Water kan ons redden als wij het redden!

Oluwadamilare Emmanuel
Oloyede

Er was eens een tijd dat bijna het hele menselijke ras werd weggevaagd door water (overstromingen) en nu lijkt het erop dat het hele menselijke ras door water zal worden gered.

Water, een schaarse hulpbron

Water is zo'n belangrijk onderdeel van het menselijk leven dat het een groter deel van ons lichaam uitmaakt, en er kan nauwelijks een dag voorbijgaan zonder het gebruik van water op de een of andere manier. Water speelt een belangrijke rol, variërend van voedsel tot huishoudelijk gebruik en industriële productie.

Als het om voedsel gaat, komt het grootste deel van wat we eten van de grond waarop we gewassen verbouwen. Helaas bestaat er in onze tijd een grote vijand die de voedselproductie bestrijdt. De vijand is de klimaatverandering, en een van de instrumenten die zij gebruikt om deze te bestrijden is waterschaarste. Hoe zo, vraag je je misschien af. De laatste tijd zijn het patroon en de verdeling van de regenval onregelmatig en anders dan vroeger. En de omgeving wordt steeds warmer. Hoewel wij misschien verantwoordelijk zijn voor deze dingen, moeten we handelen voordat de vijand ons wegvaagt.

Temperatuurstijging en grillige regenval als effecten van klimaatverandering (KMI 2023)

Klimaatverandering leidt tot minder regenval tijdens de zomers en naast een stijging van de temperatuur is er ook minder water beschikbaar in de bodem om onze gewassen te laten groeien. Eén van de belangrijkste gewassen die we in België eten is de aardappel en het is nodig om strategieën te ontwikkelen om voldoende water in onze bodem beschikbaar te maken om onze dierbare aardappel te laten groeien.

Een aanpak om water te besparen

Dit leidde tot deze studie waarbij een eeuwenoude techniek op een moderne manier werd ingezet om veerkracht tegen klimaatverandering op te bouwen en meer water in de bodem beschikbaar te maken voor de aardappelteelt in de Vlaamse landbouwcontext. De eeuwenoude techniek is het bedekken van de grond met plantaardig materiaal, genaamd mulch. In deze studie hebben we overwogen hoe mulchen de hoeveelheid water die verloren gaat in de atmosfeer kan verminderen, zodat we meer water in de bodem kunnen besparen voor de groei en ontwikkeling van aardappelen. Deze studie werd uitgevoerd op een proefveld van het Vlaams Instituut voor Landbouw-, Voedings- en Visserijonderzoek in België. Klavergras werd geoogst uit een nabijgelegen veld, gehakt en aan de lucht gedroogd. Dit was de mulch die in de zomer van 2023 werd uitgestrooid op het proefveld waar aardappel werd geteeld. Het werd aangebracht in twee verschillende diktes van 6 cm en 12 cm, te vergelijken met kale grond. Met behulp van sensoren werd het water in de bodem gemonitord. Door het verschil te vinden tussen de hoeveelheid water die in de bodem is opgeslagen en de hoeveelheid water die er door regen in terechtkomt, bepaalden we de hoeveelheid water die het gewas gebruikte om te groeien plus de hoeveelheid water die verloren ging aan het milieu.

Een mulchaardappelperceel met sensoren die het grondwater monitoren

Het resultaat van het onderzoek toonde aan dat mulchen hielp om meer water in de bodem te besparen. Hierdoor kon de aardappel beter groeien en een hogere opbrengst opleveren dan die op kale grond. Met 6 cm mulch en 12 cm mulch steeg de aardappelopbrengst van 40,5 ton/ha op kale grond naar respectievelijk 43,5 en 44,9 ton/ha. Dit is een stijging van 7,4% en 10,9% in de aardappelproductie. Dit betekent dat een gemiddelde Belg dagelijks 5-gram aardappel extra mag eten naast de gebruikelijke 55 gram. Dat is geweldig! Het betekent dat we met deze techniek van mulchen meer kunnen eten of dat meer mensen kunnen eten. Maar wat gebeurt er met het milieu, vraag je je misschien af.

De bedoeling van deze studie was om de voedselproductie te verbeteren met minimaal risico voor het milieu. Uit dit onderzoek bleek dat mulchen de bodemstructuur verbeterde. Dit betekent dat water beter in onze bodem zal stromen en daarmee kunnen we het risico op overstromingen verminderen en tegelijkertijd meer water beschikbaar maken voor onze gewassen. Een ander effect van deze techniek is dat het mulchen de hitte in de bodem vermindert, en dit helpt de diversiteit aan nuttige organismen in de bodem te behouden en te beschermen. Bovendien, omdat de gebruikte mulch plantaardig materiaal was, vergaan ze en brengen ze voedingsstoffen terug naar de bodem. 

We hebben een oplossing, laten we die omarmen

Daarom verbetert de techniek de bodemstructuur, verbetert de voedingsstoffen in de bodem, vermindert het waterverlies uit de bodem en maakt meer water beschikbaar voor de groei van gewassen. Hiermee kan onze landbouw de druk van de klimaatverandering weerstaan ​​en/of zich snel herstellen als deze negatieve gevolgen heeft voor onze landbouw.

Vlaamse boeren worden aangemoedigd om deze techniek toe te passen om hun productie te verhogen. Er zal meer aardappel geproduceerd worden met minder impact op ons milieu. En iedere Belg kan meer aardappel eten. Dit is inderdaad een manier om veerkracht tegen klimaatverandering op te bouwen en de gewasproductie te verbeteren. Water kan ons redden als we het meer besparen.

Bibliografie

Agus, F., Husnain, H., & Yustika, R. D. (2015). Improving agricultural resilience to climate change through soil management. Jurnal Penelitian dan Pengembangan Pertanian, 34(4), 30945.

Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994). An update for the definition of reference evapotranspiration. ICID bulletin43(2), 1-34.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations56(97), e156.

Alliaume, F., Rossing, W. A., Tittonell, P., & Dogliotti, S. (2017). Modelling soil tillage and mulching effects on soil water dynamics in raised-bed vegetable rotations. European Journal of Agronomy82, 268-281.

Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2(2), 95-96.

Ashrafuzzaman, M., Halim, M. A., Ismail, M. R., Shahidullah, S. M., & Hossain, M. A. (2011). Effect of plastic mulch on growth and yield of chili (Capsicum annuum L.). Brazilian archives of biology and technology, 54, 321-330.

Asmamaw, D. K. (2014). Conservation tillage implementation under rainfed agriculture: Implication for soil fertility, green water management, soil loss and grain yield in the Ethiopian Highlands. International Journal of Agricultural Sciences4(9), iii+-268.

Asmamaw, D. K. (2015). A critical review of integrated river basin management in the upper Blue Nile River basin: the case of Ethiopia. International Journal of River Basin Management13(4), 429-442.

Asmamaw, D. K. (2017). A critical review of the water balance and agronomic effects of conservation tillage under rain‐fed agriculture in Ethiopia. Land Degradation & Development28(3), 843-855.

Asmamaw, D. K., Leye, M. T., & Mohammed, A. A. (2012). Effect of winged subsoiler and traditional tillage integrated with Fanya Juu on selected soil physico-chemical and soil water properties in the Northwestern Highlands of Ethiopia. East African Journal of Sciences6(2), 105-116.

Bai, W., Wang, G., & Liu, G. (2012). Effects of elevated air temperatures on soil thermal and hydrologic processes in the active layer in an alpine meadow ecosystem of the Qinghai-Tibet Plateau. Journal of Mountain Science, 9, 243-255.

Basch, G., Friedrich, T., Kassam, A., & Gonzalez-Sanchez, E. (2015). Conservation agriculture in Europe. Conservation Agriculture, 357-389.

Becher, H. H. (2005). Impact of the long-term straw supply on loess-derived soil structure. International agrophysics19(3), 199-202.

Ben-Gal, A., & Shani, U. (2002). A highly conductive drainage extension to control the lower boundary condition of lysimeters. Plant and Soil239, 9-17.

Bengough, A. G., McKenzie, B. M., Hallett, P. D., & Valentine, T. A. (2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of experimental botany, 62(1), 59-68.

Bhardwaj, R. L. (2013). Effect of mulching on crop production under rainfed condition-a review. Agricultural Reviews, 34(3), 188-197.

Bieling, C., Plieninger, T., & Trommler, K. (2011). Cross the border-close the gap: resilience-based analysis of landscape change. European Countryside3(2), 1-10.

Bindi, M., & Olesen, J. E. (2011). The responses of agriculture in Europe to climate change. Regional Environmental Change, 11, 151-158.

binti Abdullah, F., Madzhi, N. K., & Ismail, F. A. (2015, November). Comparative investigation of soil moisture sensors material using three soil types. In 2015 IEEE 3rd International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA) (pp. 1-6). IEEE.

Bittelli, M. (2011). Measuring soil water content: A review. HortTechnology, 21(3), 293-300.

Biswas, T., Bandyopadhyay, P. K., Nandi, R., Mukherjee, S., Kundu, A., Reddy, P., ... & Kumar, P. (2022). Impact of mulching and nutrients on soil water balance and actual evapotranspiration of irrigated winter cabbage (Brassica oleracea var. capitata L.). Agricultural Water Management263, 107456.

Blanchy, G., Bragato, G., Di Bene, C., Jarvis, N., Larsbo, M., Meurer, K., & Garré, S. (2023). Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture. Soil9(1), 1-20.

Boukhris, O.,Vanneuville,W.,Willems, P.,VanEerdenbrugh,K., 2008.Climate change impact on hydrological extremes in Flanders: regional differences. Technical Report N. 706/13. Waterbouwkundig Laboratorium, Antwerp, pp. 195.

Brisson, N., Launay, M., Mary, B., Beaudoin, N., 2008. Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model. Collection Updates sciences & technologies. Editions Quae. ISBN 2759201694, 9782759201693. 297p.

Brouyaux, F., Tricot, C., Debontridder, L., Delcloo, A., Vandiepenbeeck, M., Dewitte, S., Cheymol, A., Joukoff, A., De Backer, H., Hus, J., Van Malderen, R., Vannitsem, S., Roulin, E., Mohymont, B., 2009. Oog voor het klimaat. KMI, Brussels, pp. 58.

Brunner, P., & Simmons, C. T. (2012). HydroGeoSphere: a fully integrated, physically based hydrological model. Groundwater50(2), 170-176.

Brutsaert, W. (2014). The daily mean zero‐flux plane during soil‐controlled evaporation: AG reen's function approach. Water Resources Research50(12), 9405-9413.

Cai, T., Zhang, C., Huang, Y., Huang, H., Yang, B., Zhao, Z., ... & Jia, Z. (2015). Effects of different straw mulch modes on soil water storage and water use efficiency of spring maize (Zea mays L.) in the Loess Plateau of China.

Chakraborty, D., Nagarajan, S., Aggarwal, P., Gupta, V. K., Tomar, R. K., Garg, R. N., ... & Kalra, N. (2008). Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural water management, 95(12), 1323- 1334.

Chen, S. Y., Zhang, X. Y., Pei, D., Sun, H. Y., & Chen, S. L. (2007). Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain. Annals of Applied Biology150(3), 261-268.

Chen, N., Schlaepfer, D. R., Zhang, L., Lauenroth, W. K., Mi, N., Ji, R., & Zhang, Y. (2023). Evapotranspiration Partitioning Using a Process-Based Model over a Rainfed Maize Farmland in Northeast China. Water, 15(5), 869.

Chouhan, S., Kumari, S., Kumar, R., & Chaudhary, P. L. (2023). Climate resilient water management for sustainable agriculture. Int. J. Environ. Clim. Change, 13(7), 411-26.

Coelho, E. F., Santos, D. L., de Lima, L. W. F., Castricini, A., Barros, D. L., Filgueiras, R., & da Cunha, F. F. (2022). Water regimes on soil covered with plastic film mulch and relationships with soil water availability, yield, and water use efficiency of papaya trees. Agricultural Water Management, 269, 107709.

Cornelis, W. M., Wu, H. J., Schiettecatte, W., Jin, K., Hartmann, R., Gabriels, D., & Cai, D. X. (2004). Conservation tillage practices on a dryland winter wheat field in northern China: a soil–water balance study using a trime tube probe. Acta Agrophysica4(1), 25-36.

Cornelis, W. M., Wu, H., Lu, J., Yao, Y., Wang, X., Hartmann, R., ... & Schiettecatte, W. (2002, May). The water balance as affected by conservation and conventional tillage practices on slope fields in the drylands of North China. In Proceedings of 12th International Soil Conservation Organization Conference. Beijing: Tsinghua University Press (pp. 638-643).

Datta, S., Taghvaeian, S., & Stivers, J. (2017). Understanding soil water content and thresholds for irrigation management. Oklahoma Cooperative Extension Service.

Deng, X. P., Shan, L., Zhang, H., & Turner, N. C. (2006). Improving agricultural water use efficiency in arid and semiarid areas of China. Agricultural water management80(1-3), 23-40.

Deng, X., Yang, Q., Zhang, D., & Dong, S. (2022). Application of Conservation Tillage in China: A Method to Improve Climate Resilience. Agronomy12(7), 1575. https://doi.org/10.3390/agronomy12071575

Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and drainage systems16, 33-45.

Du, C., Li, L., & Effah, Z. (2022). Effects of straw mulching and reduced tillage on crop production and environment: A review. Water, 14(16), 2471.

Duncan, M. J., Srinivasan, M. S., & McMillan, H. (2016). Field measurement of groundwater recharge under irrigation in Canterbury, New Zealand, using drainage lysimeters. Agricultural Water Management166, 17-32.

Dupont, L., & Van Eetvelde, V. (2013). Assessing the potential impacts of climate change on traditional landscapes and their heritage values on the local level: Case studies in the Dender basin in Flanders, Belgium. Land use policy35, 179-191.

El Chami, D., Daccache, A., & El Moujabber, M. (2020). How can sustainable agriculture increase climate resilience? A systematic review. Sustainability12(8), 3119.

Elsheikh, E. R. A. (2015). Water productivity of sunflower under different irrigation regimes on Gezira clay soil, Sudan. Wageningen University and Research.

Erenstein, O. (2003). Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops. Agriculture, Ecosystems & Environment, 100(1), 17-37.

Evett, S. R., & Steiner, J. L. (1995). Precision of neutron scattering and capacitance type soil water content gauges from field calibration. Soil Science Society of America Journal, 59(4), 961-968.

Evett, S., Laurent, J. P., Cepuder, P., & Hignett, C. (2002, August). Neutron scattering, capacitance, and TDR soil water content measurements compared on four continents. In 17th World Congress of Soil Science (pp. 14-21).

FAO, 2022. FAOSTAT Online Database. Food and Agriculture Organization of the United Nations. Available at http://www.fao.org/faostat.

Field, C. B. (Ed.). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press.

Galle, S., Brouwer, J., & Delhoume, J. P. (2001). Soil water balance. In Banded vegetation patterning in arid and semiarid environments: ecological processes and consequences for management (pp. 77-104). New York, NY: Springer New York.

Garrachón-Gómez, E., García, I., García-Rodríguez, A., García-Rodríguez, S., & Alonso-Tristán, C. (2024). Monthly intercepted photosynthetically active radiation estimation based on the Beer-Lambert’s law across the cereal crops of Castilla y León (Spain). Computers and Electronics in Agriculture, 216, 108523.

Gebreegziabher, T., Nyssen, J., Govaerts, B., Getnet, F., Behailu, M., Haile, M., & Deckers, J. (2009). Contour furrows for in situ soil and water conservation, Tigray, Northern Ethiopia. Soil and Tillage Research103(2), 257-264.

Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field crops research, 114(1), 23-34.

Głąb, T., & Kulig, B. (2008). Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil and Tillage Research99(2), 169-178.

Gonzalez-Sanchez, E. J., Basch, G., Roman-Vazquez, J., Moreno-Blanco, E., de Torres, M. A. R. R., Friedrich, T., & Kassam, A. (2022). Conservation agriculture in the agri-environmental European context.

Guimarães, R. M. L., Ball, B. C., & Tormena, C. A. (2011). Improvements in the visual evaluation of soil structure. Soil Use and Management, 27(3), 395-403.

Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985). Agricultural benefits for Senegal River basin. Journal of irrigation and Drainage Engineering111(2), 113-124.

Hay, J. (2007). Extreme weather and climate events, and farming risks. Managing weather and climate risks in agriculture, 1-19.

Heitman, J. L., Kool, D., & Carvalho, H. D. (2023). Soil management considerations for water resiliency in a changing climate. Agronomy Journal115(5), 2127-2139.

Herrmann, I., Pimstein, A., Karnieli, A., Cohen, Y., Alchanatis, V., & Bonfil, D. J. (2011). LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sensing of Environment, 115(8), 2141-2151.

Hillel, D. (2003). Introduction to environmental soil physics. Elsevier.

Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 543-555.

Hrisko, J. (2020). Capacitive soil moisture sensor theory, calibration, and testing. no. 2, 1-12.

Huang, Q., Akinremi, O. O., Sri Rajan, R., & Bullock, P. (2004). Laboratory and field evaluation of five soil water sensors. Canadian Journal of Soil Science84(4), 431-438.

Huang, C., Wu, Y., Ye, Y., Li, Y., Ma, J., Ma, J., ... & Zhang, H. (2022). Straw strip mulching increases winter wheat yield by optimizing water consumption characteristics in a semi-arid environment. Water, 14(12), 1894.

Intergovernmental Panel on Climate Change (2001), Climate change 2001: Im-pacts, adaptation and vulnerability, Contribution of working group II to thethird assessment report of the intergovernmental panel on climate change,Cambridge University Press.

IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001

Jia, J., Zhang, P., Yang, X., Zhen, Q., & Zhang, X. (2021). Comparison of the accuracy of two soil moisture sensors and calibration models for different soil types on the loess plateau. Soil Use and Management37(3), 584-594.

Jin, K., Cornelis, W. M., Schiettecatte, W., Lu, J., Yao, Y., Wu, H., ... & Hartmann, R. (2007). Effects of different management practices on the soil–water balance and crop yield for improved dryland farming in the Chinese Loess Plateau. Soil and Tillage Research96(1-2), 131-144.

Jordán, A., Zavala, L. M., & Gil, J. (2010). Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena81(1), 77-85.

Juan, H. A. N., JIA, Z. K., HAN, Q. F., & Zhang, J. (2013). Application of mulching materials of rainfall harvesting system for improving soil water and corn growth in northwest of China. Journal of Integrative Agriculture, 12(10), 1712-1721.

Kader, M. A., Senge, M., Mojid, M. A., & Ito, K. (2017). Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research, 168, 155-166.

Kanso, T., Gromaire, M. C., Ramier, D., Dubois, P., & Chebbo, G. (2020). An investigation of the accuracy of EC5 and 5TE capacitance sensors for soil moisture monitoring in urban soils-laboratory and field calibration. Sensors, 20(22), 6510.

Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for sustainable development, 32, 501-529. 

Kaur, J., & Bons, H. K. (2017). Mulching: A viable option to increase productivity of field and fruit crops. Journal of Applied and Natural Science, 9(2), 974-982.

Kertész, Á., & Madarász, B. (2014). Conservation agriculture in Europe. International Soil and Water Conservation Research, 2(1), 91-96.

KMI (2023). https://www.meteo.be/nl/klimaat/klimaat-van-belgie/klimatologisch-overzicht/2023/jaar

Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Advances in Water Resources29(7), 945-958.

Li, S. X., Wang, Z. H., Li, S. Q., Gao, Y. J., & Tian, X. H. (2013). Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agricultural water management, 116, 39-49.

Li, Q., Li, H., Zhang, L., Zhang, S., & Chen, Y. (2018). Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field crops research221, 50-60.

Liang, J., Bradford, S. A., Šimůnek, J., & Hartmann, A. (2017). Adapting HYDRUS‐1D to Simulate Overland Flow and Reactive Transport during Sheet Flow Deviations. Vadose Zone Journal16(6), 1-18.

Lin, L., & Chen, J. (2015). The effect of conservation practices in sloped croplands on soil hydraulic properties and root‐zone moisture dynamics. Hydrological processes, 29(9), 2079-2088.

Maesschalck, G., Verplancke, H., & De Boodt, M. (1985). Water use and water use efficiency under different management systems for upland crops. Soil Physics and Rice, 397-408.

Manabe, S., Wetherald, R.T., Milly, P.C.D., Delworth, T.L., Stouffer, R.J., 2004. Centuryscale change in water availability: CO2-quadrupling experiment. Climatic Change 64, 59–76.

McMillen, M. (2013). The effect of mulch type and thickness on the soil surface evaporation rate.

Meissner, R., Rupp, H., & Haselow, L. (2020). Use of lysimeters for monitoring soil water balance parameters and nutrient leaching. In Climate change and soil interactions (pp. 171-205). Elsevier.

Michler, J. D., Baylis, K., Arends-Kuenning, M., & Mazvimavi, K. (2019). Conservation agriculture and climate resilience. Journal of environmental economics and management, 93, 148-169.

Monteith, J. L. (1973). Principles of environmental physics Edward Arnold. London, 214p.

Montenegro, A. D. A., Abrantes, J. R. C. B., De Lima, J. L. M. P., Singh, V., & Santos, T. E. M. (2013). Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena, 109, 139-149.

Mulumba, L. N., & Lal, R. (2008). Mulching effects on selected soil physical properties. Soil and Tillage Research98(1), 106-111.

Ntegeka, V., & Willems, P. (2008). Trends and multidecadal oscillations in rainfall extremes, based on a more than 100‐year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resources Research44(7).

Nyawade, S. O., Karanja, N. N., Gachene, C. K., Gitari, H. I., Schulte-Geldermann, E., & Parker, M. L. (2019). Intercropping optimizes soil temperature and increases crop water productivity and radiation use efficiency of rainfed potato. American Journal of Potato Research, 96(5), 457-471.

Oicha, T., Cornelis, W. M., Verplancke, H., Nyssen, J., Govaerts, B., Behailu, M., ... & Deckers, J. (2010). Short-term effects of conservation agriculture on Vertisols under tef (Eragrostis tef (Zucc.) Trotter) in the northern Ethiopian highlands. Soil and Tillage Research106(2), 294-302.

Paredes, P., Wei, Z., Liu, Y., Xu, D., Xin, Y., Zhang, B., & Pereira, L. S. (2015). Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agricultural Water Management, 152, 57-71.

Patil Shirish, S., Kelkar Tushar, S., & Bhalerao Satish, A. (2013). Mulching: A soil and water conservation practice. Research Journal of Agriculture and Forestry Sciences. 

Pirastru, M., & Niedda, M. (2013). Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal58(4), 898-911.

Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, K. J., Lee, J., Lundy, M. E., ... & Van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517(7534), 365-368.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L., & Corbeels, M. (2017). Agro-ecological functions of crop residues under conservation agriculture. A review. Agronomy for sustainable development, 37, 1-17.

Ray, K., Arora, K., & Srivastav, A. K. (2019). Weather extremes and agriculture. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 493-497.

Ritchie, J. T. (1998). Soil water balance and plant water stress. Understanding options for agricultural production, 41-54.

Rockström, J., Kaumbutho, P., Mwalley, J., Nzabi, A. W., Temesgen, M., Mawenya, L., ... & Damgaard-Larsen, S. (2009). Conservation farming strategies in East and Southern Africa: Yields and rainwater productivity from on-farm action research. Soil and tillage research103(1), 23-32.

Salau, O. A., Opara-Nadi, O. A., & Swennen, R. (1992). Effects of mulching on soil properties, growth and yield of plantain on a tropical ultisol in southeastern Nigeria. Soil and Tillage Research, 23(1-2), 73-93.

Schmitt, J., Offermann, F., Söder, M., Frühauf, C., & Finger, R. (2022). Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy, 112, 102359.

Schwartz, R. C., Baumhardt, R. L., & Howell, T. A. (2008). Estimation of soil water balance components using an iterative procedure. Vadose Zone Journal7(1), 115-123.

Shen, J., Cui, Z., Miao, Y., Mi, G., Zhang, H., Fan, M., ... & Zhang, F. (2013). Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Global Food Security2(1), 1-8.

Sivakumar, M. (2021). Climate change, agriculture adaptation, and sustainability. Climate Resilience and Environmental Sustainability Approaches: Global Lessons and Local Challenges, 87-109.

Smika, D. E., & Unger, P. W. (1986). Effect of surface residues on soil water storage. In Advances in Soil Science: Volume 5 (pp. 111-138). Springer New York.

Souza, R., Jha, A., & Calabrese, S. (2022). Quantifying the hydrological impact of soil mulching across rainfall regimes and mulching layer thickness. Journal of Hydrology, 607, 127523.

Stagnari, F., Galieni, A., Speca, S., Cafiero, G., & Pisante, M. (2014). Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment. Field Crops Research167, 51-63.

Stalham, M. A., Allen, E. J., Rosenfeld, A. B., & Herry, F. X. (2007). Effects of soil compaction in potato (Solanum tuberosum) crops. The Journal of Agricultural Science, 145(4), 295-312.

Stanhill, G. (2019). Evapotranspiration.

Stephenson, T. D., Carvalho, H. D., Castillo, M. S., Crozier, C. R., Smyth, T. J., & Heitman, J. L. (2021). Water use and biomass yield of bioenergy crops in the North Carolina Piedmont. Agronomy Journal113(3), 2463-2473.

Stöckle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European journal of agronomy, 18(3-4), 289-307.

Surya, S. G., Yuvaraja, S., Varrla, E., Baghini, M. S., Palaparthy, V. S., & Salama, K. N. (2020). An in-field integrated capacitive sensor for rapid detection and quantification of soil moisture. Sensors and Actuators B: Chemical, 321, 128542.

Temesgen, M., Hoogmoed, W. B., Rockstrom, J., & Savenije, H. H. G. (2009). Conservation tillage implements and systems for smallholder farmers in semi-arid Ethiopia. Soil and Tillage Research104(1), 185-191.

Temesgen, M., Rockstrom, J., Savenije, H. H. G., Hoogmoed, W. B., & Alemu, D. (2008). Determinants of tillage frequency among smallholder farmers in two semi-arid areas in Ethiopia. Physics and chemistry of the earth, parts A/B/C33(1-2), 183-191.

Tubiello, F. N., & Rosenzweig, C. (2008). Developing climate change impact metrics for agriculture. Integrated Assessment Journal8(1).

Tun Oo, A., Boughton, D., & Aung, N. (2023). Climate Change Adaptation and the Agriculture–Food System in Myanmar. Climate, 11(6), 124.

Unger, P. W. (1986). Wheat residue management effects on soil water storage and corn production. Soil Science Society of America Journal50(3), 764-770.

Van, Laar H.H., Goudriaan, J., Van Keulen, H., 1997. SUCROS97: Simulation of crop growth for potential and water-limited production situations. Quantitative approaches in Systems Analysis no. 14. AB-DLO, C.T. de Wit Graduate School for Production Ecology, Wageningen, The Netherlands.

Vaz, C. M., Jones, S., Meding, M., & Tuller, M. (2013). Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone Journal12(2), 1-16.

Vijay Kumar, V. K., Singh, V. B., Priyanka Sohan, P. S., & Shalini Khajuria, S. K. (2014). Effect of various mulches on soil moisture content, soil properties, growth and yield of kinnow under rainfed condition.

Walter, I. A., Allen, R. G., Elliott, R., Jensen, M. E., Itenfisu, D., Mecham, B., ... & Martin, D. (2000). ASCE’s standardized reference evapotranspiration equation. Watershed management and operations management2000, 1-11.

Wang, B., Niu, J., Berndtsson, R., Zhang, L., Chen, X., Li, X., & Zhu, Z. (2021). Efficient organic mulch thickness for soil and water conservation in urban areas. Scientific Reports, 11(1), 6259. 

Wang, L. F., & Shangguan, Z. P. (2015). Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau. Scientific Reports, 5(1), 12225.

Wang, Z., Timlin, D., Kouznetsov, M., Fleisher, D., Li, S., Tully, K., & Reddy, V. (2020). Coupled model of surface runoff and surface-subsurface water movement. Advances in water resources137, 103499.

Welvaert, W., & Poppe, J. (1986). Influence of plastic mulching and disinfection on the fungal flora of soils in Belgium 1. EPPO Bulletin, 16(2), 311-316.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686.

W.M.O. (2024). World Meteorological Organization. https://wmo.int/news/media-centre/wmo-confirms-2023-smashes-global-temperature-record

Wuebbles, D. J., Fahey, D.W., Hibbard, K. A., DeAngelo, B., Doherty, S., Hayhoe, K., Horton, R., Kossin, J. P., Taylor, P. C., Waple, A. M., and Weaver, C. P. (2017). Executive summary. In: Climate Science Special Report: Fourth National Climate Assessment, 12-34. http:// doi: 10.7930/J0DJ5CTG.

Xiong, M., Sun, R., & Chen, L. (2018). Effects of soil conservation techniques on water erosion control: A global analysis. Science of the Total Environment645, 753-760.

Xu, J., Li, C., Liu, H., Zhou, P., Tao, Z., Wang, P., ... & Zhao, M. (2015). The effects of plastic film mulching on maize growth and water use in dry and rainy years in Northeast China. PloS one, 10(5), e0125781.

Yoder, R. E., Johnson, D. L., Wilkerson, J. B., & Yoder, D. C. (1998). Soilwater sensor performance. Applied Engineering in Agriculture, 14(2), 121-133.

Young, M. H., Wierenga, P. J., & Mancino, C. F. (1997). Monitoring near‐surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry. Soil Science Society of America Journal61(4), 1138-1146.

Yu, Y. Y., Turner, N. C., Gong, Y. H., Li, F. M., Fang, C., Ge, L. J., & Ye, J. S. (2018). Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. European Journal of Agronomy, 99, 138–147. https://doi.org/10.1016/j.eja.2018.07.005

Zhang, R. (1997). Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61(4), 1024-1030.

Zhang, S., Lövdahl, L., Grip, H., Jansson, P. E., & Tong, Y. (2007). Modelling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau. Soil and Tillage Research, 93(2), 283-298.

Zhang, S., Li, P., Yang, X., Wang, Z., & Chen, X. (2011). Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil and Tillage Research112(1), 92-97.

Zhang, S., Lövdahl, L., Grip, H., Tong, Y., Yang, X., & Wang, Q. (2009). Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil and Tillage Research102(1), 78-86.

Zhang, S., Yang, X., & Lovdahl, L. (2016). Soil Management Practice Effect on Water Balance of a Dryland Soil during Fallow Period on the Loess Plateau of China. Soil & Water Research11(1).

Zhang, X., Ren, T., Heitman, J., & Horton, R. (2020). Advances in heat‐pulse methods: Measuring near‐surface soil water content. Soil Science Society of America Journal, 84(5), 1376-1383.

Zhao, Y., Pang, H., Wang, J., Huo, L., & Li, Y. (2014a). Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Research161, 16-25.

Zhao, H., Wang, R. Y., Ma, B. L., Xiong, Y. C., Qiang, S. C., Wang, C. L., ... & Li, F. M. (2014b). Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Research, 161, 137-148.

Download scriptie (1.85 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2024
Promotor(en)
Prof. Dr. Wim Cornelis, Dr. Maarten De Boever, Prof. Dr. Lars Juhl Munkholm