Een astrodeeltjesfysicus wenst bij te leren over het heelal: Hoe gebeuren
supernovas (het ontploffen van sterren)? Welke processen gebeuren er rond
zwarte gaten? Wat gebeurt er exact bij de vorming van een zwart gat?... In
tegenstelling tot een theoretisch fysicus zal de astrodeeltjesfysicus niet
theoriën proberen uitvinden, hij zal deze testen. Een astrodeeltjesfysicus
kijkt naar subatomaire deeltjes, zoals het electron of de proton, die komen van
deze speciale evenementen en gebruikt deze informatie voor allerhanden
doeleinden.
Een leuk deeltje in de toolbox van de astrodeeltjesfysicus is de neutrino, een
zeer licht en zeer zwak interageerend deeltje waarvan er per seconde gemiddeld
100 triljoen op elk moment door uw lichaam bewegen. Door haar lage kans op
interacties kan ze ongehinderd zich vanuit een supernova naar de aarde
verplaatsen. Als een neutrino dus op aarde wordt gedetecteerd en de richting
kan vernomen worden zijn we vrijwel zeker te weten waar ze vandaan komt.
Wegens deze handige eigenschappen van de neutrino zijn er al verscheidene neutrinodetectoren gebouwd.
Maar deze detectoren zijn vaak te klein om neutrinos met heel grote energiën te meten, dewelke
met de straling van de oerknal zouden gereageerd hebben.
Om deze hoog energetische neutrinos te kunnen observeren in menselijke tijdsperiodes is een grote detector nodig.
Om deze reden werd de \textit{Radio Neutrino Observatory in Greenland} of RNO-G gebouwd, een
neutrino detector gebaseerd in het Groenlandse ijs.
Als een neutrino, bijvoorbeeld komende van een zwart gat, zich verplaatst in
het ijs kan deze radiogolven produceren, RNO-G wenst deze radiogolven te
detecteren aan de hand van sensoren diep in het ijs. Aangezien deze detector
gebaseerd is op het principe van daarin verplaatsende radiogolven is het zeer
belangrijk de optische eigenschappen van het ijs te kennen. Een zeer
belangrijke eigenschap is hoe de index van refractie (hoe licht buigt door het
medium, denk bijvoorbeeld aan je hand net onder water in een zwembad) varieert
met de diepte in het ijs. Een model die deze variatie modelleert wordt een
ijsmodel genoemd.
Het ijsmodel die door het team van RNO-G wordt gebruikt is een exponentiële
functie, deze functie kan echter niet volledig overeenstemmen met de realiteit.
Om beter te kunnen omgaan met ingewikkeldere ijsmodellen die wel beter het ijs
zouden beschrijven heb ik in deze thesis een nieuw algoritme gemaakt die dat
mogelijk maakt. Maar om te weten of het nodig is om een moeilijker ijsmodel te
gebruiken dienen we het ijs eerst te meten.
Om de eigenschappen van het ijs te meten heb ik gebruik gemaakt van
weerballonnen (niet de Chinese versies). Er passeren verscheidene
weerballonnen over de detector dewelke een radio antenne hebben, wij kunnen de
positie van de weerballon en de gedetecteerde straling (komende van de
weerballon) gebruiken om meer te weten te komen over het ijs. Een illustratie
van hoe zo'n ballon passeert aan een detector is op de figuur weergegeven.
Na het uitvoeren van deze metingen bleek dat het exponentiële model wat gehanteerd werd weldegelijk
niet goed de eigenschappen van het echte ijs benadert, en er zal dus een nood zijn om een moeilijker
ijsmodel te maken.
@book{Dodelson,
author = "Dodelson, Scott",
title = "{Modern Cosmology}",
isbn = "978-0-12-219141-1",
publisher = "Academic Press",
address = "Amsterdam",
year = "2003"
}
@article{Aguilar_2021,
doi = {10.1088/1748-0221/16/03/p03025},
url = {https://doi.org/10.1088%2F1748-0221%2F16%2F03%2Fp03025},
year = 2021,
month = {mar},
publisher = {{IOP} Publishing},
volume = {16},
number = {03},
pages = {P03025},
author = {J.A. Aguilar and P. Allison and J.J. Beatty and others},
title = {Design and sensitivity of the Radio Neutrino Observatory in Greenland ({RNO}-G)},
journal = {Journal of Instrumentation}
}
@article{IceCubeTechnical,
doi = {10.1088/1748-0221/12/03/p03012},
url = {https://doi.org/10.1088%2F1748-0221%2F12%2F03%2Fp03012},
year = 2017,
month = {mar},
publisher = {{IOP} Publishing},
volume = {12},
number = {03},
pages = {P03012--P03012},
author = {M.G. Aartsen and M. Ackermann and J. Adams and J.A. Aguilar and others},
title = {The {IceCube} Neutrino Observatory: instrumentation and online systems},
journal = {Journal of Instrumentation}
}
@article{Askaryan,
title = {EXCESS NEGATIVE CHARGE OF AN ELECTRON-PHOTON SHOWER AND THE COHERENT RADIO EMISSION FROM IT},
author = {Askaryan, G A},
doi = {},
url = {https://www.osti.gov/biblio/4833087}, journal = {Zhur. Eksptl'. i Teoret. Fiz.},
year = 1961,
volume = 41,
month = 8
}
@article{Welling_2019,
doi = {10.1088/1475-7516/2019/10/075},
url = {https://iopscience.iop.org/article/10.1088/1475-7516/2019/10/075},
year = 2019,
month = {oct},
publisher = {{IOP} Publishing},
volume = {10},
pages = {075--075},
author = {C. Welling and C. Glaser and A. Nelles},
title = {Reconstructing the cosmic-ray energy from the radio signal measured in one single station},
journal = {Journal of Cosmology and Astroparticle Physics}
}
@article{Hiller_2017,
doi = {10.1051/epjconf/201713501004},
url = {https://doi.org/10.1051%2Fepjconf%2F201713501004},
year = 2017,
publisher = {{EDP} Sciences},
volume = {135},
pages = {01004},
author = {R. Hiller and P. A. Bezyazeekov and N. M. Budnev and others},
editor = {S. Buitink and J.R. Hörandel and S. de Jong and R. Lahmann and R. Nahnhauer and O. Scholten},
title = {Tunka-Rex: energy reconstruction with a single antenna station},
journal = {{EPJ} Web of Conferences}
}
@article{Welling_2021,
doi = {10.1088/1475-7516/2021/04/071},
url = {https://doi.org/10.1088/2F1475-7516/2F2021/2F04/2F071},
year = 2021,
month = {apr},
publisher = {{IOP} Publishing},
volume = {2021},
number = {04},
pages = {071},
author = {C. Welling and P. Frank and T. En{\ss}lin and A. Nelles},
title = {Reconstructing non-repeating radio pulses with Information Field Theory},
journal = {Journal of Cosmology and Astroparticle Physics}
}
@INPROCEEDINGS{2022icrc.confE1027O,
author = {{Oeyen}, B. and {Plaisier}, I. and {Nelles}, A. and {Glaser}, C. and {Winchen}, T.},
title = "{Effects of firn ice models on radio neutrino simulations using a RadioPropa ray tracer}",
booktitle = {37th International Cosmic Ray Conference. 12-23 July 2021. Berlin},
year = 2022,
month = mar,
eid = {1027},
pages = {1027},
adsurl = {https://ui.adsabs.harvard.edu/abs/2022icrc.confE1027O},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{Winchen_2019,
doi = {10.1051/epjconf/201921603002},
url = {https://doi.org/10.1051%2Fepjconf%2F201921603002},
year = 2019,
publisher = {{EDP} Sciences},
volume = {216},
pages = {03002},
author = {Tobias Winchen},
editor = {G. Riccobene and S. Biagi and A. Capone and C. Distefano and P. Piattelli},
title = {{RadioPropa} {\textemdash} A Modular Raytracer for In-Matter Radio Propagation},
journal = {{EPJ} Web of Conferences}
}
@article{Eguchi_2003,
doi = {10.1103/physrevlett.90.021802},
url = {https://doi.org/10.1103%2Fphysrevlett.90.021802},
year = 2003,
month = {jan},
publisher = {American Physical Society ({APS})},
volume = {90},
number = {2},
author = {K. Eguchi and S. Enomoto and K. Furuno and J. Goldman and H. Hanada and H. Ikeda and K. Ikeda and K. Inoue and others},
title = {First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance},
journal = {Physical Review Letters}
}
@article{neutrino-mass,
title = {Direct neutrino-mass measurement with sub-electronvolt sensitivity},
author = {Aker, M. and Beglarian, A. and Behrens, J. and Berlev, A. and Besserer, U. and Bieringer, B. and Block, F. and Bobien, S. and others},
date = {2022/02/01},
date-added = {2023-02-04 09:33:32 +0100},
date-modified = {2023-02-04 09:33:32 +0100},
doi = {10.1038/s41567-021-01463-1},
id = {Aker2022},
isbn = {1745-2481},
journal = {Nature Physics},
number = {2},
pages = {160--166},
url = {https://doi.org/10.1038/s41567-021-01463-1},
volume = {18},
year = {2022},
bdsk-url-1 = {https://doi.org/10.1038/s41567-021-01463-1}
}
@article{Glaser_2019,
doi = {10.1140/epjc/s10052-019-6971-5},
url = {https://doi.org/10.1140%2Fepjc%2Fs10052-019-6971-5},
year = 2019,
month = {jun},
publisher = {Springer Science and Business Media {LLC}
},
volume = {79},
number = {6},
author = {Christian Glaser and Anna Nelles and Ilse Plaisier and Christoph Welling and Steven W. Barwick and Daniel Garc{\'{\i}}a-Fern{\'{a}}ndez and Geoffrey Gaswint and Robert Lahmann and Christopher Persichilli},
title = {{NuRadioReco}: a reconstruction framework for radio neutrino detectors},
journal = {The European Physical Journal C}
}
@article{Glaser_2020,
doi = {10.1140/epjc/s10052-020-7612-8},
url = {https://doi.org/10.1140%2Fepjc%2Fs10052-020-7612-8},
year = 2020,
month = {jan},
publisher = {Springer Science and Business Media {LLC}
},
volume = {80},
number = {2},
author = {C. Glaser and D. Garc{\'{\i}}a-Fern{\'{a}}ndez and A. Nelles and J. Alvarez-Mu{\~{n}}iz and S. W. Barwick and D. Z. Besson and B. A. Clark and A. Connolly and C. Deaconu and K. D. de Vries and J. C. Hanson and B. Hokanson-Fasig and R. Lahmann and U. Latif and S. A. Kleinfelder and C. Persichilli and Y. Pan and C. Pfendner and I. Plaisier and D. Seckel and J. Torres and S. Toscano and N. van Eijndhoven and A. Vieregg and C. Welling and T. Winchen and S. A. Wissel},
title = {{NuRadioMC}: simulating the radio emission of neutrinos from interaction to detector},
journal = {The European Physical Journal C}
}
@article{Melson_2015,
doi = {10.1088/2041-8205/808/2/L42},
url = {https://dx.doi.org/10.1088/2041-8205/808/2/L42},
year = {2015},
month = {jul},
publisher = {The American Astronomical Society},
volume = {808},
number = {2},
pages = {L42},
author = {Tobias Melson and Hans-Thomas Janka and Robert Bollig and Florian Hanke and Andreas Marek and Bernhard Müller},
title = {NEUTRINO-DRIVEN EXPLOSION OF A 20 SOLAR-MASS STAR IN THREE DIMENSIONS ENABLED BY STRANGE-QUARK CONTRIBUTIONS TO NEUTRINO–NUCLEON SCATTERING},
journal = {The Astrophysical Journal Letters},
abstract = {Interactions with neutrons and protons play a crucial role for
the neutrino opacity of matter in the supernova core. Their
current implementation in many simulation codes, however, is
rather schematic and ignores not only modifications for the
correlated nuclear medium of the nascent neutron star, but also
free-space corrections from nucleon recoil, weak magnetism, or
strange quarks, which can easily add up to changes of several 10%
for neutrino energies in the spectral peak. In the Garching
supernova simulations with the Prometheus-Vertex code, such
sophistications have been included for a long time except for the
strange-quark contributions to the nucleon spin, which affect
neutral-current neutrino scattering. We demonstrate on the basis
of a 20 progenitor star that a moderate strangeness-dependent
contribution of to the axial-vector coupling constant can turn
an unsuccessful three-dimensional (3D) model into a successful
explosion. Such a modification is in the direction of current
experimental results and reduces the neutral-current scattering
opacity of neutrons, which dominate in the medium around and
above the neutrinosphere. This leads to increased luminosities
and mean energies of all neutrino species and strengthens the
neutrino-energy deposition in the heating layer. Higher nonradial
kinetic energy in the gain layer signals enhanced buoyancy
activity that enables the onset of the explosion at ∼300 ms after
bounce, in contrast to the model with vanishing strangeness
contributions to neutrino–nucleon scattering. Our results
demonstrate the close proximity to explosion of the previously
published, unsuccessful 3D models of the Garching group.}
}
@ARTICLE{NuRadioMc,
author = {{Glaser}, C. and {Garc{\'\i}a-Fern{\'a}ndez}, D. and {Nelles}, A. and {Alvarez-Mu{\~n}iz}, J. and {Barwick}, S.~W. and {Besson}, D.~Z. and {Clark}, B.~A. and {Connolly}, A. and {Deaconu}, C. and {de Vries}, K.~D. and {Hanson}, J.~C. and {Hokanson-Fasig}, B. and {Lahmann}, R. and {Latif}, U. and {Kleinfelder}, S.~A. and {Persichilli}, C. and {Pan}, Y. and {Pfendner}, C. and {Plaisier}, I. and {Seckel}, D. and {Torres}, J. and {Toscano}, S. and {van Eijndhoven}, N. and {Vieregg}, A. and {Welling}, C. and {Winchen}, T. and {Wissel}, S.~A.},
title = "{NuRadioMC: simulating the radio emission of neutrinos from interaction to detector}",
journal = {European Physical Journal C},
keywords = {Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - High Energy Astrophysical Phenomena},
year = 2020,
month = jan,
volume = {80},
number = {2},
eid = {77},
pages = {77},
doi = {10.1140/epjc/s10052-020-7612-8},
archivePrefix = {arXiv},
eprint = {1906.01670},
primaryClass = {astro-ph.IM},
}
@article{elasticity_y,
doi = {10.1038/nature24459},
url = {https://doi.org/10.1038%2Fnature24459},
year = 2017,
month = {nov},
publisher = {Springer Science and Business Media {LLC}
},
volume = {551},
number = {7682},
pages = {596--600},
title = {Measurement of the multi-{TeV} neutrino interaction cross-section with {IceCube} using Earth absorption},
journal = {Nature}
}
@article{Huege_2017,
doi = {10.1093/ptep/ptx009},
url = {https://doi.org/10.1093%2Fptep%2Fptx009},
year = 2017,
month = {nov},
publisher = {Oxford University Press ({OUP})},
volume = {2017},
number = {12},
author = {Tim Huege and Dave Besson},
title = {Radio-wave detection of ultra-high-energy neutrinos and cosmic rays},
journal = {Progress of Theoretical and Experimental Physics}
}
@ARTICLE{BetaCapture,
author = {{Cowan}, C.~L., Jr. and {Reines}, F. and {Harrison}, F.~B. and {Kruse}, H.~W. and {McGuire}, A.~D.},
title = "{Detection of the Free Neutrino: A Confirmation}",
journal = {Science},
year = 1956,
month = jul,
volume = {124},
number = {3212},
pages = {103-104},
doi = {10.1126/science.124.3212.103},
adsurl = {https://ui.adsabs.harvard.edu/abs/1956Sci...124..103C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@book{gaisser_engel_resconi_2016, place={Cambridge}, edition={2}, title={Cosmic Rays and Particle Physics}, DOI={10.1017/CBO9781139192194}, publisher={Cambridge University Press}, author={Gaisser, Thomas K. and Engel, Ralph and Resconi, Elisa}, year={2016}}
@INPROCEEDINGS{NASANeutrinos,
author = {{Kazanas}, Demosthenes},
title = "{Neutrinos from AGN}",
keywords = {98.54.Cm, 95.30.Gv, Active and peculiar galaxies and related systems, Radiation mechanisms, polarization},
booktitle = {High Energy Gamma-Ray Astronomy: International Symposium},
year = 2001,
editor = {{Aharonian}, Felix A. and {V{\"o}lk}, Heinz J.},
series = {American Institute of Physics Conference Series},
volume = {558},
month = apr,
pages = {370-380},
doi = {10.1063/1.1370805},
adsurl = {https://ui.adsabs.harvard.edu/abs/2001AIPC..558..370K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@misc{AGNNeutrino,
doi = {10.48550/ARXIV.1908.05170},
url = {https://arxiv.org/abs/1908.05170},
author = {Bradascio, Federica},
keywords = {High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, FOS: Physical sciences},
title = {Search for high-energy neutrinos from AGN cores},
publisher = {arXiv},
year = {2019},
copyright = {arXiv.org perpetual, non-exclusive license}
}
@book{grabe2005measurement,
title={Measurement Uncertainties in Science and Technology},
author={Grabe, M.},
isbn={9783540273196},
lccn={2005921098},
url={https://books.google.be/books?id=q9porOjCUnEC},
year={2005},
publisher={Springer Berlin Heidelberg}
}
@book{jackson1998classical,
title={Classical Electrodynamics},
author={Jackson, J.D.},
isbn={9780471309321},
lccn={97046873},
url={https://books.google.be/books?id=FOBBEAAAQBAJ},
year={1998},
publisher={Wiley}
}
@Article{Heyer2023,
author={Heyer, Nils
and Glaser, Christian},
title={First-principle calculation of birefringence effects for in-ice radio detection of neutrinos},
journal={The European Physical Journal C},
year={2023},
month={Feb},
day={07},
volume={83},
number={2},
pages={124},
abstract={The detection of high-energy neutrinos in the EeV range requires new detection techniques to cope with the small expected flux. The radio detection method, utilizing Askaryan emission, can be used to detect these neutrinos in polar ice. The propagation of the radio pulses has to be modeled carefully to reconstruct the energy, direction, and flavor of the neutrino from the detected radio flashes. Here, we study the effect of birefringence in ice, which splits up the radio pulse into two orthogonal polarization components with slightly different propagation speeds. This provides useful signatures to determine the neutrino energy and is potentially important to determine the neutrino direction to degree precision. We calculated the effect of birefringence from first principles where the only free parameter is the dielectric tensor as a function of position. Our code, for the first time, can propagate full RF waveforms, taking interference due to changing polarization eigenvectors during propagation into account. The model is available open-source through the NuRadioMC framework. We compare our results to in-situ calibration data from the ARA and ARIANNA experiments and find good agreement for the available time delay measurements. This indicates a significant improvement of the prediction power of birefringence effects compared to previous models. Finally, the implications and opportunities for neutrino detection are discussed.},
issn={1434-6052},
doi={10.1140/epjc/s10052-023-11238-y},
url={https://doi.org/10.1140/epjc/s10052-023-11238-y}
}
@book{herman2019treatise,
title={A Treatise on Geometrical Optics},
author={Herman, R.A.},
isbn={9780353880412},
url={https://books.google.be/books?id=rp5ByAEACAAJ},
year={2019},
publisher={Creative Media Partners, LLC}
}
@ARTICLE{1138693,
author={Kane Yee},
journal={IEEE Transactions on Antennas and Propagation},
title={Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media},
year={1966},
volume={14},
number={3},
pages={302-307},
doi={10.1109/TAP.1966.1138693}
}
@article{Barwick_2018,
doi = {10.1088/1475-7516/2018/07/055},
url = {https://doi.org/10.1088%2F1475-7516%2F2018%2F07%2F055},
year = 2018,
month = {jul},
publisher = {{IOP} Publishing},
volume = {2018},
number = {07},
pages = {055--055},
author = {S.W. Barwick and E.C. Berg and D.Z. Besson and G. Gaswint and C. Glaser and A. Hallgren and J.C. Hanson and S.R. Klein and S. Kleinfelder and L. Köpke and I. Kravchenko and R. Lahmann and U. Latif and J. Nam and A. Nelles and C. Persichilli and P. Sandstrom and J. Tatar and E. Unger},
title = {Observation of classically {\textasciigrave}forbidden{\textquotesingle} electromagnetic wave propagation and implications for neutrino detection.},
journal = {Journal of Cosmology and Astroparticle Physics}
}
@article{herron_langway_1980, title={Firn Densification: An Empirical Model}, volume={25}, DOI={10.3189/S0022143000015239}, number={93}, journal={Journal of Glaciology}, publisher={Cambridge University Press}, author={Herron, Michael M. and Langway, Chester C.}, year={1980}, pages={373–385}}
@misc{IceCubeGen2,
title={Neutrino astronomy with the next generation IceCube Neutrino Observatory},
author={M. G. Aartsen and M. Ackermann and J. Adams and J. A. Aguilar and others},
year={2019},
eprint={1911.02561},
archivePrefix={arXiv},
primaryClass={astro-ph.HE}
}
@misc{numoon,
title={The NuMoon experiment: first results},
author={S. Buitink and J. Bacelar and R. Braun and G. de Bruyn and H. Falcke and O. Scholten and K. Singh and B. Stappers and R. Strom and R. al Yahyaoui},
year={2008},
eprint={0808.1878},
archivePrefix={arXiv},
primaryClass={astro-ph}
}
@article{ANITA,
title = {Energy and flux measurements of ultra-high energy cosmic rays observed during the first ANITA flight},
journal = {Astroparticle Physics},
volume = {77},
pages = {32-43},
year = {2016},
issn = {0927-6505},
doi = {https://doi.org/10.1016/j.astropartphys.2016.01.001},
url = {https://www.sciencedirect.com/science/article/pii/S0927650516000025},
author = {H. Schoorlemmer and K. Belov and A. Romero-Wolf and D. García-Fernández and V. Bugaev and others},
keywords = {Cosmic rays, Air shower, Radio detection},
abstract = {The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. The dominant contribution to the radiation comes from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. For 14 of these events, this radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of ∼36 km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 × 1018 eV, which is significantly lower than the previous estimate. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations and find agreement with measurements performed at other observatories. In addition, we find that the ANITA data set is consistent with Monte Carlo simulations for the total number of observed events and with the properties of those events.}
}
@article{ARA,
doi = {10.1103/physrevd.93.082003},
url = {https://doi.org/10.1103%2Fphysrevd.93.082003},
year = 2016,
month = {apr},
publisher = {American Physical Society ({APS})},
volume = {93},
number = {8},
author = {P. Allison and R. Bard and J.{\hspace{0.167em}
}J. Beatty and D.{\hspace{0.167em}}Z. Besson and C. Bora and C.-C. Chen and C.-H. Chen and P. Chen and A. Christenson and A. Connolly and J. Davies and M. Duvernois and B. Fox and R. Gaior and P.{\hspace{0.167em}}W. Gorham and K. Hanson and J. Haugen and B. Hill and K.{\hspace{0.167em}}D. Hoffman and E. Hong and S.-Y. Hsu and L. Hu and J.-J. Huang and M.-H.{\hspace{0.167em}}A. Huang and A. Ishihara and A. Karle and J.{\hspace{0.167em}}L. Kelley and D. Kennedy and I. Kravchenko and T. Kuwabara and H. Landsman and A. Laundrie and C.-J. Li and T.{\hspace{0.167em}}C. Liu and M.-Y. Lu and L. Macchiarulo and K. Mase and T. Meures and R. Meyhandan and C. Miki and R. Morse and J. Nam and R.{\hspace{0.167em}}J. Nichol and G. Nir and A. Novikov and A. O'Murchadha and C. Pfendner and K. Ratzlaff and M. Relich and M. Richman and L. Ritter and B. Rotter and P. Sandstrom and P. Schellin and A. Shultz and D. Seckel and Y.-S. Shiao and J. Stockham and M. Stockham and J. Touart and G.{\hspace{0.167em}}S. Varner and M.-Z. Wang and S.-H. Wang and Y. Yang and S. Yoshida and R. Young and},
title = {Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos},
journal = {Physical Review D}
}
@article{RICE,
doi = {10.1103/physrevd.85.062004},
url = {https://doi.org/10.1103%2Fphysrevd.85.062004},
year = 2012,
month = {mar},
publisher = {American Physical Society ({APS})},
volume = {85},
number = {6},
author = {I. Kravchenko and S. Hussain and D. Seckel and D. Besson and E. Fensholt and J. Ralston and J. Taylor and K. Ratzlaff and R. Young},
title = {Updated results from the {RICE} experiment and future prospects for ultra-high energy neutrino detection at the south pole},
journal = {Physical Review D}
}
@article{Bellini_2014,
doi = {10.1155/2014/191960},
url = {https://doi.org/10.1155%2F2014%2F191960},
year = 2014,
publisher = {Hindawi Limited},
volume = {2014},
pages = {1--28},
author = {G. Bellini and L. Ludhova and G. Ranucci and F. L. Villante},
title = {Neutrino Oscillations},
journal = {Advances in High Energy Physics}
}
@book{martin2017particle,
title={Particle Physics},
author={Martin, B.R. and Shaw, G.},
isbn={9781118911907},
lccn={2016046884},
series={Manchester Physics Series},
url={https://books.google.be/books?id=ielRDQAAQBAJ},
year={2017},
publisher={Wiley}
}
@ARTICLE{SuperKamio,
author = {{Fukuda}, S. and {Fukuda}, Y. and {Hayakawa}, T. and {Ichihara}, E. and {Ishitsuka}, M. and {Itow}, Y. and {Kajita}, T. and {Kameda}, J. and {Kaneyuki}, K. and {Kasuga}, S. and {Kobayashi} and others},
title = "{The Super-Kamiokande detector}",
journal = {Nuclear Instruments and Methods in Physics Research A},
year = 2003,
month = apr,
volume = {501},
number = {2},
pages = {418-462},
doi = {10.1016/S0168-9002(03)00425-X},
adsurl = {https://ui.adsabs.harvard.edu/abs/2003NIMPA.501..418F},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{Barwick_2015,
doi = {10.1016/j.astropartphys.2015.04.002},
url = {https://doi.org/10.1016%2Fj.astropartphys.2015.04.002},
year = 2015,
month = {oct},
publisher = {Elsevier {BV}
},
volume = {70},
pages = {12--26},
author = {S.W. Barwick and E.C. Berg and D.Z. Besson and G. Binder and W.R. Binns and D.J. Boersma and R.G. Bose and D.L. Braun and J.H. Buckley and V. Bugaev and S. Buitink and K. Dookayka and P.F. Dowkontt and T. Duffin and S. Euler and L. Gerhardt and L. Gustafsson and A. Hallgren and J.C. Hanson and M.H. Israel and J. Kiryluk and S.R. Klein and S. Kleinfelder and H. Niederhausen and M.A. Olevitch and C. Persichelli and K. Ratzlaff and B.F. Rauch and C. Reed and M. Roumi and A. Samanta and G.E. Simburger and T. Stezelberger and J. Tatar and U.I. Uggerhoj and J. Walker and G. Yodh and R. Young},
title = {A first search for cosmogenic neutrinos with the {ARIANNA} Hexagonal Radio Array},
journal = {Astroparticle Physics}
}
@article{Bilenky_2012,
doi = {10.1140/epjh/e2012-20068-9},
url = {https://doi.org/10.1140%2Fepjh%2Fe2012-20068-9},
year = 2012,
month = {dec},
publisher = {Springer Science and Business Media {LLC}
},
volume = {38},
number = {3},
pages = {345--404},
author = {S.M. Bilenky},
title = {Neutrino. History of a unique particle},
journal = {The European Physical Journal H}
}
@Inbook{Bogorodsky1985,
author="Bogorodsky, V. V.
and Bentley, C. R.
and Gudmandsen, P. E.",
title="Electromagnetic Wave Propagation in Ice",
bookTitle="Radioglaciology",
year="1985",
publisher="Springer Netherlands",
address="Dordrecht",
pages="32--47",
isbn="978-94-009-5275-1",
doi="10.1007/978-94-009-5275-1_3",
url="https://doi.org/10.1007/978-94-009-5275-1_3"
}
@article{10.1093/comjnl/7.4.308,
author = {Nelder, J. A. and Mead, R.},
title = "{A Simplex Method for Function Minimization}",
journal = {The Computer Journal},
volume = {7},
number = {4},
pages = {308-313},
year = {1965},
month = {01},
issn = {0010-4620},
doi = {10.1093/comjnl/7.4.308},
url = {https://doi.org/10.1093/comjnl/7.4.308},
eprint = {https://academic.oup.com/comjnl/article-pdf/7/4/308/1013182/7-4-308.pdf},
}
@article{kravchenko_besson_meyers_2004, title={In situ index-of-refraction measurements of the South Polar firn with the RICE detector}, volume={50}, DOI={10.3189/172756504781829800}, number={171}, journal={Journal of Glaciology}, publisher={Cambridge University Press}, author={Kravchenko, Ilya and Besson, David and Meyers, Josh}, year={2004}, pages={522–532}}
@article{KOVACS1995245,
title = {The in-situ dielectric constant of polar firn revisited},
journal = {Cold Regions Science and Technology},
volume = {23},
number = {3},
pages = {245-256},
year = {1995},
issn = {0165-232X},
doi = {https://doi.org/10.1016/0165-232X(94)00016-Q},
url = {https://www.sciencedirect.com/science/article/pii/0165232X9400016Q},
author = {Austin Kovacs and Anthony J. Gow and Rexford M. Morey},
abstract = {The success in using VHF and UHF frequency systems for sounding polar ice sheets has been tempered by an uncertainty in the in-situ dielectric constant which controls the effective velocity of an electromagnetic wave propagating in an air-ice mixture. An empirical equation for determining the relative real dielectric constant ϵ′r vs. density (specific gravity ϱ) of firn or ice was proposed in 1969 by Robin et al. where ϵ′r = (1 + 0.851 ϱ)2. However, this expression has met with uncertainty because wide-angle radar refraction sounding techniques have produced dielectric constant values that are lower than Robin's equation predicts. This paper discusses radar soundings made on the McMurdo Ice Shelf, Antarctica, and compares the resulting dielectric constant determinations with Robin's equation, laboratory measurements on firn and ice and other expressions given in the literature for determining ϵ′r vs. the specific gravity of dry firn and ice. Our findings indicate that the form of Robin's equation is valid. Our analysis also indicates the expression could be slightly improved to read ϵ′r = (1+0.845ϱ)2. Reasons are suggested as to why previous wide-angle radar sounding studies did not reproduce Robin's findings.}
}
@inproceedings{Bracewell1966TheFT,
title={The Fourier Transform and Its Applications},
author={Ronald N. Bracewell},
year={1966}
}
@article{Robin,
ISSN = {00804614},
URL = {http://www.jstor.org/stable/73767},
abstract = {Experimental results are presented from a traverse over the ice sheet of north western Greenland in 1964, during which a continuously recorded profile of ice thickness was obtained for the first time. Interpretation of data from this traverse is consistent with results of subsequent work to December 1967. The parameters of the apparatus are presented briefly, while the details of electronic circuits are being published separately. Theoretical problems of radio wave propagation in an ice sheet and, in particular, the factors affecting accuracy are discussed. The uncertainty in depth, over a small area, is ± 5 m ± 1.5% and this is verified by comparison with the seismic results for a range of depths up to 1.5 km. It is found that the only real uncertainty arises in irregular terrain. The effectiveness of the radio echo technique is dependent on the absorption of radio waves in ice. Temperature, and to a lesser extent the impurity content of ice, appear to be the main variables affecting field performance. Earlier laboratory results on the variation of absorption with temperature for ice cores from northwest Greenland, together with theoretically predicted temperature distributions throughout the ice mass, have provided estimates of the total loss by absorption. These estimates are reasonably consistent with the observed echo strengths over most of the traverse. Consequently, it is predicted that echoes can be obtained over considerable areas of the ice sheets of Greenland and Antarctica, as has been verified by subsequent observations. The reflexion coefficient at the ice/rock interface is of the order of -15 dB. It could rise to 0 dB for an ice/water interface and one area was found in Greenland where it appeared to fall to -30 dB. Results from this traverse have shown that local surface slopes on the ice sheet are largely controlled by variations of longitudinal stress along the line of flow. Regional slopes over several kilometres vary with the velocity of movement of the ice, but appear to be less dependent on basal ice temperatures than laboratory results would suggest. The velocity of ice movement increases in proportion to the square or cube of the basal shear stress, but the stress itself shows no obvious dependence on basal ice temperature. Partially reflecting layers discovered within the ice mass are discussed mainly in terms of small density variations between adjacent layers of ice. One particularly prominent layer is calculated to be about 1000 years old and its variation of depth with position provides evidence in favour of the steady state model of the ice sheet.},
author = {G. De Q. Robin and S. Evans and J. T. Bailey},
journal = {Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences},
number = {1166},
pages = {437--505},
publisher = {The Royal Society},
title = {Interpretation of Radio Echo Sounding in Polar Ice Sheets},
urldate = {2023-05-12},
volume = {265},
year = {1969}
}
@book{mandl2010quantum,
title={Quantum Field Theory},
author={Mandl, F. and Shaw, G.},
isbn={9780471496830},
lccn={2010000255},
series={A Wiley-Interscience publication},
url={https://books.google.be/books?id=Ef4zDW1V2LkC},
year={2010},
publisher={Wiley}
}
@article{Cleveland_1998,
doi = {10.1086/305343},
url = {https://dx.doi.org/10.1086/305343},
year = {1998},
month = {mar},
publisher = {},
volume = {496},
number = {1},
pages = {505},
author = {Bruce T. Cleveland and Timothy Daily and Raymond Davis, Jr. and James R. Distel and Kenneth Lande and C. K. Lee and Paul S. Wildenhain and Jack Ullman},
title = {Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector},
journal = {The Astrophysical Journal},
abstract = {The Homestake Solar Neutrino Detector, based on the inverse beta-decay reaction νe +37Cl →37Ar + e-, has been measuring the flux of solar neutrinos since 1970. The experiment has operated in a stable manner throughout this time period. All aspects of this detector are reviewed, with particular emphasis on the determination of the extraction and counting efficiencies, the key experimental parameters that are necessary to convert the measured 37Ar count rate to the solar neutrino production rate. A thorough consideration is also given to the systematics of the detector, including the measurement of the extraction and counting efficiencies and the nonsolar production of 37Ar. The combined result of 108 extractions is a solar neutrino-induced 37Ar production rate of 2.56 ± 0.l6 (statistical) ± 0.16 (systematic) SNU.}
}
@Article{Bilenky2013,
author={Bilenky, Samoil M.},
title={Bruno Pontecorvo and Neutrino Oscillations},
journal={Advances in High Energy Physics},
year={2013},
month={Sep},
day={23},
publisher={Hindawi Publishing Corporation},
volume={2013},
pages={873236},
abstract={I discuss briefly in this review, dedicated to the centenary of the birth of the great neutrino physicist Bruno Pontecorvo, the following ideas he proposed: (i) the radiochemical method of neutrino detection; (ii) the <svg style="vertical-align:-3.56265pt;width:22.65px;" id="M1" height="12.175" version="1.1" viewBox="0 0 22.65 12.175" width="22.65" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><g transform="matrix(.017,-0,0,-.017,.062,7.675)"><path id="x1D707" d="M538 96q-38 -45 -84 -76.5t-71 -31.5q-44 0 -15 117q12 49 18 89h-2q-99 -128 -163 -178q-36 -28 -70 -28q-26 0 -44 38h-2q-16 -69 -16 -129q0 -43 11 -75.5t24 -42.5l1 -6q-7 -12 -24.5 -23t-37.5 -11q-40 0 -40 76q0 52 35 202l94 407l78 24l5 -5q-32 -122 -72 -310{\&}{\#}xA;q-7 -33 0 -55t25 -22q36 0 105.5 75t107.5 145l32 146l75 26h10q-50 -197 -78 -347q-7 -38 6 -38q7 0 31 17t47 39z" /></g><g transform="matrix(.017,-0,0,-.017,9.497,7.675)"><path id="x2D" d="M300 253l-14 -55h-229l14 55h229z" /></g><g transform="matrix(.017,-0,0,-.017,15.548,7.675)"><path id="x1D452" d="M391 364q0 -28 -20.5 -53.5t-50 -43.5t-70 -34t-73.5 -25t-68 -17v-29q0 -48 20 -81t65 -33q73 0 157 76l16 -23q-107 -113 -221 -113q-21 0 -40.5 6.5t-39 22t-31.5 47t-12 75.5q0 69 33.5 139.5t95.5 114.5q77 55 143 55q42 0 69 -24.5t27 -59.5zM313 350{\&}{\#}xA;q0 26 -14.5 40.5t-37.5 14.5q-32 0 -44 -7q-82 -46 -104 -175q200 49 200 127z" /></g></svg> universality of the weak interaction; (iii) the accelerator neutrino experiment which allowed to prove that muon and electron neutrinos are different particles (the Brookhaven experiment). I consider in some details Pontecorvo's pioneering idea of neutrino masses, mixing, and oscillations and the development of this idea by Pontecorvo, by Pontecorvo and Gribov, and by Pontecorvo and myself.},
issn={1687-7357},
doi={10.1155/2013/873236},
url={https://doi.org/10.1155/2013/873236}
}
@misc{smirnov2019mikheyevsmirnovwolfenstein,
title={The Mikheyev-Smirnov-Wolfenstein (MSW) Effect},
author={A Y Smirnov},
year={2019},
eprint={1901.11473},
archivePrefix={arXiv},
primaryClass={hep-ph}
}
@ARTICLE{1962PThPh..28..870M,
author = {{Maki}, Z. and {Nakagawa}, M. and {Sakata}, S.},
title = "{Remarks on the Unified Model of Elementary Particles}",
journal = {Progress of Theoretical Physics},
year = 1962,
month = nov,
volume = {28},
number = {5},
pages = {870-880},
doi = {10.1143/PTP.28.870},
adsurl = {https://ui.adsabs.harvard.edu/abs/1962PThPh..28..870M},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{Chandrasekhar,
author = {{Chandrasekhar}, S.},
title = "{The Maximum Mass of Ideal White Dwarfs}",
journal = {Astrophysical Journal},
year = 1931,
month = jul,
volume = {74},
pages = {81},
doi = {10.1086/143324},
adsurl = {https://ui.adsabs.harvard.edu/abs/1931ApJ....74...81C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@book{weinberg1972gravitation,
title={Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity},
author={Weinberg, S. and Steven, W.},
isbn={9780471925675},
lccn={78037175},
url={https://books.google.be/books?id=XLbvAAAAMAAJ},
year={1972},
publisher={Wiley}
}
@article{Beacom_2010,
doi = {10.1146/annurev.nucl.010909.083331},
url = {https://doi.org/10.1146%2Fannurev.nucl.010909.083331},
year = 2010,
month = {nov},
publisher = {Annual Reviews},
volume = {60},
number = {1},
pages = {439--462},
author = {John F. Beacom},
title = {The Diffuse Supernova Neutrino Background},
journal = {Annual Review of Nuclear and Particle Science}
}
@article{Allison_2019,
doi = {10.1016/j.nima.2019.01.067},
url = {https://doi.org/10.1016%2Fj.nima.2019.01.067},
year = 2019,
month = {jun},
publisher = {Elsevier {BV}
},
volume = {930},
pages = {112--125},
author = {P. Allison and S. Archambault and R. Bard and J.J. Beatty and M. Beheler-Amass and D.Z. Besson and M. Beydler and M. Bogdan and C.-C. Chen and C.-H. Chen and P. Chen and B.A. Clark and A. Clough and A. Connolly and L. Cremonesi and J. Davies and C. Deaconu and M.A. DuVernois and E. Friedman and J. Hanson and K. Hanson and J. Haugen and K.D. Hoffman and B. Hokanson-Fasig and E. Hong and S.-Y. Hsu and L. Hu and J.-J. Huang and M.-H. Huang and K. Hughes and A. Ishihara and A. Karle and J.L. Kelley and R. Khandelwal and M. Kim and I. Kravchenko and J. Kruse and K. Kurusu and H. Landsman and U.A. Latif and A. Laundrie and C.-J. Li and T.C. Liu and M.-Y. Lu and A. Ludwig and K. Mase and T. Meures and J. Nam and R.J. Nichol and G. Nir and E. Oberla and A. {\'{O}}Murchadha and Y. Pan and C. Pfendner and M. Ransom and K. Ratzlaff and J. Roth and P. Sandstrom and D. Seckel and Y.-S. Shiao and A. Shultz and D. Smith and M. Song and M. Sullivan and J. Touart and A.G. Vieregg and M.-Z. Wang and S.-H. Wang and K. Wei and S.A. Wissel and S. Yoshida and R. Young},
title = {Design and performance of an interferometric trigger array for radio detection of high-energy neutrinos},
journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}
}
@book{griffiths2008introduction,
title={Introduction to Elementary Particles},
author={Griffiths, D.},
isbn={9783527618477},
series={Physics textbook},
url={https://books.google.be/books?id=Wb9DYrjcoKAC},
year={2008},
publisher={Wiley}
}
@article{GreisenAndReines,
author = {Greisen, K},
title = {Cosmic Ray Showers},
journal = {Annual Review of Nuclear Science},
volume = {10},
number = {1},
pages = {63-108},
year = {1960},
doi = {10.1146/annurev.ns.10.120160.000431},
URL = {
https://doi.org/10.1146/annurev.ns.10.120160.000431
},
eprint = {
https://doi.org/10.1146/annurev.ns.10.120160.000431
}
}
@article{Shields_1999,
doi = {10.1086/316378},
url = {https://doi.org/10.1086%2F316378},
year = 1999,
month = {jun},
publisher = {{IOP} Publishing},
volume = {111},
number = {760},
pages = {661--678},
author = {Gregory~A. Shields},
title = {A Brief History of Active Galactic Nuclei},
journal = {Publications of the Astronomical Society of the Pacific}
}
@article{M_ller_2019,
doi = {10.1088/1475-7516/2019/05/047},
url = {https://doi.org/10.1088%2F1475-7516%2F2019%2F05%2F047},
year = 2019,
month = {may},
publisher = {{IOP} Publishing},
volume = {2019},
number = {05},
pages = {047--047},
author = {Klaes M{\O}ller and Peter B. Denton and Irene Tamborra},
title = {Cosmogenic neutrinos through the {GRAND} lens unveil the nature of cosmic accelerators},
journal = {Journal of Cosmology and Astroparticle Physics}
}
@ARTICLE{Greisen,
author = {{Greisen}, Kenneth},
title = "{End to the Cosmic-Ray Spectrum?}",
journal = {\prl},
year = 1966,
month = apr,
volume = {16},
number = {17},
pages = {748-750},
doi = {10.1103/PhysRevLett.16.748},
adsurl = {https://ui.adsabs.harvard.edu/abs/1966PhRvL..16..748G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{Zatsepin,
author = {{Zatsepin}, G.~T. and {Kuz'min}, V.~A.},
title = "{Upper Limit of the Spectrum of Cosmic Rays}",
journal = {Soviet Journal of Experimental and Theoretical Physics Letters},
year = 1966,
month = aug,
volume = {4},
pages = {78},
adsurl = {https://ui.adsabs.harvard.edu/abs/1966JETPL...4...78Z},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{SNO:1999crp,
author = "Boger, J. and others",
collaboration = "SNO",
title = "{The Sudbury neutrino observatory}",
eprint = "nucl-ex/9910016",
archivePrefix = "arXiv",
reportNumber = "SNO-STR-99-025",
doi = "10.1016/S0168-9002(99)01469-2",
journal = "Nucl. Instrum. Meth. A",
volume = "449",
pages = "172--207",
year = "2000"
}
@incollection{Connolly_2017,
doi = {10.1142/9789814759410_0015},
url = {https://doi.org/10.1142%2F9789814759410_0015},
year = 2017,
month = {mar},
publisher = {{WORLD} {SCIENTIFIC}
},
pages = {217--240},
author = {Amy Connolly and Abigail G. Vieregg},
title = {Radio Detection of High Energy Neutrinos},
booktitle = {Neutrino Astronomy}
}
@article{alley_koci_1988, title={Ice-Core Analysis at Site A, Greenland: Preliminary Results}, volume={10}, DOI={10.3189/S0260305500004067}, journal={Annals of Glaciology}, publisher={Cambridge University Press}, author={Alley, R.B. and Koci, B.R.}, year={1988}, pages={1–4}}
@article{hawley_morris_mcconnell_2008, title={Rapid techniques for determining annual accumulation applied at Summit, Greenland}, volume={54}, DOI={10.3189/002214308787779951}, number={188}, journal={Journal of Glaciology}, publisher={Cambridge University Press}, author={Hawley, Robert L. and Morris, Elizabeth M. and McConnell, Joseph R.}, year={2008}, pages={839–845}}
@misc{hybrid,
title = {Fork of the NuRadioMC github repository containing both the hybrid ray tracer (under the radiopropa/hybrid\_minimizer branch) and it's modified balloon
counterpart (under radiopropa/BaLLooN)},
howpublished = {\url{https://github.com/arthuradriaens-code/NuRadioMC.git}},
}
@misc{projects-mt,
title = {Github repository containing all the used
throughout this thesis with the exception of
the hybrid ray tracer},
howpublished = {\url{https://github.com/arthuradriaens-code/projects-mt.git}},
}
@phdthesis{PhdthesisWeling,
author = {Welling, Christoph},
year = {2022},
month = {01},
pages = {},
title = {Energy Reconstruction for Radio Neutrino Detectors}
}
@article{SqrA*,
doi = {10.3847/2041-8213/ac6674},
url = {https://dx.doi.org/10.3847/2041-8213/ac6674},
year = {2022},
month = {may},
publisher = {The American Astronomical Society},
volume = {930},
number = {2},
pages = {L12},
author = {Event Horizon Telescope Collaboration and Kazunori Akiyama and Antxon Alberdi and Walter Alef and Juan Carlos Algaba and Richard Anantua and Keiichi Asada and Rebecca Azulay and Uwe Bach and Anne-Kathrin Baczko and David Ball and Mislav Baloković and others},
title = {First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way},
journal = {The Astrophysical Journal Letters},
}
@unknown{indexofrefrvalue,
author = {Aguilar Sánchez, Juan Antonio and Allison, P. and Besson, D. and Bishop, A. and Botner, O. and Bouma, S. and Buitink, S. and Castiglioni, W. and Cataldo, M. and Clark, B. and Coleman, A. and Couberly, Kenneth and Curtis-Ginsberg, Zachary and Dasgupta, Paramita and Kockere, S. and Vries, Krijn and Deaconu, C. and Duvernois, Michael and Eimer, A. and Zink, A.},
year = {2023},
month = {04},
pages = {},
title = {Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland}
}
@Article{lookuptable,
author={Aguilar, J. A.
and Allison, P. and Beatty, J. J. and Bernhoff, H. and Besson, D. and
Bingefors, N. and Botner, O. and Bouma, S. and Buitink, S. and Carter, K.
and Cataldo, M. and Clark, B. A. and Curtis-Ginsberg, Z. and Connolly, A.
and Dasgupta, P. and de Kockere, S. and de Vries, K. D. and Deaconu, C. and
DuVernois, M. A. and Glaser, C. and Hallgren, A. and Hallmann, S. and
others
},
title={Reconstructing the neutrino energy for in-ice radio detectors},
journal={The European Physical Journal C},
year={2022},
month={Feb},
day={16},
volume={82},
number={2},
pages={147},
issn={1434-6052},
doi={10.1140/epjc/s10052-022-10034-4},
url={https://doi.org/10.1140/epjc/s10052-022-10034-4}
}
@article{SNEWS,
doi = {10.1088/1367-2630/6/1/114},
url = {https://dx.doi.org/10.1088/1367-2630/6/1/114},
year = {2004},
month = {sep},
publisher = {},
volume = {6},
number = {1},
pages = {114},
author = {Pietro Antonioli and Richard Tresch Fienberg and Fabrice Fleurot and Yoshiyuki Fukuda and Walter Fulgione and Alec Habig and Jaret Heise and Arthur B McDonald and Corrinne Mills and Toshio Namba and Leif J Robinson and Kate Scholberg and Michael Schwendener and Roger W Sinnott and Blake Stacey and Yoichiro Suzuki and Réda Tafirout and Carlo Vigorito and Brett Viren and Clarence Virtue and Antonino Zichichi},
title = {SNEWS: the SuperNova Early Warning System},
journal = {New Journal of Physics},
abstract = {This paper provides a technical description of the SuperNova Early Warning System (SNEWS), an international network of experiments with the goal of providing an early warning of a galactic supernova.}
}
@article{Firn,
author = {Michiel van den Broeke},
title = {Depth and Density of the Antarctic Firn Layer},
journal = {Arctic, Antarctic, and Alpine Research},
volume = {40},
number = {2},
pages = {432-438},
year = {2008},
publisher = {Taylor & Francis},
doi = {10.1657/1523-0430(07-021)[BROEKE]2.0.CO;2},
URL = {https://www.tandfonline.com/doi/abs/10.1657/1523-0430%2807-021%29%5BBRO…},
eprint = {https://www.tandfonline.com/doi/pdf/10.1657/1523-0430%2807-021%29%5BBRO…}
}
@book{garcia2007subatomic,
title={Subatomic Physics (3rd Edition)},
author={Garcia, A. and Henley, E.M.},
isbn={9789813101678},
url={https://books.google.be/books?id=j847DQAAQBAJ},
year={2007},
publisher={World Scientific Publishing Company}
}
@article{Workman:2022ynf,
author = "Workman, R. L. and others",
collaboration = "Particle Data Group",
title = "{Review of Particle Physics}",
doi = "10.1093/ptep/ptac097",
journal = "PTEP",
volume = "2022",
pages = "083C01",
year = "2022"
}
@article{gisp,
author = {Alley, R. B. and Shuman, C. A. and Meese, D. A. and Gow, A. J. and Taylor, K. C. and Cuffey, K. M. and Fitzpatrick, J. J. and Grootes and others},
title = {Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application},
journal = {Journal of Geophysical Research: Oceans},
volume = {102},
number = {C12},
pages = {26367-26381},
doi = {https://doi.org/10.1029/96JC03837},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JC03837},
year = {1997}
}
@article{Valte-1954,
doi = {10.2307/211786},
title = {Glaciology in Queen Maud Land: Work of the Norwegian-British-Swedish Antarctic Expedition},
author = {Valter Schytt},
journal = {Geographical Review 1954-jan vol. 44 iss. 1},
year = {1954},
month = {jan},
volume = {44},
issue = {1},
page = {70--87},
url = {libgen.li/file.php?md5=4987b14d90ebbbb21836cd03de8d153c},
}
@article{10.2307/97323,
ISSN = {00804630},
URL = {http://www.jstor.org/stable/97323},
author = {M. F. Perutz and Gerald Seligman},
journal = {Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences},
number = {950},
pages = {335--360},
publisher = {The Royal Society},
title = {A Crystallographic Investigation of Glacier Structure and the Mechanism of Glacier Flow},
urldate = {2023-05-24},
volume = {172},
year = {1939}
}