Ultrasound en computermodellen samengebracht: een nieuw pad naar drukmetingen in tumoren

Ariana
Cihan

De hedendaagse kankerbehandelingen worden bemoeilijkt door de verhoogde vloeistofdruk die tumoren vertonen. Om dit te omzeilen, moet in eerste instantie dit drukverschil gemeten worden. Dit kan vandaag enkel door middel van een invasieve procedure. Deze scriptie ontwikkelt een computermodel dat de basis legt voor de ontwikkeling van een niet-invasief alternatief.

Tot aan de kern, of niet?

Tumoren kan je, net zoals de meeste biologische weefsels, vergelijken met een natte spons. Ze bevatten namelijk kleine ‘poriën’ en in deze gaatjes is (interstitiële) vloeistof aanwezig. Wanneer je het weefsel samendrukt, vloeit, net zoals bij een spons, het vocht eruit.

In het geval van tumoren is de druk van deze interstitiële vloeistof hoger dan die van de vloeistof buiten het kwaadaardige weefsel. Hierdoor is het moeilijker om de kern van de tumor te bereiken met therapeutische middelen, wat de behandeling van kankers bemoeilijkt.

Tot in de kern …

Om deze reden bestaan er tegenwoordig een aantal geneesmiddelen die deze vloeistofdruk proberen te verlagen. Maar zijn deze wel werkzaam bij elke patiënt? En zo ja, in welke mate en hoe snel hebben ze een invloed? Om deze vragen te beantwoorden moet de vloeistofdruk gemeten worden. Dit kan momenteel enkel op een invasieve manier - een naald wordt tot in de kern van de tumor gebracht. Auw!

Een niet-invasief alternatief is daarom wenselijk. Dit zou namelijk leiden tot een verhoogd comfort voor de patiënt en een lagere drempel om de vloeistofdruk in de praktijk te bepalen.

Nieuwe meetmethode

De scriptie onderzoekt of ultrasound - gekend van de echografie bij zwangerschappen - ook bruikbaar kan zijn voor een niet-invasieve drukmeting. Meer bepaald richt ze zich op ‘shear-wave’ elastografie, een techniek waarbij een apparaatje dat tegen de huid wordt geplaatst  een ultrasound puls uitzendt. Dit is niet pijnlijk voor de patiënt en is ook onschadelijk voor het lichaam, in tegenstelling tot de invasieve meetmethoden.

De puls veroorzaakt kleine verplaatsingsgolven in het weefsel, net zoals wanneer je een steentje in het water gooit. De voortplantingssnelheid van deze golven wordt beïnvloed door de vloeistofdruk. Door de snelheid te meten, kan dus ook de druk bepaald worden!

image-20231001202159-1© Sami Matias - Unsplash

De kracht van simulaties

De relatie tussen de snelheid en vloeistofdruk is echter nog niet duidelijk voor onderzoekers. Hier grijpt de scriptie in. Ze ontwikkelt namelijk een computermodel voor de weefsels, wat vervolgens gebruikt wordt in simulaties. Zodoende kunnen de tumor en de verplaatsingsgolven op een computer nagebootst worden, en de relatie tussen de vloeistofdruk en de snelheid van de golven bepaald worden. Hierdoor kunnen artsen meer inzicht krijgen die ze kunnen gebruiken tijdens de kankerbehandeling.

Daarnaast kan het model ook verschillende weefsels of meettechnieken simuleren. Hierdoor kunnen we de relatie tussen de vloeistofdruk en de voortplantingssnelheid nog beter begrijpen en de meetmethode verbeteren! Dit is trouwens zowel sneller als goedkoper dan experimentele testen en vermindert het aantal proefdieren die nodig zijn tijdens onderzoek.

Uitbreidingen

Hiermee is de kous echter nog niet af. Het model zal in de toekomst uitgebreid worden om de vloeistofdruk ook bij meer gecompliceerde fenomenen op een niet-invasieve wijze te bepalen, zoals bij een peesontsteking of een vochtophoping in de benen. Hierdoor zal de nieuwe meetmethode nóg breder inzetbaar worden.

Bibliografie

[1] J. Aichele and S. Catheline. ‘Fluids Alter Elasticity Measurements: Porous Wave Propagation Accounts for Shear Wave Dispersion in Elastography’. In: Frontiers in Physics 9 (2021). issn: 2296-424X. doi: 10 . 3389 / fphy . 2021 . 697990. url: https : / / www . frontiersin.org/articles/10.3389/fphy.2021.697990.

[2] M. Arbel-Ornath, E. Hudry, K. Eikermann-Haerter, S. Hou, J. L. Gregory, L. Zhao, R. A. Betensky, M. P. Frosch, S. M. Greenberg, and B. J. Bacskai. ‘Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models’. In: Acta Neuropathologica 126.3 (July 2013), pp. 353–364. doi: https : / / doi . org / 10 . 1007 / s00401-013-1145-2.

[3] A. B. Ariffin, P. F. Forde, S. Jahangeer, D. M. Soden, and J. Hinchion. ‘Releasing Pressure in Tumors: What Do We Know So Far and Where Do We Go from Here? A Review’. In: Cancer Research 74.10 (May 2014), pp. 2655–2662. doi: https://doi.org/10.1158/ 0008-5472.can-13-3696.

[4] A. Atangana. ‘Principle of Groundwater Flow’. In: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology (2018), pp. 15–47. doi: https: //doi.org/10.1016/b978-0-12-809670-3.00002-3.

[5] G. Ateshian, W. Warden, J. Kim, R. Grelsamer, and V. Mow. ‘Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments’. In: Journal of Biomechanics 30.11 (1997), pp. 1157–1164. doi: https://doi.org/10. 1016/S0021-9290(97)85606-0.

[6] P. E. Beshay, M. G. Cortes-Medina, M. M. Menyhert, and J. W. Song. ‘The Biophysics of Cancer: Emerging Insights from Micro- and Nanoscale Tools’. In: Advanced NanoBiomed Research 2.1 (Nov. 2021), p. 2100056. doi: https://doi.org/10.1002/anbr.202100056.

[7] M. A. Biot. ‘Mechanics of Deformation and Acoustic Propagation in Porous Media’. In: Journal of Applied Physics 33.4 (June 2004), pp. 1482–1498. doi: 10.1063/1.1728759.

[8] J. E. Brinkman, B. Dorius, and S. Sharma. Physiology, Body Fluids. May 2022. url: https://www.ncbi.nlm.nih.gov/books/NBK482447.

[9] V. L. D. S. N. Button. ‘Chapter 2 - Electrodes for Biopotential Recording and Tissue Stimulation’. In: Principles of Measurement and Transduction of Biomedical Variables. Ed. by V. L. D. S. N. Button. Oxford: Academic Press, 2015, pp. 25–76. isbn: 978-0-12- 800774-7. doi: https://doi.org/10.1016/B978-0-12-800774-7.00002-7.

[10] D. Cacko and M. Lewandowski. ‘Shear Wave Elastography Implementation on a Portable Research Ultrasound System: Initial Results’. In: Applied Sciences 12.12 (2022). doi: 10.3390/app12126210. url: https://www.mdpi.com/2076-3417/12/12/6210.

[11] A. Caenen. ‘A biomechanical analysis of shear wave elastography in pediatric heart models’. eng. PhD thesis. Ghent University, 2018, p. 244. isbn: 978-94-6355-100-7.

[12] A. Caenen, M. Pernot, K. R. Nightingale, J.-U. Voigt, H. J. Vos, P. Segers, and J. D’hooge. ‘Assessing cardiac stiffness using ultrasound shear wave elastography’. In: Physics in Medicine & Biology 67.2 (Jan. 2022), 02TR01. doi: 10.1088/1361-6560/ac404d.

[13] A. L. Castro, J. Yao, T. Battisti, and D. Lacroix. ‘Poroelastic Modeling of Highly Hydrated Collagen Hydrogels: Experimental Results vs. Numerical Simulation With Custom and Commercial Finite Element Solvers’. In: Frontiers in Bioengineering and Biotechnology 6.142 (Oct. 2018). doi: https://doi.org/10.3389/fbioe.2018.00142.

[14] A. Chaudhry, N. Kim, G. Unnikrishnan, S. Nair, J. N. Reddy, and R. Righetti. ‘Effect of Interstitial Fluid Pressure on Ultrasound Axial Strain and Axial Shear Strain Elastography’. In: Ultrasonic Imaging 39.2 (2017), pp. 137–146. doi: 10.1177/0161734616671713. 65 Bibliography 66

[15] COMSOL. COMSOL Multiphysics Reference Manual 5.5. 2019. url: https : / / doc . comsol.com/5.5/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf.

[16] COMSOL. Porous Media Flow Module User’s Guide 5.6. 2020. url: https : / / doc . comsol.com/5.6/doc/com.comsol.help.porous/PorousMediaFlowModuleUsersGuide. pdf.

[17] COMSOL. Low-Reflecting Boundary Condition. url: https://doc.comsol.com/5.5/ doc/com.comsol.help.sme/sme_ug_theory.06.57.html (visited on 05/14/2023).

[18] COMSOL. Perfectly Matched Layers (PMLs). url: https://doc.comsol.com/5.5/ doc/com.comsol.help.aco/aco_ug_pressure.05.106.html (visited on 05/14/2023).

[19] E. DETOURNAY and A. H.-D. CHENG. ‘5 - Fundamentals of Poroelasticity’. In: Analysis and Design Methods. Ed. by C. FAIRHURST. Oxford: Pergamon, 1993, pp. 113–171. isbn: 978-0-08-040615-2. doi: https://doi.org/10.1016/B978-0-08-040615-2.50011-3.

[20] W. Ehlers. ‘Darcy, Forchheimer, Brinkman and Richards: classical hydromechanical equations and their significance in the light of the TPM’. In: Archive of Applied Mechanics 92.2 (Oct. 2020), pp. 619–639. doi: https://doi.org/10.1007/s00419-020-01802-3.

[21] S. Ferretti, P. R. Allegrini, M. Becquet, and P. M. McSheehy. ‘Tumor Interstitial Fluid Pressure as an Early-Response Marker for Anticancer Therapeutics’. In: Neoplasia 11.9 (Sept. 2009), pp. 874–881. doi: https://doi.org/10.1593/neo.09554.

[22] M. Friedel, I. A. P. Thompson, G. Kasting, R. Polsky, D. Cunningham, H. T. Soh, and J. Heikenfeld. ‘Opportunities and challenges in the diagnostic utility of dermal interstitial fluid’. In: Nature Biomedical Engineering (Jan. 2023). doi: https://doi.org/10.1038/ s41551-022-00998-9.

[23] J.-L. Gennisson, M. Rénier, S. Catheline, C. Barrière, J. Bercoff, M. Tanter, and M. Fink. ‘Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic radiation force’. In: The Journal of the Acoustical Society of America 122.6 (Dec. 2007), pp. 3211–3219. doi: 10.1121/1.2793605.

[24] K. M. Graczyk and M. Matyka. ‘Predicting porosity, permeability, and tortuosity of porous media from images by deep learning’. In: Scientific Reports 10.1 (Dec. 2020). doi: https://doi.org/10.1038/s41598-020-78415-x.

[25] E. V. Gubarkova et al. ‘Nonlinear Elasticity Assessment with Optical Coherence Elastography for High-Selectivity Differentiation of Breast Cancer Tissues’. In: Materials 15.9 (May 2022), p. 3308. doi: 10.3390/ma15093308.

[26] C. F. Guimarães, L. Gasperini, A. P. Marques, and R. L. Reis. ‘The stiffness of living tissues and its implications for tissue engineering’. In: Nature Reviews Materials 5 (2020), pp. 351–370.

[27] L. Guta and S. Sundar. ‘Navier-Stokes-Brinkman system for interaction of viscous waves with a submerged porous structure’. In: Tamkang Journal of Mathematics 41.3 (Sept. 2010), pp. 217–243. doi: 10.5556/j.tkjm.41.2010.722.

[28] J. E. Hall and A. C. Guyton. Guyton and hall textbook of medical physiology. 12th ed. Saunders Elsevier, 2010.

[29] J. E. Hall and A. C. Guyton. Guyton and hall textbook of medical physiology. 11th ed. Saunders Elsevier, 2010.

[30] C.-H. Heldin, K. Rubin, K. Pietras, and A. Östman. ‘High interstitial fluid pressure — an obstacle in cancer therapy’. In: Nature Reviews Cancer 4.10 (Oct. 2004), pp. 806–813. doi: https://doi.org/10.1038/nrc1456.

[31] K. Holkova. ‘Shear wave elastography for assessing interstitial fluid pressure: a combined computational-experimental study’. Master’s thesis. Ghent University, 2022. Bibliography 67

[32] M. Holmes and V. Mow. ‘The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration’. In: Journal of Biomechanics 23.11 (Jan. 1990), pp. 1145–1156. doi: https://doi.org/10.1016/0021-9290(90)90007-p.

[33] M. T. Islam, S. Tang, E. Tasciotti, and R. Righetti. ‘Non-Invasive Assessment of the Spatial and Temporal Distributions of Interstitial Fluid Pressure, Fluid Velocity and Fluid Flow in Cancers In Vivo’. In: IEEE Access 9 (2021), pp. 89222–89233. doi: 10. 1109/ACCESS.2021.3089454.

[34] F. Q. Jin, A. E. Knight, C. T. Paley, L. S. Pietrosimone, L. D. Hobson-Webb, K. R. Nightingale, and M. L. Palmeri. ‘An Open-Source Radon-Transform Shear Wave Speed Estimator with Masking Functionality to Isolate Different Shear-Wave Modes’. In: 2022 IEEE International Ultrasonics Symposium (IUS). 2022, pp. 1–4. doi: 10.1109/IUS54386. 2022.9957817.

[35] A.-R. Khaled and K. Vafai. ‘The role of porous media in modeling flow and heat transfer in biological tissues’. In: International Journal of Heat and Mass Transfer 46.26 (2003), pp. 4989–5003. issn: 0017-9310. doi: https : / / doi . org / 10 . 1016 / S0017 - 9310(03 ) 00301-6.

[36] H.-G. Kim, A. R. Yu, J. J. Lee, Y.-J. Lee, S. M. Lim, and J. S. Kim. ‘Measurement of Tumor Pressure and Strategies of Imaging Tumor Pressure for Radioimmunotherapy’. In: Nuclear Medicine and Molecular Imaging 53.4 (June 2019), pp. 235–241. doi: https: //doi.org/10.1007/s13139-019-00598-7.

[37] E. E. Konofagou, T. P. Harrigan, J. Ophir, and T. A. Krouskop. ‘Poroelastography: imaging the poroelastic properties of tissues’. In: Ultrasound in Medicine & Biology 27.10 (2001), pp. 1387–1397. issn: 0301-5629. doi: https : / / doi . org / 10 . 1016 / S0301 - 5629(01)00433-1.

[38] H. Kumar. MODULE 3: PRESSURE MEASUREMENT. 2020. url: https : / / www . acsce.edu.in/acsce/wp-content/uploads/2020/03/BMT-18BM45-MODULE-3.pdf.

[39] W. M. Lai, V. C. Mow, and V. Roth. ‘Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage’. In: Journal of Biomechanical Engineering 103.2 (May 1981), pp. 61–66. doi: 10.1115/1.3138261.

[40] S. Locke. ‘The effect of interstitial pressure on tumour stiffness’. Master’s thesis. University of Toronto, 2014.

[41] P. Lyu. Which Porous Media and Subsurface Flow Interface Should I Use? Feb. 2017. url: https://www.comsol.com/blogs/which-porous-media-and-subsurface-flowinterface-should-i-use/ (visited on 05/14/2023).

[42] A. Malandrino and E. Moeendarbary. ‘Poroelasticity of Living Tissues’. In: Encyclopedia of Biomedical Engineering. Ed. by R. Narayan. Elsevier, 2019, pp. 238–245. isbn: 978-0- 12-805144-3. doi: https://doi.org/10.1016/B978-0-12-801238-3.99932-X.

[43] K. Manda and A. Eriksson. ‘Time-dependent behavior of cartilage surrounding a metal implant for full-thickness cartilage defects of various sizes: a finite element study’. In: Biomechanics and Modeling in Mechanobiology 11.5 (Sept. 2011), pp. 731–742. doi: https://doi.org/10.1007/s10237-011-0346-7.

[44] K. Manda and A. Eriksson. ‘Modeling of constrained articular cartilage growth in an intact knee with focal knee resurfacing metal implant’. In: Biomechanics and Modeling in Mechanobiology 13.3 (Aug. 2013), pp. 599–613. doi: https://doi.org/10.1007/ s10237-013-0521-0. 

[45] S. Moavenzadeh, M. L. Palmeri, G. Ferraioli, and R. G. Barr. ‘CHAPTER 3 - Liver stiffness measurement techniques: Basics’. In: Multiparametric Ultrasound for the Assessment of Diffuse Liver Disease. Ed. by R. G. Barr and G. Ferraioli. New Delhi: Elsevier, 2024, pp. 25–34. isbn: 978-0-323-87479-3. doi: https://doi.org/10.1016/B978- 0- 323- 87479-3.00012-0.

[46] M. C. Moghadam, A. Deyranlou, A. Sharifi, and H. Niazmand. ‘Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism’. In: Microvascular Research 101 (Sept. 2015), pp. 62–71. doi: https://doi.org/10.1016/ j.mvr.2015.06.007.

[47] H. J. Moon, J. M. Sung, E. K. Kim, J. H. Yoon, J. H. Youk, and J. Y. Kwak. ‘Diagnostic Performance of Gray-Scale US and Elastography in Solid Thyroid Nodules’. In: Radiology 262.3 (Mar. 2012), pp. 1002–1013. doi: https://doi.org/10.1148/radiol.11110839.

[48] S. Narod, J. Iqbal, A. Jakubowska, T. Huzarski, P. Sun, C. Cybulski, J. Gronwald, T. Byrski, and J. Lubinski. ‘Are Two-Centimeter Breast Cancers Large or Small?’ In: Current Oncology 20.4 (Aug. 2013), pp. 205–211. doi: https://doi.org/10.3747/co.20.1364.

[49] National Cancer Institute. Intersitial fluid. url: https://www.cancer.gov/publications/ dictionaries/cancer-terms/def/interstitial-fluid (visited on 03/17/2023).

[50] National Institute of Neurological Disorders and Stroke. url: https://www.ninds.nih. gov/health-information/disorders/hydrocephalus (visited on 04/30/2023).

[51] N. Nazari and P. Barbone. ‘Shear wave speed in pressurized soft tissue’. In: Journal of the Mechanics and Physics of Solids 119 (2018), pp. 60–72. issn: 0022-5096. doi: https: //doi.org/10.1016/j.jmps.2018.06.009.

[52] H. T. Nia, L. L. Munn, and R. K. Jain. ‘Mapping Physical Tumor Microenvironment and Drug Delivery’. In: Clinical Cancer Research 25.7 (Apr. 2019), pp. 2024–2026. issn: 1078-0432. doi: 10.1158/1078- 0432.CCR- 18- 3724. eprint: https://aacrjournals. org / clincancerres / article - pdf / 25 / 7 / 2024 / 2058905 / 2024 . pdf. url: https : //doi.org/10.1158/1078-0432.CCR-18-3724.

[53] K. Nightingale. ‘Acoustic Radiation Force Impulse (ARFI) Imaging: A Review’. In: Current Medical Imaging Reviews 7.4 (Jan. 2011), pp. 328–339. doi: https://doi.org/10. 2174/157340511798038657.

[54] U. Ozerdem. ‘Measuring interstitial fluid pressure with fiberoptic pressure transducers’. In: Microvascular Research 77.2 (2009), pp. 226–229. issn: 0026-2862. doi: https://doi. org/10.1016/j.mvr.2008.08.002. url: https://www.sciencedirect.com/science/ article/pii/S0026286208001313.

[55] U. Ozerdem and A. R. Hargens. ‘A simple method for measuring interstitial fluid pressure in cancer tissues’. In: Microvascular Research 70.1 (2005), pp. 116–120. issn: 0026- 2862. doi: https : / / doi . org / 10 . 1016 / j . mvr . 2005 . 07 . 003. url: https : / / www . sciencedirect.com/science/article/pii/S0026286205000646.

[56] A. Ozturk, J. R. Grajo, M. Dhyani, B. W. Anthony, and A. E. Samir. ‘Principles of ultrasound elastography’. In: Abdominal radiology (New York) 43.4 (Apr. 2018), pp. 773– 785. doi: https://doi.org/10.1007/s00261-018-1475-6.

[57] G. Pagé, P. Garteiser, and B. E. Van Beers. ‘Magnetic resonance elastography of malignant tumors’. In: Frontiers in Physics 10 (2022). issn: 2296-424X. doi: 10.3389/fphy.2022. 910036. url: https://www.frontiersin.org/articles/10.3389/fphy.2022.910036.

[58] M. L. Palmeri, B. Qiang, S. Chen, and M. W. Urban. ‘Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media’. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 64.1 (2017), pp. 78–92. doi: 10.1109/TUFFC.2016.2641299.

[59] S. Park, S. R. Aglyamov, W. G. Scott, S. Y. Emelianov, S. Sethuraman, J. M. Rubin, J. Shah, A. B. Karpiouk, S. Mallidi, and R. W. Smalling. ‘1E-5 Synergy and Applications of Combined Ultrasound, Elasticity, and Photoacoustic Imaging (Invited)’. In: 2006 IEEE Ultrasonics Symposium. 2006, pp. 405–415. doi: 10.1109/ULTSYM.2006.114.

[60] Pathway Medicine. Starling Forces. url: http://www.pathwaymedicine.org/starlingforces (visited on 04/14/2023).

[61] P. R. Perrinez, F. E. Kennedy, E. E. W. V. Houten, J. B. Weaver, and K. D. Paulsen. ‘Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography’. In: IEEE Transactions on Biomedical Engineering 56.3 (2009), pp. 598–608. doi: 10.1109/TBME. 2008.2009928.

[62] J. J. Pitre and J. L. Bull. ‘Imaging the Mechanical Properties of Porous Biological Tissue’. In: Handbook of Thermal Science and Engineering (2018), pp. 831–857. doi: https : //doi.org/10.1007/978-3-319-26695-4_38.

[63] P. J. Prendergast, W. D. van Driel, and J.-H. Kuiper. ‘A Comparison of Finite Element Codes for the Solution of Biphasic Poroelastic Problems’. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 210.2 (1996), pp. 131–136. doi: 10.1243/PIME\_PROC\_1996\_210\_402\_02.

[64] M. Ramazanilar and A. Mojra. ‘Characterization of breast tissue permeability for detection of vascular breast tumors: An in vitro study’. In: Materials Science and Engineering: C 107 (2020), p. 110222. issn: 0928-4931. doi: https://doi.org/10.1016/j.msec. 2019.110222.

[65] D. Rosen and J. Jiang. ‘Analyzing acoustoelastic effect of shear wave elastography data for perfused and hydrated soft tissues using a macromolecular network inspired model’. In: Journal of Biomechanics 97 (2019), p. 109370. issn: 0021-9290. doi: https://doi. org/10.1016/j.jbiomech.2019.109370.

[66] V. Rotemberg, M. Palmeri, R. Nightingale, N. Rouze, and K. Nightingale. ‘The impact of hepatic pressurization on liver shear wave speed estimates in constrained versus unconstrained conditions’. In: Physics in Medicine & Biology 57.2 (Dec. 2011), p. 329. doi: 10.1088/0031- 9155/57/2/329. url: https://dx.doi.org/10.1088/0031- 9155/57/2/329.

[67] V. Rotemberg, M. L. Palmeri, N. C. Rouze, R. Nightingale, and K. R. Nightingale. ‘Comparison between Acoustic Radiation Force Impulse (ARFI)-based hepatic stiffness quantification in deformed and undeformed pressurized canine livers’. In: 2011 IEEE International Ultrasonics Symposium. 2011, pp. 2090–2093. doi: 10.1109/ULTSYM.2011.0518.

[68] N. C. Rouze, M. H. Wang, M. L. Palmeri, and K. R. Nightingale. ‘Robust estimation of time-of-flight shear wave speed using a radon sum transformation’. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 57.12 (2010), pp. 2662–2670. doi: 10.1109/TUFFC.2010.1740.

[69] N. C. Rouze, M. H. Wang, M. L. Palmeri, and K. R. Nightingale. ‘Parameters affecting the resolution and accuracy of 2-D quantitative shear wave images’. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 59.8 (2012), pp. 1729–1740. doi: 10.1109/TUFFC.2012.2377.

[70] H. Salavati, C. Debbaut, P. Pullens, and W. Ceelen. ‘Interstitial fluid pressure as an emerging biomarker in solid tumors’. In: Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1877.5 (Sept. 2022), p. 188792. doi: https://doi.org/10.1016/j.bbcan. 2022.188792.

[71] A. Sanchez, C. Mills, and J. C. Scurr. ‘Estimating Breast Mass-Density: A Retrospective Analysis of Radiological Data’. In: The Breast Journal 23 (2017).

[72] M. Sarntinoranont, F. Rooney, and M. Ferrari. ‘Interstitial stress and fluid pressure within a growing tumor’. In: 31.3 (2003), pp. 327–335. doi: 10.1114/1.1554923.

[73] R. M. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann. ‘Ultrasound Elastography: Review of Techniques and Clinical Applications’. In: Theranostics 7.5 (2017), pp. 1303–1329. doi: https://doi.org/10.7150/thno.18650. url: http: //thno.org/v07p1303.pdf.

[74] C. A. Silvera Delgado. ‘Modeling the interaction between lymphatic capillaries and interstitium’. Master’s thesis. Politecnico di Torino, 2022.

[75] M. Soltani and P. Chen. ‘Numerical Modeling of Fluid Flow in Solid Tumors’. In: PLOS ONE 6.6 (June 2011), pp. 1–15. doi: 10.1371/journal.pone.0020344.

[76] D. R. Sowinski, M. D. J. McGarry, E. E. W. Van Houten, S. Gordon-Wylie, J. B. Weaver, and K. D. Paulsen. ‘Poroelasticity as a Model of Soft Tissue Structure: Hydraulic Permeability Reconstruction for Magnetic Resonance Elastography in Silico’. In: Frontiers in Physics 8 (2021). doi: 10.3389/fphy.2020.617582.

[77] R. M. Spielman, W. J. Jenkins, and M. D. Lovett. Psychology 2e. OpenStax, Apr. 2020. isbn: 9781951693312. url: https://openstax.org/details/books/psychology-2e.

[78] R. H. Stewart. ‘A Modern View of the Interstitial Space in Health and Disease’. In: Frontiers in Veterinary Science 7 (Nov. 2020). doi: https://doi.org/10.3389/fvets. 2020.609583.

[79] M. Taffetani, M. Griebel, D. Gastaldi, S. Klisch, and P. Vena. ‘Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage’. In: Journal of the Mechanical Behavior of Biomedical Materials 32 (2014), pp. 17–30. issn: 1751-6161. doi: https://doi.org/10.1016/j. jmbbm.2013.12.003.

[80] L. Tan, M. D. J. McGarry, E. E. W. Van Houten, M. Ji, L. Solamen, W. Zeng, J. B. Weaver, and K. D. Paulsen. ‘A numerical framework for interstitial fluid pressure imaging in poroelastic MRE’. In: PLOS ONE 12.6 (June 2017). Ed. by A. A. Oberai, e0178521. doi: https://doi.org/10.1371/journal.pone.0178521.

[81] Theranostics. Ultrasound Elastography: Review of Techniques and Clinical Applications. 2017. url: https://www.thno.org/v07p1303.htm (visited on 05/18/2023).

[82] UT Southwestern Department of Radiology. Ultrasound - Liver Elastography. Jan. 2023. url: https://www.utsouthwestern.edu/education/medical-school/departments/ radiology/protocols/us.html.

[83] F. J. Valdes-Parada, J. Alberto Ochoa-Tapia, and J. Alvarez-Ramirez. ‘On the effective viscosity for the Darcy–Brinkman equation’. In: Physica A: Statistical Mechanics and its Applications 385.1 (2007), pp. 69–79. doi: https://doi.org/10.1016/j.physa.2007. 06.012.

[84] C. Wex, S. Arndt, A. Stoll, C. Bruns, and Y. Kupriyanova. ‘Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review’. In: Biomedical Engineering / Biomedizinische Technik 60.6 (2015), pp. 577–592. doi: doi:10.1515/bmt-2014-0146.

[85] H. Wiig, R. K. Reed, and K. Aukland. ‘Measurement of interstitial fluid pressure: Comparison of methods’. In: Annals of Biomedical Engineering 14.2 (Mar. 1986), pp. 139–151. doi: https://doi.org/10.1007/bf02584264.

[86] W. Wilson, B. van Rietbergen, C. van Donkelaar, and R. Huiskes. ‘Pathways of loadinduced cartilage damage causing cartilage degeneration in the knee after meniscectomy’. In: Journal of Biomechanics 36.6 (2003), pp. 845–851. issn: 0021-9290. doi: https : //doi.org/10.1016/S0021-9290(03)00004-6.

[87] Y. Zhang, J. Tang, Y.-m. Li, X. Fei, E.-h. He, Q.-y. Li, and H.-y. Shi. ‘The contribution of strain patterns in characterization of prostate peripheral zone lesions at transrectal ultrasonography’. In: Acta Radiologica 53.1 (2012), pp. 119–126. doi: 10.1258/ar.2011. 110504.

[88] Y. Zheng, Y. Jiang, and Y. Cao. ‘A porohyperviscoelastic model for the shear wave elastography of the liver’. In: Journal of the Mechanics and Physics of Solids 150 (2021), p. 104339. issn: 0022-5096. doi: https://doi.org/10.1016/j.jmps.2021.104339.

[89] Y. Zheng, Y. Jiang, and Y. Cao. ‘Effects of interstitial fluid pressure on shear wave elastography of solid tumors’. In: Extreme Mechanics Letters 47 (2021), p. 101366. issn: 2352-4316. doi: https://doi.org/10.1016/j.eml.2021.101366. url: https://www. sciencedirect.com/science/article/pii/S2352431621001140.

[90] J. Zhou, W. Zhan, C. Chang, X. Zhang, Y. Jia, Y. Dong, C. Zhou, J. Sun, and E. G. Grant. ‘Breast Lesions: Evaluation with Shear Wave Elastography, with Special Emphasis on the “Stiff Rim” Sign’. In: Radiology 272.1 (July 2014), pp. 63–72. doi: https://doi. org/10.1148/radiol.14130818.

Download scriptie (13.72 MB)
Universiteit of Hogeschool
Vrije Universiteit Brussel
Thesis jaar
2023
Promotor(en)
Patrick Segers, Charlotte Debbaut, Annette Caenen