Kunnen we vulkanische activiteit visualiseren met elektriciteit injecties?

Elien
Vrancken

IJsland, een vulkanisch eiland in de Atlantische Oceaan, is het walhalla voor geologen die onderzoek uitvoeren naar de dynamische activiteit van vulkanische en geothermale systemen. De erupties kunnen in het slechtste geval zelfs leiden tot slachtoffers, bijvoorbeeld door giftige gassen die vrijkomen bij vulkanische activiteit. Een nieuwe methode om de dynamische processen in vulkanische en geothermale systemen te visualiseren en karakteriseren werd onderzocht.

ElienVrancken_ijsland_meting

Geologie + fysica

De binnenkant van de Aarde kan niet altijd rechtstreeks bestudeerd worden. Net daarom gebruiken geologen geofysische methoden om deze processen te visualiseren. Hiervoor worden metingen van verschillende fysische parameters uitgevoerd op het aardoppervlak en gecombineerd met mathematische modellen om een idee te krijgen van de inwendige Aarde. Met behulp van de geofysische methode waarbij elektriciteit in de aarde wordt geïnjecteerd, kan de ondergrond gevisualiseerd worden.

Kinderschoenen

Dagelijkse variaties in de ondergrond werden geobserveerd met de geofysische monitoring in het vulkanisch geothermaal gebied. De oorsprong van deze variaties is jammer genoeg nog niet volledig achterhaalt, maar de visualisatie van deze ondergrondse processen is alvast een eerste stap om deze hydro- en geothermale processen te doorgronden.

Bibliografie

Antelman, M. S. (1989). The Encyclopedia of Chemical Electrode Potentials. Plenum Press.

Archie, G. E. (1942). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 146(01), 54–62. https://doi.org/10.2118/942054-G

Arens, F., Coco, A., Gottsmann, J., Hickey, J., & Kilgour, G. (2022). Multiphysics Modeling of Volcanic Unrest at Mt. Ruapehu (New Zealand). Geochemistry, Geophysics, Geosystems, 23(12). https://doi.org/10.1029/2022GC010572

Arens, F., Gottsmann, J., Strehlow, K., Hickey, J., & Kilgour, G. (2020). Electrokinetic Contributions to Self-Potential Signals From Magmatic Stressing. Geochemistry, Geophysics, Geosystems, 21(12). https://doi.org/10.1029/2020GC009388

Atekwana, E. A., Sauck, W. A., & Werkema, D. D. (2000). Investigations of geoelectrical signatures at a hydrocarbon contaminated site. Journal of Applied Geophysics, 44(2–3), 167–180. https://doi.org/10.1016/S0926-9851(98)00033-0

Barde-Cabusson, S., Gottsmann, J., Martí, J., Bolós, X., Camacho, A. G., Geyer, A., Planagumà, L., Ronchin, E., & Sánchez, A. (2014). Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements. Bulletin of Volcanology, 76(1), 1–13. https://doi.org/10.1007/s00445-013-0788-0

Barde-Cabusson, S., Levieux, G., Lénat, J. F., Finizola, A., Revil, A., Chaput, M., Dumont, S., Duputel, Z., Guy, A., Mathieu, L., Saumet, S., Sorbadère, F., & Vieille, M. (2009). Transient self-potential anomalies associated with recent lava flows at Piton de la Fournaise volcano (Réunion Island, Indian Ocean). Journal of Volcanology and Geothermal Research, 187(3–4), 158–166. https://doi.org/10.1016/j.jvolgeores.2009.09.003

Battaglia, J., Métaxian, J. P., & Garaebiti, E. (2016). Short term precursors of Strombolian explosions at Yasur volcano (Vanuatu). Geophysical Research Letters, 43(5), 1960–1965. https://doi.org/10.1002/2016GL067823

Benoit, S., Ghysels, G., Gommers, K., Hermans, T., Nguyen, F., & Huysmans, M. (2019). Characterization of spatially variable riverbed hydraulic conductivity using electrical resistivity tomography and induced polarization. Hydrogeology Journal, 27(1), 395–407. https://doi.org/10.1007/s10040-018-1862-7

Binley, A., Winship, P., West, L. J., Pokar, M., & Middleton, R. (2002). Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. Journal of Hydrology, 267(3–4), 160–172. https://doi.org/10.1016/S0022-1694(02)00147-6

Burton, M., Hayer, C., Miller, C., & Christenson, B. (2021). Insights into the 9 December 2019 eruption of Whakaari/White Island from analysis of TROPOMI SO2 imagery. Science Advances, 7(25). https://doi.org/10.1126/sciadv.abg1218

Caterina, D., Beaujean, J., Robert, T., & Nguyen, F. (2013). A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surface Geophysics, 11(6), 639–657. https://doi.org/10.3997/1873-0604.2013022

Caudron, C., Girona, T., Taisne, B., Suparjan, Gunawan, H., Kristianto, & Kasbani. (2019). Change in seismic attenuation as a long-term precursor of gas-driven eruptions. Geology, 47(7), 632–636. https://doi.org/10.1130/G46107.1

Caudron, C., Girona, T., Lecocq, T., Ardid, A., Dempsey, D., and Yates, A.: Towards monitoring phreatic eruptions using seismic noise, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7166, https://doi.org/10.5194/egusphere-egu23-7166, 2023.

Chambers, J. E., Gunn, D. A., Wilkinson, P. B., Meldrum, P. I., Haslam, E., Holyoake, S., Kirkham, M., Kuras, O., Merritt, A., & Wragg, J. (2014). 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surface Geophysics, 12(1), 61–72. https://doi.org/10.3997/1873-0604.2013002

Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. In Journal of Volcanology and Geothermal Research (Vol. 252, pp. 108–175). https://doi.org/10.1016/j.jvolgeores.2012.11.013

Christenson, B. W., Reyes, A. G., Young, R., Moebis, A., Sherburn, S., Cole-Baker, J., & Britten, K. (2010). Cyclic processes and factors leading to phreatic eruption events: Insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. Journal of Volcanology and Geothermal Research, 191(1–2), 15–32. https://doi.org/10.1016/j.jvolgeores.2010.01.008

Ciraula, D. A., Carr, B. J., & Sims, K. W. W. (2023a). Geophysical Imaging of the Shallow Geyser and Hydrothermal Reservoir Structures of Spouter Geyser, Yellowstone National Park: Geyser Dynamics I. Journal of Geophysical Research: Solid Earth, 128(2). https://doi.org/10.1029/2022JB024417

Ciraula, D. A., Carr, B. J., & Sims, K. W. W. (2023b). Time-Lapse Geophysical Investigation of Geyser Dynamics at Spouter Geyser, Yellowstone National Park: Geyser Dynamics II. Journal of Geophysical Research: Solid Earth, 128(2). https://doi.org/10.1029/2022JB024426

Clifton, A. E., & Schlische, R. W. (2003). Fracture populations on the Reykjanes Peninsula, Iceland: Comparison with experimental clay models of oblique rifting. Journal of Geophysical Research: Solid Earth, 108(B2). https://doi.org/10.1029/2001jb000635

Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. In Geophysical Prospecting (Vol. 52).

Dahlin, T., & Zhou, B. (2006). Multiple-gradient array measurements for multichannel 2D resistivity imaging. In Near Surface Geophysics.

Deceuster, J., Etienne, A., Robert, T., Nguyen, F., & Kaufmann, O. (2014). A modified DOI-based method to statistically estimate the depth of investigation of dc resistivity surveys. Journal of Applied Geophysics, 103, 172–185. https://doi.org/10.1016/j.jappgeo.2014.01.018

Dekoninck, W. (2023). Advanced data quality assessment of time dependent induced polarization data: A case study on the volcanic hydrothermal system in Reykjanes (Iceland). Department of Geology, Ghent University [unpublished Master’s dissertation]

Di Giuseppe, M. G., & Troiano, A. (2019). Monitoring active fumaroles through time-lapse electrical resistivity tomograms: an application to the Pisciarelli fumarolic field (Campi Flegrei, Italy). Journal of Volcanology and Geothermal Research, 375, 32–42. https://doi.org/10.1016/j.jvolgeores.2019.03.009

Dimech, A., Cheng, L. Z., Chouteau, M., Chambers, J., Uhlemann, S., Wilkinson, P., Meldrum, P., Mary, B., Fabien-Ouellet, G., & Isabelle, A. (2022). A Review on Applications of Time-Lapse Electrical Resistivity Tomography Over the Last 30 Years : Perspectives for Mining Waste Monitoring. In Surveys in Geophysics. Springer Science and Business Media B.V. https://doi.org/10.1007/s10712-022-09731-2

Dumont, G., Pilawski, T., Dzaomuho-Lenieregue, P., Hiligsmann, S., Delvigne, F., Thonart, P., Robert, T., Nguyen, F., & Hermans, T. (2016). Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill. Waste Management, 55, 129–140. https://doi.org/10.1016/j.wasman.2016.02.013

Einarsson, M. Á. (1984). Climate of iceland. In H. van Loon (Ed.), World survey of climatology (Vol. 15, pp. 673–697). Elsevier.

Eiríksson, J., & Símonarson, L. A. (2021). A Brief Resumé of the Geology of Iceland (pp. 1–11). https://doi.org/10.1007/978-3-030-59663-7_1

Finizola, A., Sortino, F., Lénat, J.-F., & Valenza, M. (2002). Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. Journal of Volcanology and Geothermal Research, 116(1–2), 1–18. https://doi.org/10.1016/S0377-0273(01)00327-4

Fridriksson, T., Kristjánsson, B. R., Ármannsson, H., Margrétardóttir, E., Ólafsdóttir, S., & Chiodini, G. (2006). CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland. Applied Geochemistry, 21(9), 1551–1569. https://doi.org/10.1016/j.apgeochem.2006.04.006

Fridriksson, T., Padrón, E., Óskarsson, F., & Pérez, N. M. (2016). Application of diffuse gas flux measurements and soil gas analysis to geothermal exploration and environmental monitoring: Example from the Reykjanes geothermal field, SW Iceland. Renewable Energy, 86, 1295–1307. https://doi.org/10.1016/j.renene.2015.09.034

Grobbe, N., & Barde-Cabusson, S. (2019). Self-Potential Studies in Volcanic Environments: A Cheap and Efficient Method for Multiscale Fluid-Flow Investigations. International Journal of Geophysics, 2019. https://doi.org/10.1155/2019/2985824

Grobbe, N., Mordret, A., Barde-Cabusson, S., Ellison, L., Lach, M., Seo, Y. H., Viti, T., Ward, L., & Zhang, H. (2021). A Multi-Hydrogeophysical Study of a Watershed at Kaiwi Coast (Oʻahu, Hawaiʻi), using Seismic Ambient Noise Surface Wave Tomography and Self-Potential Data. Water Resources Research, 57(4). https://doi.org/10.1029/2020WR029057

Ha, H. S., Kim, D. S., & Park, I. J. (2010). Application of electrical resistivity techniques to detect weak and fracture zones during underground construction. Environmental Earth Sciences, 60(4), 723–731. https://doi.org/10.1007/s12665-009-0210-6

Hayley, K., Bentley, L. R., Gharibi, M., & Nightingale, M. (2007). Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring. Geophysical Research Letters, 34(18). https://doi.org/10.1029/2007GL031124

Hermans, T. (2014). Integration of near-surface geophysical, geological and hydrogeological data with multiple-point geostatistics in alluvial aquifers. University of Liege.

Hermans, T., Nguyen, F., Robert, T., & Revil, A. (2014). Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems. In Energies (Vol. 7, Issue 8, pp. 5083–5118). MDPI AG. https://doi.org/10.3390/en7085083

Hermans, T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna, A., Beaujean, J., & Nguyen, F. (2012a). Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data. Journal of Hydrology, 438–439, 168–180. https://doi.org/10.1016/j.jhydrol.2012.03.021

Hermans, T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna, A., Beaujean, J., & Nguyen, F. (2012b). Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data. Journal of Hydrology, 438–439, 168–180. https://doi.org/10.1016/j.jhydrol.2012.03.021

Isaia, R., Di Giuseppe, M. G., Natale, J., Tramparulo, F. D. A., Troiano, A., & Vitale, S. (2021). Volcano-Tectonic Setting of the Pisciarelli Fumarole Field, Campi Flegrei Caldera, Southern Italy: Insights Into Fluid Circulation Patterns and Hazard Scenarios. Tectonics, 40(5). https://doi.org/10.1029/2020TC006227

Jardani, A., Revil, A., Santos, F., Fauchard, C., & Dupont, J. P. (2007). Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophysical Prospecting, 55(5), 749–760. https://doi.org/10.1111/j.1365-2478.2007.00638.x

Karaoulis, M., Tsourlos, P., Kim, J. H., & Revill, A. (2014). 4D time-lapse ERT inversion: Introducing combined time and space constraints. Near Surface Geophysics, 12(1), 25–34. https://doi.org/10.3997/1873-0604.2013004

Kawakatsu, H., Kaneshima, S., Matsubayashi, H., Ohminato, T., Sudo, Y., Tsutsui, T., Uhira, K., Yamasato, H., Ito, H., & Legrand, D. (2000). Aso94: Aso seismic observation with broadband instruments. Journal of Volcanology and Geothermal Research, 101(1–2), 129–154. https://doi.org/10.1016/S0377-0273(00)00166-9

Kemna, A. (2000). Tomographic Inversion of Complex Resistivity: Theory and Application. Institutes für Geophysik der Ruhr-Universität Bochum.

Koestel, J., Kemna, A., Javaux, M., Binley, A., & Vereecken, H. (2008). Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resources Research, 44(12). https://doi.org/10.1029/2007WR006755

LaBrecque, D. J., Miletto, M., Daily, W., Ramirez, A., & Owen, E. (1996). The effects of noise on Occam’s inversion of resistivity tomography data. GEOPHYSICS, 61(2), 538–548. https://doi.org/10.1190/1.1443980

LaBrecque, D. J., & Yang, X. (2001). Difference Inversion of ERT Data: a Fast Inversion Method for 3-D In Situ Monitoring. Journal of Environmental and Engineering Geophysics, 6(2), 83–89. https://doi.org/10.4133/JEEG6.2.83

Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., & Sdao, F. (2005). 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy. GEOPHYSICS, 70(3), B11–B18. https://doi.org/10.1190/1.1926571

Lesparre, N., Nguyen, F., Kemna, A., Robert, T., Hermans, T., Daoudi, M., & Flores-Orozco, A. (2017). A new approach for time-lapse data weighting in electrical resistivity tomography. Geophysics, 82(6), E325–E333. https://doi.org/10.1190/GEO2017-0024.1

Lévy, L., Maurya, P. K., Byrdina, S., Vandemeulebrouck, J., Sigmundsson, F., Árnason, K., Ricci, T., Deldicque, D., Roger, M., Gibert, B., & Labazuy, P. (2019). Electrical resistivity tomography and time-domain induced polarization field investigations of geothermal areas at Krafla, Iceland: Comparison to borehole and laboratory frequency-domain electrical observations. Geophysical Journal International, 218(3), 1469–1489. https://doi.org/10.1093/gji/ggz240

Linde, N., Renard, P., Mukerji, T., & Caers, J. (2015). Geological realism in hydrogeological and geophysical inverse modeling: A review. Advances in Water Resources, 86, 86–101. https://doi.org/10.1016/j.advwatres.2015.09.019

Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135–156. https://doi.org/10.1016/j.jappgeo.2013.02.017

Lowrie, W. (2007). Fundamentals of Geophysics. Cambridge University Press. https://doi.org/10.1017/CBO9780511807107

Marescot, L., Loke, M. H., Chapellier, D., Delaloye, R., Lambiel, C., & Reynard, E. (2003). Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surface Geophysics, 1(2), 57–67. https://doi.org/10.3997/1873-0604.2002007

Marks, N., Schiffman, P., Zierenberg, R. A., Franzson, H., & Fridleifsson, G. Ó. (2010). Hydrothermal alteration in the Reykjanes geothermal system: Insights from Iceland deep drilling program well RN-17. Journal of Volcanology and Geothermal Research, 189(1–2), 172–190. https://doi.org/10.1016/j.jvolgeores.2009.10.018

Marteinsson, K., Sigurgeirsson, M. Á., Sigurðarson, D., & Þorbjörnsson, D. (2022). Sandvík-Eldisgarðar Grunnvatnslíkan Unnið fyrir Samherja fiskeldi ehf. www.isor.is [in Icelandic]

Miller, C. R., Routh, P. S., Brosten, T. R., & McNamara, J. P. (2008). Application of time-lapse ERT imaging to watershed characterization. Geophysics, 73(3). https://doi.org/10.1190/1.2907156

Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., & Hauck, C. (2019). Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere, 13(10), 2557–2578. https://doi.org/10.5194/tc-13-2557-2019

Naudet, V., Revil, A., Rizzo, E., Bottero, J.-Y., & Bégassat, P. (2004). Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences, 8(1), 8–22. https://doi.org/10.5194/hess-8-8-2004

Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., Kuras, O., Ogilvy, R., Gisbert, J., Jorreto, S., & Pulido-Bosch, A. (2009). Characterization of seawater intrusion using 2D electrical imaging. Near Surface Geophysics, 7(5–6), 377–390. https://doi.org/10.3997/1873-0604.2009025

Óladóttir, A. A. (2012). Application of soil measurements and remote sensing for monitoring changes in geothermal surface activity in the Reykjanes field, Iceland. University of Iceland.

Oldenburg, D. W., & Li, Y. (1999). Estimating depth of investigation in dc resistivity and IP surveys. GEOPHYSICS, 64(2), 403–416. https://doi.org/10.1190/1.1444545

Onsager, L. (1931). Reciprocal Relations in Irreversible Processes. I. Physical Review, 37(4), 405–426. https://doi.org/10.1103/PhysRev.37.405

Parasnis, D. S. (1988). Reciprocity theorems in geoelectric and geoelectromagnetic work. Geoexploration, 25(3), 177–198. https://doi.org/10.1016/0016-7142(88)90014-2

Pardo, N., Cronin, S. J., Németh, K., Brenna, M., Schipper, C. I., Breard, E., White, J. D. L., Procter, J., Stewart, B., Agustín-Flores, J., Moebis, A., Zernack, A., Kereszturi, G., Lube, G., Auer, A., Neall, V., & Wallace, C. (2014). Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. Journal of Volcanology and Geothermal Research, 286, 397–414. https://doi.org/10.1016/j.jvolgeores.2014.05.001

Peacock, J. R., & Siler, D. L. (2021). Bottom-Up and Top-Down Control on Hydrothermal Resources in the Great Basin: An Example From Gabbs Valley, Nevada. Geophysical Research Letters, 48(23). https://doi.org/10.1029/2021GL095009

Ramirez, A., Daily, W., LaBrecque, D., Owen, E., & Chesnut, D. (1993). Monitoring an underground steam injection process using electrical resistance tomography. Water Resources Research, 29(1), 73–87. https://doi.org/10.1029/92WR01608

Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I. L., Deng, Y., Delsman, J. R., Pauw, P. S., Karaoulis, M., de Louw, P. G. B., van Baaren, E. S., Dabekaussen, W., Menkovic, A., & Gunnink, J. L. (2017). Complex conductivity of soils. Water Resources Research, 53(8), 7121–7147. https://doi.org/10.1002/2017WR020655

Revil, A., Finizola, A., & Gresse, M. (2023). Self-potential as a tool to assess groundwater flow in hydrothermal systems: A review. Journal of Volcanology and Geothermal Research, 107788. https://doi.org/10.1016/j.jvolgeores.2023.107788

Revil, A., Finizola, A., Piscitelli, S., Rizzo, E., Ricci, T., Crespy, A., Angeletti, B., Balasco, M., Cabusson Barde, S., Bennati, L., Bolève, A., Byrdina, S., Carzaniga, N., Di Gangi, F., Morin, J., Perrone, A., Rossi, M., Roulleau, E., & Suski, B. (2008). Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled with self-potential, temperature, and CO2 diffuse degassing measurements. Journal of Geophysical Research: Solid Earth, 113(7). https://doi.org/10.1029/2007JB005394

Revil, A., Finizola, A., Sortino, F., & Ripepe, M. (2004). Geophysical investigations at Stromboli volcano, Italy: Implications for ground water flow and paroxysmal activity. Geophysical Journal International, 157(1), 426–440. https://doi.org/10.1111/j.1365-246X.2004.02181.x

Revil, A., Florsch, N., & Mao, D. (2015). Induced polarization response of porous media with metallic particles -Part 1: A theory for disseminated semiconductors. Geophysics, 80(5), D525–D538. https://doi.org/10.1190/GEO2014-0577.1

Revil, A., & Jardani, A. (2013). The Self-Potential Method: Theory and Applications in Environmental Geosciences. Cambridge University Press.

Revil, A., Karaoulis, M., Johnson, T., & Kemna, A. (2012). Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20(4), 617–658. https://doi.org/10.1007/s10040-011-0819-x

Revil, A., Le Breton, M., Niu, Q., Wallin, E., Haskins, E., & Thomas, D. M. (2017). Induced polarization of volcanic rocks. 2. Influence of pore size and permeability. Geophysical Journal International, 208(2), 814–825. https://doi.org/10.1093/gji/ggw382

Revil, A., Qi, Y., Ghorbani, A., Coperey, A., Ahmed, A. S., Finizola, A., & Ricci, T. (2019). Induced polarization of volcanic rocks. 3. Imaging clay cap properties in geothermal fields. Geophysical Journal International, 218(2), 1398–1427. https://doi.org/10.1093/gji/ggz207

Reynolds, J. (2011). An Introduction to Applied and Environmental Geophysics (2nd ed.). Wiley-Blackwell.

Rosas-Carbajal, M., Komorowski, J. C., Nicollin, F., & Gibert, D. (2016). Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics. Scientific Reports, 6. https://doi.org/10.1038/srep29899

Sæmundsson, K., Sigurgeirsson, M., & Friðleifsson, G. Ó. (2020). Geology and structure of the Reykjanes volcanic system, Iceland. Journal of Volcanology and Geothermal Research, 391. https://doi.org/10.1016/j.jvolgeores.2018.11.022

Sigurðsson, F., Kristmanssdóttir, H., & Þórhallson, S. (1995). Freshwater and seawater on Reykjanes and Reykjanes Peninsula.

Sigurdsson, O. (2010). The Reykjanes Seawater Geothermal System-Its exploitation under regulatory constraints. Proceedings World Geothermal Congress.

Singha, K., Day-Lewis, F. D., Johnson, T., & Slater, L. D. (2015). Advances in interpretation of subsurface processes with time-lapse electrical imaging. Hydrological Processes, 29(6), 1549–1576. https://doi.org/10.1002/hyp.10280

Slater, L., Binley, A. M., Daily, W., & Johnson, R. (2000). Cross-hole electrical imaging of a controlled saline tracer injection. Journal of Applied Geophysics, 44(2–3), 85–102. https://doi.org/10.1016/S0926-9851(00)00002-1

Smith, D. L. (1986). Application of the pole‐dipole resistivity technique to the detection of solution cavities beneath highways. GEOPHYSICS, 51(3), 833–837. https://doi.org/10.1190/1.1442135

Soueid Ahmed, A., Revil, A., Byrdina, S., Coperey, A., Gailler, L., Grobbe, N., Viveiros, F., Silva, C., Jougnot, D., Ghorbani, A., Hogg, C., Kiyan, D., Rath, V., Heap, M. J., Grandis, H., & Humaida, H. (2018). 3D electrical conductivity tomography of volcanoes. Journal of Volcanology and Geothermal Research, 356, 243–263. https://doi.org/10.1016/j.jvolgeores.2018.03.017

Sternbergh, S. (2016). Reykjanes Grey Lagoon: Precipitate chemistry and implications for metal rich scale precipitation, submarine hydrothermal vents, and environmental impact. Reykjavik University.

Symonds, R. B., Gerlach, T. M., & Reed, M. H. (2001). Magmatic gas scrubbing: implications for volcano monitoring. Journal of Volcanology and Geothermal Research, 108(1–4), 303–341. https://doi.org/10.1016/S0377-0273(00)00292-4

Tarchini, L., Ranaldi, M., Carapezza, M. L., Di Giuseppe, M. G., Isaia, R., Lucchetti, C., Prinzi, E. P., Tramparulo, F. D., Troiano, A., & Vitale, S. (2019). Multidisciplinary studies of diffuse soil CO2 flux, gas permeability, self-potential, soil temperature highlight the structural architecture of fondi di baia craters (Campi Flegrei Caldera, Italy). Annals of Geophysics, 62(1), 1–12. https://doi.org/10.4401/AG-7683

Telford, W., Geldart, L., & Sheriff, R. (1990). Resistivity Methods. In Applied Geophysics (pp. 522–577). Cambridge University Press. https://doi.org/10.1017/CBO9781139167932.012

Thibaut, R., Kremer, T., Royen, A., Kim Ngun, B., Nguyen, F., & Hermans, T. (2021). A new workflow to incorporate prior information in minimum gradient support (MGS) inversion of electrical resistivity and induced polarization data. Journal of Applied Geophysics, 187. https://doi.org/10.1016/j.jappgeo.2021.104286

Thordarson, T., & Hoskuldsson, A. (2002). Iceland. Dunedin Academic Press.

Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., & Yagola, A. G. (1995). Numerical Methods for the Solution of Ill-Posed Problems. In Numerical Methods for the Solution of Ill-Posed Problems. Springer Netherlands. https://doi.org/10.1007/978-94-015-8480-7

Troiano, A., Isaia, R., Di Giuseppe, M. G., Tramparulo, F. D. A., & Vitale, S. (2019). Deep Electrical Resistivity Tomography for a 3D picture of the most active sector of Campi Flegrei caldera. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-51568-0

Turner, G., Ingham, M., Bibby, H., & Keys, H. (2011). Resistivity monitoring of the tephra barrier at Crater Lake, Mount Ruapehu, New Zealand. Journal of Applied Geophysics, 73(3), 243–250. https://doi.org/10.1016/j.jappgeo.2011.01.006

Uhlemann, S., Chambers, J., Wilkinson, P., Maurer, H., Merritt, A., Meldrum, P., Kuras, O., Gunn, D., Smith, A., & Dijkstra, T. (2017). Four-dimensional imaging of moisture dynamics during landslide reactivation. Journal of Geophysical Research: Earth Surface, 122(1), 398–418. https://doi.org/10.1002/2016JF003983

Vaisala. (2023). Carbon Dioxide Measurements. https://www.vaisala.com/en/measurement/carbon-dioxide-co2-measurements

Van Riet, B., Six, S., Walraevens, K., Vandenbohede, A., & Hermans, T. (2022). Assessing the Impact of Fractured Zones Imaged by ERT on Groundwater Model Prediction: A Case Study in a Chalk Aquifer in Voort (Belgium). Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.783983

Villasante-Marcos, V., Finizola, A., Abella, R., Barde-Cabusson, S., Blanco, M. J., Brenes, B., Cabrera, V., Casas, B., De Agustín, P., Di Gangi, F., Domínguez, I., García, O., Gomis, A., Guzmán, J., Iribarren, I., Levieux, G., López, C., Luengo-Oroz, N., Martín, I., … Trigo, P. (2014). Hydrothermal system of Central Tenerife Volcanic Complex, Canary Islands (Spain), inferred from self-potential measurements. Journal of Volcanology and Geothermal Research, 272, 59–77. https://doi.org/10.1016/j.jvolgeores.2013.12.007

Waxman, M. H., & Smits, L. J. M. (1968). Electrical Conductivities in Oil-Bearing Shaly Sands. Society of Petroleum Engineers Journal, 8(02), 107–122. https://doi.org/10.2118/1863-A

Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., & Haase, T. (2019). Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agricultural and Forest Meteorology, 268, 40–47. https://doi.org/10.1016/j.agrformet.2018.12.018

Wu, Y., Hubbard, S., Williams, K. H., & Ajo-Franklin, J. (2010). On the complex conductivity signatures of calcite precipitation. Journal of Geophysical Research: Biogeosciences, 115(G2), n/a-n/a. https://doi.org/10.1029/2009jg001129

Yamaoka, K., Geshi, N., Hashimoto, T., Ingebritsen, S. E., & Oikawa, T. (2016). Special issue “the phreatic eruption of Mt. Ontake volcano in 2014” the Phreatic Eruption of Mt. Ontake Volcano in 2014 5. Volcanology. In Earth, Planets and Space (Vol. 68, Issue 1). Springer Berlin. https://doi.org/10.1186/s40623-016-0548-4

Zlotnicki, J., & Nishida, Y. (2003). Review on Morphological Insights of Self-Potential Anomalies on Volcanoes. Surveys in Geophysics, 24(4), 291–338. https://doi.org/10.1023/B:GEOP.0000004188.67923.ac

Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2023
Promotor(en)
Thomas Hermans
Thema('s)
Kernwoorden