. Journal of Environmental Science, Computer Science and Engineering & Technology, 5, 10–18.
Raspall, F. (2013). Faksimile / Big scale. [Course text].
Rhino Grasshopper (1.0.0007). (2022). Robert McNeel & Associates.
Robert McNeel & Associates. (n.d.). Rhinoceros Forums. https://discourse.mcneel.com/c/grasshopper/2
Robert McNees & Associates. (n.d.). About McNeel. Retrieved May 30, 2023, from https://www.rhino3d.com/mcneel/about/
Romaniak, K., & Filipowski, S. (2018). Parametric design in the education of architecture students. World Transactions on Engineering and Technology Education, 16, 386–391.
Rusi, I. (2019). The Contemporary Trend of Perforation. Case of Exoskeleton Concrete Shells. International Journal of Science and Research (IJSR), 8.
Sarakinioti, M.-V., Konstantinou, thaleia, Turrin, M., Tenpierik, M., Loonen, R., de Klijn-Chevealerias, M., & Knaack, U. (2018). Development and prototyping of an integrated 3D-printed façade for thermal regulation in complex geometries. Journal of Facade Design and Engineering, 6(2), 29–40.
Schmidt, M., & Slowik, V. (2009). Capillary shrinkage cracking and its prevention by controlled concrete curing.
Stevenson, K. (2021, August 24). Diamond Age’s Advanced Construction 3D Printing Concept. Fabbaloo. https://www.fabbaloo.com/news/diamond-ages-advanced-construction-3d-pri…
Strauß, H., & Knaack, U. (2016). Additive Manufacturing for Future Facades: The potential of 3D printed parts for the building envelope. Journal of Facade Design and Engineering, 3, 225–235. https://doi.org/10.3233/FDE-150042
Strieder, J. (2005). Why Add Accelerating Admixtures to Concrete. Concrete Decor, 5(5).
StudioAdams. (2017). Firewall. https://www.studioadams.nl/projects/69/firewall
Teague, L. (2017, January 31). 3D printing is making an impression on concrete. Frame. https://www.frameweb.com/article/3d-printing/3d-printing-is-making-an-i…
Tissink, A. (2017, February 6). Beton als Viennetta. Cobouw, 24–27. https://www.studioadams.nl/downloads/modules/publications/Bekkering%20A…
V., C. (2020, April 8). Rhino: what are the features of this 3D modeling software. 3Dnatives. https://www.3dnatives.com/en/rhino-3d-modeling-software-080420205/
Wangler, T., Lloret, E., Reiter, L., Hack, N., Gramazio, F., Kohler, M., Bernhard, M., Dillenburger, B., Buchli, J., Roussel, N., & Flatt, R. (2016). Digital Concrete: Opportunities and Challenges. RILEM Technical Letters, 1, 67–75. https://doi.org/10.21809/rilemtechlett.2016.16
Wasp. (n.d.). Delta WASP 3MT CONCRETE. Wasp. Retrieved March 3, 2023, from https://www.3dwasp.com/en/concrete-3d-printer-delta-wasp-3mt-concrete/
Xu, M., David, J. M., & Kim, S. H. (2018). The Fourth Industrial Revolution: Opportunities and Challenges. International Journal of Financial Research, 9(2), 90–95. https://doi.org/10.5430/ijfr.v9n2p90
Zant, P., Roosendaal, D., & Van Dongen, J. (2023). Printer options: match your strategy with your printer. [Webinar]. CYBE. https://cybe.eu/webinars/webinar-printer-options/
Zhang, X., & Liou, F. (2021). Introduction to additive manufacturing. In J. Pou, A. Riveiro, & J. P. Davim (Eds.), Additive Manufacturing (pp. 1–31). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-818411-0.00009-4
Zielińska, M., & Ciesielski, A. (2017). Analysis of Transparent Concrete as an Innovative Material Used in Civil Engineering. IOP Conference Series: Materials Science and Engineering, 245(2), 022071. https://doi.org/10.1088/1757-899X/245/2/022071