Bij tropisch regenwoud denkt iedereen onmiddellijk aan het Amazonewoud, het grootste regenwoud ter wereld. Veel minder is geweten over het tweede grootste, gelegen in het Congobekken in Centraal-Afrika. Dit regenwoud zal nochtans cruciaal zijn in de strijd tegen klimaatverandering. In mijn onderzoek vond ik namelijk indicaties dat de boomsoorten in Centraal-Afrika meer CO2 opnemen uit de atmosfeer dan die in Zuid-Amerika.
Tropische regenwouden spelen een essentiële rol in het globale klimaatsysteem, waaronder de koolstof- en watercyclus. Ze verwijderen grote hoeveelheden CO2 uit de atmosfeer via fotosynthese, en dat meer dan eender welk ander ecosysteem op aarde. Ze zijn dus onmisbaar in de strijd tegen klimaatverandering. De toekomst van onze planeet is onlosmakelijk verbonden met het lot van tropische bossen.
Helaas zijn tropische wouden sterk bedreigd. Jaarlijks verdwijnen er grote hoeveelheden regenwoud door ontbossing. Deze ecosystemen zijn ook heel gevoelig aan de gevolgen van klimaatverandering. Hogere temperaturen en meer periodes van extreme droogte leiden tot sterfte van tropische bomen, waardoor deze bossen veel capaciteit verliezen om CO2 op te nemen.
Geen vrolijke manier om een artikel te beginnen, mijn excuses. Maar er is nog hoop! Als we in staat zijn tropische wouden snel te beschermen en herstellen, kunnen we de opwarming van de aarde inperken. Heel belangrijk daarbij is het verzamelen van gegevens over tropische wouden. We moeten namelijk kunnen weten hoeveel CO2 deze bossen opnemen. Een mogelijke manier om dit te onderzoeken is het meten van fotosynthese op verschillende boomsoorten. Uit deze metingen kunnen bepaalde fotosynthetische parameters afgeleid worden, die gebruikt worden in vegetatiemodellen. Deze parameters moeten accuraat zijn, want vegetatiemodellen helpen klimaatverandering te voorspellen en de impact ervan op vegetatie. Er zijn nog heel wat extra metingen nodig in tropische bossen, om meer accurate parameters te verkrijgen.
Deze modellen gebruiken echter vaak dezelfde parameters voor alle tropische regenwouden in de wereld, waaronder de twee grootste. Iedereen kent het Amazonewoud in Zuid-Amerika, maar veel minder is geweten over het tweede grootste regenwoud ter wereld. Dat ligt in het Congobekken in Centraal-Afrika. Het is een van de regio’s in de wereld met de minste wetenschappelijke metingen. Het is nochtans van groot belang voor onze planeet. Recent onderzoek door professor Wannes Hubau (UGent) heeft aangetoond dat de regenwouden in Afrika netto meer CO2 opnemen dan die in Zuid-Amerika. Dat is vooral te wijten aan de grotere boomsterfte in de Amazone. Er zijn nog grote verschillen tussen de twee grootste tropische bossen, bijvoorbeeld in klimaat en vegetatie. Zo is het gemiddeld koeler en droger in het Congobekken en heeft het Afrikaans regenwoud minder boomsoorten, die over het algemeen minder gevoelig zijn aan droogte. Gezien deze verschillen, is het dan wel een goed idee om dezelfde parameters te gebruiken in vegetatiemodellen voor beide regenwouden?
Dat is nu exact wat ik met mijn thesis heb proberen te onderzoeken. Ik heb de fotosynthetische capaciteit en een aantal bladparameters (zoals nutriënteninhoud) vergeleken tussen bossen in het Amazone- en het Congobekken.
In de Amazone zijn fotosynthese en bladparameters al meermaals gemeten. Ik heb bestaande gegevens gebruikt van de bossen in Paracou en Nouragues in Frans-Guyana uit de periode 2015- 2019. In het Congobekken daarentegen was fotosynthese nog nooit gemeten. Daarom ben ik in de zomer van 2023 afgereisd naar Yangambi, een dorp langs de Congo-rivier in de Democratische Republiek Congo (DRC), centraal in het Congobekken.
En wat een avontuur was me dat! Na een lange reis per vliegtuig, boot, auto en brommer kwam ik toe met drie begeleiders en drie medestudenten. Het was een onvergetelijke ervaring, waarin ik veel geleerd heb over het tropisch regenwoud en de lokale cultuur. Een thesis hoeft niet altijd saai te zijn!
Elke dag gingen we met de brommer door het regenwoud naar de CongoFlux onderzoekssite in Yangambi om metingen uit te voeren. Samen met de lokale botanist, papa Bonyoma, kozen we soorten uit zodanig dat verschillende planttypes vertegenwoordigd waren. Zo werden zowel lichtbehoevende als schaduwminnende boomsoorten gemeten, en zowel groenblijvende als bladverliezende boomsoorten. Ook lianen en soorten die dichter bij de bosbodem leven, werden betrokken. Van ieder gekozen individu knipten de lokale klimmers, Papi en Bernard, twee takken af. Op elke tak werd de fotosynthese gemeten van twee bladeren. Die bladeren werden weer meegenomen naar België om in het labo te analyseren. De stikstof- en fosforinhoud en de specifieke bladoppervlakte werden bepaald. Zo werd voor de allereerste keer fotosynthese gemeten in het Centraal-Afrikaanse regenwoud op 23 soorten.
Nadat alle gegevens verzameld waren, kon ik deze beginnen bestuderen. En wat daaruit kwam was heel interessant! Voor ieder planttype was de fotosynthetische capaciteit maar liefst 27% hoger in het bos in Congo dan in de twee bossen in de Amazone. Dit wil zeggen dat de Congolese bomen meer CO2 opnemen. Een sluitende verklaring voor dit boeiend verschil moet nog gevonden worden. Een mogelijke verklaring die in mijn onderzoek naar boven kwam, is dat er duidelijk meer stikstof en fosfor in de bladeren aanwezig was in het Congobekken dan in de Amazone. Bomen hebben deze nutriënten nodig voor fotosynthese, dus hoe meer ervan beschikbaar is, hoe meer CO2 ze kunnen opnemen. Onderzoek van professor Marijn Bauters (UGent) toonde aan dat grote hoeveelheden stikstof en fosfor overwaaien naar het Afrikaanse regenwoud, afkomstig van branden in de Afrikaanse savannes. Dit kan de hogere bladconcentraties in Congo mogelijks verklaren.
Het zou dus beter zijn om verschillende fotosynthetische parameters te gebruiken in vegetatiemodellen voor de tropische regenwouden in Afrika en Zuid-Amerika. Zo kunnen we klimaatverandering beter voorspellen en er dus ook beter op anticiperen. We hebben meer gegevens nodig (zeker in het Congobekken) om uit te maken of de Afrikaanse regenwouden in het algemeen een hogere fotosynthese vertonen. Deze eerste vergelijking tussen beide regenwouden leverde alvast interessante resultaten op! Misschien is niet het alom bekende Amazonewoud, maar wel het Congobekken de grootste long van onze planeet.
Bronnen: zie thesis
Aguilos, M., Stahl, C., Burban, B., Hérault, B., Courtois, E., Coste, S., Wagner, F., Ziegler, C., Takagi, K., & Bonal, D. (2018). Interannual and Seasonal Variations in Ecosystem Transpiration and Water Use Efficiency in a Tropical Rainforest. Forests, 10(1), 14. https://doi.org/10.3390/f10010014
Aguirre-Gutiérrez, J., Malhi, Y., Lewis, S. L., Fauset, S., Adu-Bredu, S., Affum-Baffoe, K., Baker, T. R., Gvozdevaite, A., Hubau, W., Moore, S., Peprah, T., Ziemińska, K., Phillips, O. L., & Oliveras, I. (2020). Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nature Communications, 11(1), 3346. https://doi.org/10.1038/s41467-020-16973-4
Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
Albert, J., Hoorn, C., Malhi, Y., Phillips, O., Encalada, A. C., ter Steege, H., Melack, J., Trumbore, S. E., Hecht, S., Varese, M., Peña-Claros, M., & Roca, F. A. (2021). The multiple viewpoints for the Amazon: geographic limits and meanings. Amazon Assesment Report.
Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O’Loughlin, F., Mahé, G., Dinga, B., Moukandi, G., & Spencer, R. G. M. (2016). Opportunities for hydrologic research in the Congo Basin. Reviews of Geophysics, 54(2), 378–409. https://doi.org/10.1002/2016RG000517
Anderson‐Teixeira, K. J., Wang, M. M. H., McGarvey, J. C., & LeBauer, D. S. (2016). Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change Biology, 22(5), 1690–1709. https://doi.org/10.1111/gcb.13226
Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230–234. https://doi.org/10.1126/science.aam5962
Bahar, N. H. A., Ishida, F. Y., Weerasinghe, L. K., Guerrieri, R., O’Sullivan, O. S., Bloomfield, K. J., Asner, G. P., Martin, R. E., Lloyd, J., Malhi, Y., Phillips, O. L., Meir, P., Salinas, N., Cosio, E. G., Domingues, T. F., Quesada, C. A., Sinca, F., Escudero Vega, A., Zuloaga Ccorimanya, P. P., … Atkin, O. K. (2017). Leaf‐level photosynthetic capacity in lowland Amazonian and high‐elevation Andean tropical moist forests of Peru. New Phytologist, 214(3), 1002–1018. https://doi.org/10.1111/nph.14079
Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J., Affum‐Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bradford, M., Brienen, R. J. W., Davies, S., Drescher, M., Higuchi, N., Hilbert, D. W., Hladik, A., Iida, Y., Salim, K. A., Kassim, A. R., King, D. A., … Lewis, S. L. (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21(12), 1179–1190. https://doi.org/10.1111/j.1466-8238.2012.00778.x
Bastin, J.-F., Barbier, N., Réjou-Méchain, M., Fayolle, A., Gourlet-Fleury, S., Maniatis, D., de Haulleville, T., Baya, F., Beeckman, H., Beina, D., Couteron, P., Chuyong, G., Dauby, G., Doucet, J.-L., Droissart, V., Dufrêne, M., Ewango, C., Gillet, J. F., Gonmadje, C. H., … Bogaert, J. (2015). Seeing Central African forests through their largest trees. Scientific Reports, 5(1), 13156. https://doi.org/10.1038/srep13156
Bauer, D. F. (1972). Constructing Confidence Sets Using Rank Statistics. Journal of the American Statistical Association, 67(339), 687–690. https://doi.org/10.1080/01621459.1972.10481279
Bauters, M., Drake, T. W., Verbeeck, H., Bodé, S., Hervé-Fernández, P., Zito, P., Podgorski, D. C., Boyemba, F., Makelele, I., Cizungu Ntaboba, L., Spencer, R. G. M., & Boeckx, P. (2018). High fire-derived nitrogen deposition on central African forests. Proceedings of the National Academy of Sciences, 115(3), 549–554. https://doi.org/10.1073/pnas.1714597115
Bauters, M., Drake, T. W., Wagner, S., Baumgartner, S., Makelele, I. A., Bodé, S., Verheyen, K., Verbeeck, H., Ewango, C., Cizungu, L., Van Oost, K., & Boeckx, P. (2021). Fire-derived phosphorus fertilization of African tropical forests. Nature Communications, 12(1), 5129. https://doi.org/10.1038/s41467-021-25428-3
Becker, P., & Castillo, A. (1990). Root Architecture of Shrubs and Saplings in the Understory of a Tropical Moist Forest in Lowland Panama. Biotropica, 22(3), 242. https://doi.org/10.2307/2388534
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., … Papale, D. (2010). Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 329(5993), 834–838. https://doi.org/10.1126/science.1184984
Bénédet, F., Doucet, J.-L., Fayolle, A., Gillet, J.-F., Gourlet-Fleury, S., & Vincke, D. (2019). CoForTraits, African plant traits information database. In CIRAD Dataverse, V1.
Biwolé, A. B., Morin-Rivat, J., Fayolle, A., Bitondo, D., Dedry, L., Dainou, K., Hardy, O. J., & Doucet, J.-L. (2015). New data on the recent history of the littoral forests of southern Cameroon: an insight into the role of historical human disturbances on the current forest composition. Plant Ecology and Evolution, 148(1), 19–28. https://doi.org/10.5091/plecevo.2015.1011
Bonal, D., Bosc, A., Ponton, S., Goret, J., Burban, B., Gross, P., Bonnefond, J., Elbers, J., Longdoz, B., Epron, D., Guehl, J., & Granier, A. (2008). Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Global Change Biology, 14(8), 1917–1933. https://doi.org/10.1111/j.1365-2486.2008.01610.x
Bonal, D., Sabatier, D., Montpied, P., Tremeaux, D., & Guehl, J. M. (2000). Interspecific variability of δ13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia, 124(3), 454–468. https://doi.org/10.1007/PL00008871
Bongers, F., Charles-Dominique, P., Forget, P.-M., & Théry, M. (Eds.). (2001). Nouragues: Dynamics and Plant-Animal Interactions in a Neotropical Rainforest (Vol. 80). Springer Netherlands. https://doi.org/10.1007/978-94-015-9821-7
Box, E. O. (1996). Plant functional types and climate at the global scale. Journal of Vegetation Science, 7(3), 309–320. https://doi.org/10.2307/3236274
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez Martinez, R., Alexiades, M., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragão, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., … Zagt, R. J. (2015). Long-term decline of the Amazon carbon sink. Nature, 519(7543), 344–348. https://doi.org/10.1038/nature14283
Brzeziecki, B., & Kienast, F. (1994). Classifying the life-history strategies of trees on the basis of the Grimian model. Forest Ecology and Management, 69(1–3), 167–187. https://doi.org/10.1016/0378-1127(94)90227-5
Bush, E. R., Jeffery, K., Bunnefeld, N., Tutin, C., Musgrave, R., Moussavou, G., Mihindou, V., Malhi, Y., Lehmann, D., Edzang Ndong, J., Makaga, L., & Abernethy, K. (2020). Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ, 8, e8732. https://doi.org/10.7717/peerj.8732
Caballé, G. (1993). Liana structure, function and selection: a comparative study of xylem cylinders of tropical rainforest species in Africa and America. Botanical Journal of the Linnean Society, 113(1), 41–60. https://doi.org/10.1111/j.1095-8339.1993.tb00328.x
Carswell, F. E., Meir, P., Wandelli, E. V., Bonates, L. C. M., Kruijt, B., Barbosa, E. M., Nobre, A. D., Grace, J., & Jarvis, P. G. (2000). Photosynthetic capacity in a central Amazonian rain forest. Tree Physiology, 20(3), 179–186. https://doi.org/10.1093/treephys/20.3.179
Chambers, J. M., & Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole.
Chazdon, R. L., Pearcy, R. W., Lee, D. W., & Fetcher, N. (1996). Photosynthetic Responses of Tropical Forest Plants to Contrasting Light Environments. In Tropical Forest Plant Ecophysiology (pp. 5–55). Springer US. https://doi.org/10.1007/978-1-4613-1163-8_1
Chen, X., Sun, J., Wang, M., Lyu, M., Niklas, K. J., Michaletz, S. T., Zhong, Q., & Cheng, D. (2020). The Leaf Economics Spectrum Constrains Phenotypic Plasticity Across a Light Gradient. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00735
Chen, Y., Cao, K., Schnitzer, S. A., Fan, Z., Zhang, J., & Bongers, F. (2015). Water‐use advantage for lianas over trees in tropical seasonal forests. New Phytologist, 205(1), 128–136. https://doi.org/10.1111/nph.13036
Claeys, F., Gourlet-Fleury, S., Picard, N., Ouédraogo, D.-Y., Tadesse, M. G., Hérault, B., Baya, F., Bénédet, F., Cornu, G., & Mortier, F. (2019). Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environmental Research Letters, 14(4), 044002. https://doi.org/10.1088/1748-9326/aafb81
Corlett, R. T. (2011). Impacts of warming on tropical lowland rainforests. Trends in Ecology & Evolution, 26(11), 606–613. https://doi.org/10.1016/j.tree.2011.06.015
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542(7639), 86–90. https://doi.org/10.1038/nature21048
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489
Domingues, T. F., Martinelli, L. A., & Ehleringer, J. R. (2014). Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecology & Diversity, 7(1–2), 189–203. https://doi.org/10.1080/17550874.2012.748849
Domingues, T. F., Meir, P., Feldpausch, T. R., Saiz, G., Veendendaal, E. M., Schrodt, F., Bird, M., Djagbletey, G., Hien, F., Compaore, H., Diallo, A., Grace, J., & Lloyd, J. (2010). Co‐limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell & Environment, 33(6), 959–980. https://doi.org/10.1111/j.1365-3040.2010.02119.x
Dunn, O. J. (1964). Multiple Comparisons Using Rank Sums. Technometrics, 6(3), 241–252. https://doi.org/10.1080/00401706.1964.10490181
Duursma, R. A. (2015). Plantecophys - An R Package for Analysing and Modelling Leaf Gas Exchange Data. PLOS ONE, 10(11), e0143346. https://doi.org/10.1371/journal.pone.0143346
Ek‐Rodríguez, I. L., Meave, J. A., Navarrete‐Segueda, A., González‐Arqueros, M. L., & Ibarra‐Manríquez, G. (2024). Environmental heterogeneity influences liana community differentiation across a Neotropical rainforest landscape. Ecology and Evolution, 14(3). https://doi.org/10.1002/ece3.11170
Ellsworth, D. S., Crous, K. Y., De Kauwe, M. G., Verryckt, L. T., Goll, D., Zaehle, S., Bloomfield, K. J., Ciais, P., Cernusak, L. A., Domingues, T. F., Dusenge, M. E., Garcia, S., Guerrieri, R., Ishida, F. Y., Janssens, I. A., Kenzo, T., Ichie, T., Medlyn, B. E., Meir, P., … Wright, I. J. (2022). Convergence in phosphorus constraints to photosynthesis in forests around the world. Nature Communications, 13(1), 5005. https://doi.org/10.1038/s41467-022-32545-0
Esquivel‐Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., Brienen, R. J. W., Feldpausch, T. R., Lloyd, J., Monteagudo‐Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B. S., Marimon-Junior, B. H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., … Phillips, O. L. (2019). Compositional response of Amazon forests to climate change. Global Change Biology, 25(1), 39–56. https://doi.org/10.1111/gcb.14413
Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology, 33(1), 317–345. https://doi.org/10.1146/annurev.pp.33.060182.001533
Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C 3 Species. Planta, 149(1), 78–90.
Fauset, S., Baker, T. R., Lewis, S. L., Feldpausch, T. R., Affum‐Baffoe, K., Foli, E. G., Hamer, K. C., & Swaine, M. D. (2012). Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters, 15(10), 1120–1129. https://doi.org/10.1111/j.1461-0248.2012.01834.x
Fauset, S., Johnson, M. O., Gloor, M., Baker, T. R., Monteagudo M., A., Brienen, R. J. W., Feldpausch, T. R., Lopez-Gonzalez, G., Malhi, Y., ter Steege, H., Pitman, N. C. A., Baraloto, C., Engel, J., Pétronelli, P., Andrade, A., Camargo, J. L. C., Laurance, S. G. W., Laurance, W. F., Chave, J., … Phillips, O. L. (2015). Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 6(1), 6857. https://doi.org/10.1038/ncomms7857
Fayolle, A., Picard, N., Doucet, J.-L., Swaine, M., Bayol, N., Bénédet, F., & Gourlet-Fleury, S. (2014). A new insight in the structure, composition and functioning of central African moist forests. Forest Ecology and Management, 329, 195–205. https://doi.org/10.1016/j.foreco.2014.06.014
Fowler, S., Roush, R., & Wise, J. (2013). Concepts of Biology. OpenStax.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., … Zheng, B. (2023). Global Carbon Budget 2023. Earth System Science Data, 15(12), 5301–5369. https://doi.org/10.5194/essd-15-5301-2023
Goll, D. S., Bauters, M., Zhang, H., Ciais, P., Balkanski, Y., Wang, R., & Verbeeck, H. (2023). Atmospheric phosphorus deposition amplifies carbon sinks in simulations of a tropical forest in Central Africa. New Phytologist, 237(6), 2054–2068. https://doi.org/10.1111/nph.18535
Gourlet-Fleury, S., Guehl, J.-M. J.-M., & Laroussinie, O. (2004). Ecology and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana . Elsevier, 350-p.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K., Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska, S. R., Berry, J., Joiner, J., & Lyapustin, A. I. (2015). Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 8(4), 284–289. https://doi.org/10.1038/ngeo2382
Gvozdevaite, A., Oliveras, I., Domingues, T. F., Peprah, T., Boakye, M., Afriyie, L., da Silva Peixoto, K., de Farias, J., Almeida de Oliveira, E., Almeida Farias, C. C., dos Santos Prestes, N. C. C., Neyret, M., Moore, S., Schwantes Marimon, B., Marimon Junior, B. H., Adu-Bredu, S., & Malhi, Y. (2018). Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiology, 38(12), 1912–1925. https://doi.org/10.1093/treephys/tpy117
Han, L., Xie, L. J., Dai, K. J., Yang, Q., & Cai, Z. Q. (2010). Contrasting leaf characteristics of trees and lianas in secondary and mature forests in southwestern China. Photosynthetica, 48(4), 559–566. https://doi.org/10.1007/s11099-010-0073-9
Hatangi, Y., Nshimba, H., Stoffelen, P., Dhed’a, B., Depecker, J., Lassois, L., & Vandelook, F. (2023). Leaf traits of understory woody species in the Congo Basin forests changed over a 60-year period. Plant Ecology and Evolution, 156(3), 339–351. https://doi.org/10.5091/plecevo.104593
Hawthorne, W. D. (1995). Ecological profiles of Ghanaian forest trees. Tropical forestry papers 29. University of Oxford, 253.
Hollander, M., Wolfe, D. A., & Chicken, E. (1973). Nonparametric Statistical Methods. John Wiley & Sons.
Hua, W., Zhou, L., Chen, H., Nicholson, S. E., Raghavendra, A., & Jiang, Y. (2016). Possible causes of the Central Equatorial African long-term drought. Environmental Research Letters, 11(12), 124002. https://doi.org/10.1088/1748-9326/11/12/124002
Hubau, W., De Mil, T., Van den Bulcke, J., Phillips, O. L., Angoboy Ilondea, B., Van Acker, J., Sullivan, M. J. P., Nsenga, L., Toirambe, B., Couralet, C., Banin, L. F., Begne, S. K., Baker, T. R., Bourland, N., Chezeaux, E., Clark, C. J., Collins, M., Comiskey, J. A., Cuni-Sanchez, A., … Beeckman, H. (2019). The persistence of carbon in the African forest understory. Nature Plants, 5(2), 133–140. https://doi.org/10.1038/s41477-018-0316-5
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E. N., Fauset, S., Mukinzi, J. M., Sheil, D., Sonké, B., Sullivan, M. J. P., Sunderland, T. C. H., Taedoumg, H., Thomas, S. C., White, L. J. T., Abernethy, K. A., Adu-Bredu, S., … Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579(7797), 80–87. https://doi.org/10.1038/s41586-020-2035-0
Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., Lomas, M., Walker, A. P., Jones, C. D., Booth, B. B. B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, S. L., Phillips, O. L., Atkin, O. K., Lloyd, J., Gloor, E., … Cox, P. M. (2013). Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 6(4), 268–273. https://doi.org/10.1038/ngeo1741
Kasongo Yakusu, E., Van Acker, J., Van de Vyver, H., Bourland, N., Mbifo Ndiapo, J., Besango Likwela, T., Lokonda Wa Kipifo, M., Mbuya Kankolongo, A., Van den Bulcke, J., Beeckman, H., Bauters, M., Boeckx, P., Verbeeck, H., Jacobsen, K., Demarée, G., Gellens-Meulenberghs, F., & Hubau, W. (2023). Ground-based climate data show evidence of warming and intensification of the seasonal rainfall cycle during the 1960–2020 period in Yangambi, central Congo Basin. Climatic Change, 176(10), 142. https://doi.org/10.1007/s10584-023-03606-0
Kattge, J., Knorr, W., Raddatz, T., & Wirth, C. (2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global‐scale terrestrial biosphere models. Global Change Biology, 15(4), 976–991. https://doi.org/10.1111/j.1365-2486.2008.01744.x
Keren, N., & Krieger‐Liszkay, A. (2011). Photoinhibition: molecular mechanisms and physiological significance. Physiologia Plantarum, 142(1), 1–5. https://doi.org/10.1111/j.1399-3054.2011.01467.x
Kim, T. K. (2015). T test as a parametric statistic. Korean Journal of Anesthesiology, 68(6), 540. https://doi.org/10.4097/kjae.2015.68.6.540
Kitajima, K. (1994). Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98(3–4), 419–428. https://doi.org/10.1007/BF00324232
Krinner, G., Viovy, N., de Noblet‐Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., & Prentice, I. C. (2005). A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system. Global Biogeochemical Cycles, 19(1). https://doi.org/10.1029/2003GB002199
Kurek, M. R., Stubbins, A., Drake, T. W., Dittmar, T., M. S. Moura, J., Holmes, R. M., Osterholz, H., Six, J., Wabakanghanzi, J. N., Dinga, B., Mitsuya, M., & Spencer, R. G. M. (2022). Organic Molecular Signatures of the Congo River and Comparison to the Amazon. Global Biogeochemical Cycles, 36(6). https://doi.org/10.1029/2022GB007301
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13). https://doi.org/10.18637/jss.v082.i13
Lafrankie, J. V., Ashton, P. S., Chuyong, G. B., Co, L., Condit, R., Davies, S. J., Foster, R., Hubell, S. P., Kenfack, D., Lagunzad, D., Losos, E. C., Nor, N. S. MD., Tan, S., Thomas, D. W., Valencia, R., & Villa, G. (2006). Contrasting Structure And Composition Of The Understory In Species-rich Tropical Rain Forests. Ecology, 87(9), 2298–2305.
Lambers, H., & Oliveira, R. S. (2019). Plant Physiological Ecology (3rd ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-29639-1
Legner, N., Fleck, S., & Leuschner, C. (2013). Low light acclimation in five temperate broad-leaved tree species of different successional status: the significance of a shade canopy. Annals of Forest Science, 70(6), 557–570. https://doi.org/10.1007/s13595-013-0298-4
Legner, N., Fleck, S., & Leuschner, C. (2014). Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance. Trees, 28(1), 263–280. https://doi.org/10.1007/s00468-013-0947-0
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., & Nepstad, D. (2011). The 2010 Amazon Drought. Science, 331(6017), 554–554. https://doi.org/10.1126/science.1200807
Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349(6250), 827–832. https://doi.org/10.1126/science.aaa9932
Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., Phillips, O. L., Reitsma, J. M., White, L., Comiskey, J. A., K, M.-N. D., Ewango, C. E. N., Feldpausch, T. R., Hamilton, A. C., Gloor, M., Hart, T., Hladik, A., Lloyd, J., Lovett, J. C., … Wöll, H. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003–1006. https://doi.org/10.1038/nature07771
Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., Phillips, O. L., Affum-Baffoe, K., Baker, T. R., Banin, L., Bastin, J.-F., Beeckman, H., Boeckx, P., Bogaert, J., De Cannière, C., Chezeaux, E., Clark, C. J., Collins, M., Djagbletey, G., … Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120295. https://doi.org/10.1098/rstb.2012.0295
Lichtenthaler, H. K., Buschmann, C., Döll, M., Fietz, H.-J., Bach, T., Kozel, U., Meier, D., & Rahmsdorf, U. (1981). Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research, 2(2), 115–141. https://doi.org/10.1007/BF00028752
Likoko, B., Mbifo, N., Besango, L., Totiwe, B., Badjoko, D., Likoko, A., Botomo, A., Litemandia, Y., Posho, N., Alongo, L., & Boyemba, B. (2019). Climate Change for Yangambi Forest Region, DR Congo . Journal of Aquatic Sciences and Oceanography, 1(2), 1–10.
Lloyd, J., Patiño, S., Paiva, R. Q., Nardoto, G. B., Quesada, C. A., Santos, A. J. B., Baker, T. R., Brand, W. A., Hilke, I., Gielmann, H., Raessler, M., Luizão, F. J., Martinelli, L. A., & Mercado, L. M. (2010). Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences, 7(6), 1833–1859. https://doi.org/10.5194/bg-7-1833-2010
Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54(392), 2393–2401. https://doi.org/10.1093/jxb/erg262
López-Ballesteros, A., Beck, J., Bombelli, A., Grieco, E., Lorencová, E. K., Merbold, L., Brümmer, C., Hugo, W., Scholes, R., Vačkář, D., Vermeulen, A., Acosta, M., Butterbach-Bahl, K., Helmschrot, J., Kim, D.-G., Jones, M., Jorch, V., Pavelka, M., Skjelvan, I., & Saunders, M. (2018). Towards a feasible and representative pan-African research infrastructure network for GHG observations. Environmental Research Letters, 13(8), 085003. https://doi.org/10.1088/1748-9326/aad66c
Luambua, N. K., Hubau, W., Salako, K. V., Amani, C., Bonyoma, B., Musepena, D., Rousseau, M., Bourland, N., Nshimba, H. S. M., Ewango, C., Beeckman, H., & Hardy, O. J. (2021). Spatial patterns of light‐demanding tree species in the Yangambi rainforest (Democratic Republic of Congo). Ecology and Evolution, 11(24), 18691–18707. https://doi.org/10.1002/ece3.8443
Maeda, E. E., Ma, X., Wagner, F. H., Kim, H., Oki, T., Eamus, D., & Huete, A. (2017). Evapotranspiration seasonality across the Amazon Basin. Earth System Dynamics, 8(2), 439–454. https://doi.org/10.5194/esd-8-439-2017
Malhi, Y. (2012). The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology, 100(1), 65–75. https://doi.org/10.1111/j.1365-2745.2011.01916.x
Malhi, Y., Adu-Bredu, S., Asare, R. A., Lewis, S. L., & Mayaux, P. (2013). African rainforests: past, present and future. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120312. https://doi.org/10.1098/rstb.2012.0312
Mao, Q., Lu, X., Mo, H., Gundersen, P., & Mo, J. (2018). Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of The Total Environment, 610–611, 555–562. https://doi.org/10.1016/j.scitotenv.2017.08.087
Mapenzi, N., Katayi, A. L., Bauters, M., Masimane, J., Schure, J., Kweyu, R., & Nabahungu, N. L. (2024). Improved crop productivity and soil properties under varying planting densities of Pentaclethra macrophylla Benth. and Acacia auriculiformis A. Cunn. in Congo Basin. Agroforestry Systems, 98(2), 295–307. https://doi.org/10.1007/s10457-023-00908-1
Marengo, J. A., Souza, C. M., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., Alves, L. M., & Soares, W. R. (2018). Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00228
Niinemets, Ü. (2023). Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. Photosynthesis Research, 158(2), 131–149. https://doi.org/10.1007/s11120-023-01043-9
Ouédraogo, D., Fayolle, A., Gourlet‐Fleury, S., Mortier, F., Freycon, V., Fauvet, N., Rabaud, S., Cornu, G., Bénédet, F., Gillet, J., Oslisly, R., Doucet, J., Lejeune, P., & Favier, C. (2016). The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. Journal of Ecology, 104(4), 924–935. https://doi.org/10.1111/1365-2745.12589
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609
Pausenberger, N. (2016). Photosynthetic characteristics of lianas versus trees in tropical rainforest in French Guiana. Universiteit Gent.
Peters, T. (2014). Climatic Types of Water Balances in the Tropics. In Tropical Forestry Handbook (pp. 1–6). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41554-8_2-1
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., … Torres-Lezama, A. (2009). Drought Sensitivity of the Amazon Rainforest. Science, 323(5919), 1344–1347. https://doi.org/10.1126/science.1164033
Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S., & Grace, J. (1998). Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots. Science, 282(5388), 439–442. https://doi.org/10.1126/science.282.5388.439
Phillips, O. L., Vásquez Martínez, R., Arroyo, L., Baker, T. R., Killeen, T., Lewis, S. L., Malhi, Y., Monteagudo Mendoza, A., Neill, D., Núñez Vargas, P., Alexiades, M., Cerón, C., Di Fiore, A., Erwin, T., Jardim, A., Palacios, W., Saldias, M., & Vinceti, B. (2002). Increasing dominance of large lianas in Amazonian forests. Nature, 418(6899), 770–774. https://doi.org/10.1038/nature00926
Pietragalla, J., & Pask, A. (2012). Stomatal conductance. In A. Pask, J. Pietragalla, D. Mullan, & M. Reynolds (Eds.), Physiological Breeding II: A Field Guide to Wheat Phenotyping (pp. 15–17). CIMMYT.
Potter, C. S., & Klooster, S. A. (1999). Dynamic global vegetation modelling for prediction of plant functional types and biogenic trace gas fluxes. Global Ecology and Biogeography, 8(6), 473–488. https://doi.org/10.1046/j.1365-2699.1999.00152.x
Pringle, E. G., Adams, R. I., Broadbent, E., Busby, P. E., Donatti, C. I., Kurten, E. L., Renton, K., & Dirzo, R. (2011). Distinct Leaf-trait Syndromes of Evergreen and Deciduous Trees in a Seasonally Dry Tropical Forest. Biotropica, 43(3), 299–308. https://doi.org/10.1111/j.1744-7429.2010.00697.x
Prospero, J. M., Barkley, A. E., Gaston, C. J., Gatineau, A., Campos y Sansano, A., & Panechou, K. (2020). Characterizing and Quantifying African Dust Transport and Deposition to South America: Implications for the Phosphorus Budget in the Amazon Basin. Global Biogeochemical Cycles, 34(9). https://doi.org/10.1029/2020GB006536
Raaimakers, D., Boot, R. G. A., Dijkstra, P., & Pot, S. (1995). Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees. Oecologia, 102(1), 120–125. https://doi.org/10.1007/BF00333319
Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2013). Raven Biology of Plants (8th ed.). W. H. Freeman and Company.
Reich, P. B. (2014). The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-2745.12211
Reich, P. B., Ellsworth, D. S., & Uhl, C. (1995). Leaf Carbon and Nutrient Assimilation and Conservation in Species of Differing Successional Status in an Oligotrophic Amazonian Forest. Functional Ecology, 9(1), 65. https://doi.org/10.2307/2390092
Reich, P. B., Oleksyn, J., & Wright, I. J. (2009). Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160(2), 207–212. https://doi.org/10.1007/s00442-009-1291-3
Reich, P. B., Walters, M. B., Ellsworth, D. S., & Uhl, C. (1994). Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia, 97(1), 62–72. https://doi.org/10.1007/BF00317909
Rijkers, T., Pons, T. L., & Bongers, F. (2000). The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Functional Ecology, 14(1), 77–86. https://doi.org/10.1046/j.1365-2435.2000.00395.x
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze, M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., Niinemets, Ü., Prentice, I. C., Serbin, S. P., Sitch, S., Way, D. A., & Zaehle, S. (2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 213(1), 22–42. https://doi.org/10.1111/nph.14283
Rowland, L., Lobo‐do‐Vale, R. L., Christoffersen, B. O., Melém, E. A., Kruijt, B., Vasconcelos, S. S., Domingues, T., Binks, O. J., Oliveira, A. A. R., Metcalfe, D., da Costa, A. C. L., Mencuccini, M., & Meir, P. (2015). After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration. Global Change Biology, 21(12), 4662–4672. https://doi.org/10.1111/gcb.13035
Santiago, L. S., & Mulkey, S. S. (2003). A Test of Gas Exchange Measurements on Excised Canopy Branches of Ten Tropical Tree Species. Photosynthetica, 41(3), 343–347. https://doi.org/10.1023/B:PHOT.0000015457.92479.eb
Santiago, L. S., & Wright, S. J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21(1), 19–27. https://doi.org/10.1111/j.1365-2435.2006.01218.x
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Schnitzer, S. A., & Bongers, F. (2011). Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters, 14(4), 397–406. https://doi.org/10.1111/j.1461-0248.2011.01590.x
Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., & Scherer-Lorenzen, M. (2019). Carbon Relations. In Plant Ecology (pp. 401–453). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_12
Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D., & Singsaas, E. L. (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment, 30(9), 1035–1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x
Sibret, T., Bauters, M., Bulonza, E., Lefevre, L., Cerutti, P. O., Lokonda, M., Mbifo, J., Michel, B., Verbeeck, H., & Boeckx, P. (2022). CongoFlux – The First Eddy Covariance Flux Tower in the Congo Basin. Frontiers in Soil Science, 2. https://doi.org/10.3389/fsoil.2022.883236
Sich, S., Huntingford, C., Gedney N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C., & Woodward, F. I. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9), 2015–2039. https://doi.org/10.1111/j.1365-2486.2008.01626.x
Silva, J. O., Espírito-Santo, M. M., & Morais, H. C. (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic and Applied Ecology, 16(3), 210–219. https://doi.org/10.1016/j.baae.2015.02.005
Slik, J. W. F., Arroyo-Rodríguez, V., Aiba, S.-I., Alvarez-Loayza, P., Alves, L. F., Ashton, P., Balvanera, P., Bastian, M. L., Bellingham, P. J., van den Berg, E., Bernacci, L., da Conceição Bispo, P., Blanc, L., Böhning-Gaese, K., Boeckx, P., Bongers, F., Boyle, B., Bradford, M., Brearley, F. Q., … Venticinque, E. M. (2015). An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences, 112(24), 7472–7477. https://doi.org/10.1073/pnas.1423147112
Slot, M., & Winter, K. (2017). In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. New Phytologist, 214(3), 1103–1117. https://doi.org/10.1111/nph.14469
Sobrado, M. A. (1991). Cost-Benefit Relationships in Deciduous and Evergreen Leaves of Tropical Dry Forest Species. Functional Ecology, 5(5), 608. https://doi.org/10.2307/2389479
Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A., & Gimeno, L. (2017). A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth System Dynamics, 8(3), 653–675. https://doi.org/10.5194/esd-8-653-2017
Sullivan, M. J. P., Lewis, S. L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A. C., Ewango, C. E. N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R. V., Baker, T. R., Brienen, R. J. W., Feldpausch, T. R., Galbraith, D., Gloor, M., Malhi, Y., … Phillips, O. L. (2020). Long-term thermal sensitivity of Earth’s tropical forests. Science, 368(6493), 869–874. https://doi.org/10.1126/science.aaw7578
Sullivan, M. J. P., Talbot, J., Lewis, S. L., Phillips, O. L., Qie, L., Begne, S. K., Chave, J., Cuni-Sanchez, A., Hubau, W., Lopez-Gonzalez, G., Miles, L., Monteagudo-Mendoza, A., Sonké, B., Sunderland, T., ter Steege, H., White, L. J. T., Affum-Baffoe, K., Aiba, S., de Almeida, E. C., … Zemagho, L. (2017). Diversity and carbon storage across the tropical forest biome. Scientific Reports, 7(1), 39102. https://doi.org/10.1038/srep39102
Swaine, M. D., & Whitmore, T. C. (1988). On the definition of ecological species groups in tropical rain forests. Vegetation, 75(1–2), 81–86. https://doi.org/10.1007/BF00044629
Takashima, T., Hikosaka, K., & Hirose, T. (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment, 27(8), 1047–1054. https://doi.org/10.1111/j.1365-3040.2004.01209.x
Tang, Y., Kitching, R. L., & Cao, M. (2012). Lianas as structural parasites: A re-evaluation. Chinese Science Bulletin, 57(4), 307–312. https://doi.org/10.1007/s11434-011-4690-x
ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J.-F., Monteagudo, A., Núñez Vargas, P., Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., … Silman, M. R. (2013). Hyperdominance in the Amazonian Tree Flora. Science, 342(6156). https://doi.org/10.1126/science.1243092
Tshimanga, R. M., Tshitenge, J. M., Kabuya, P., Alsdorf, D., Mahe, G., Kibukusa, G., & Lukanda, V. (2016). A Regional Perceptive of Flood Forecasting and Disaster Management Systems for the Congo River Basin. In Flood Forecasting (pp. 87–124). Elsevier. https://doi.org/10.1016/B978-0-12-801884-2.00004-9
Verbeeck, H., Betehndoh, E., Maes, W., Hubau, W., Kearsley, E., Buggenhout, L., Hufkens, K., Huygens, D., Van Acker, J., Beeckman, H., Mweru, J., Boeckx, P., & Steppe, K. (2014). Functional Leaf Trait Diversity of 10 Tree Species in Congolese Secondary Tropical Forest. Journal of Tropical Forest Science, 26(3), 409–419.
Verbeeck, H., De Deurwaerder, H., Brugnera, M. di P. e., Krshna Moorthy Paravathi, S., Pausenberger, N., Roels, J., & Kearsley, E. (2016, April). Introducing tropical lianas in a vegetation model. EGU General Assembly.
Verryckt, L. T., Van Langenhove, L., Ciais, P., Courtois, E. A., Vicca, S., Peñuelas, J., Stahl, C., Coste, S., Ellsworth, D. S., Posada, J. M., Obersteiner, M., Chave, J., & Janssens, I. A. (2020). Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest. Biotropica, 52(4), 608–615. https://doi.org/10.1111/btp.12774
Verryckt, L. T., Vicca, S., Van Langenhove, L., Stahl, C., Asensio, D., Urbina, I., Ogaya, R., Llusià, J., Grau, O., Peguero, G., Gargallo-Garriga, A., Courtois, E. A., Margalef, O., Portillo-Estrada, M., Ciais, P., Obersteiner, M., Fuchslueger, L., Lugli, L. F., Fernandez-Garberí, P.-R., … Janssens, I. A. (2022). Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth System Science Data, 14(1), 5–18. https://doi.org/10.5194/essd-14-5-2022
Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A., Domingues, T. F., Scales, J. C., Wohlfahrt, G., Wullschleger, S. D., & Woodward, F. I. (2014). The relationship of leaf photosynthetic traits – V cmax and J max – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta‐analysis and modeling study. Ecology and Evolution, 4(16), 3218–3235. https://doi.org/10.1002/ece3.1173
Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I. A., Wu, M., Berry, J. A., Campbell, E., Fernández-Martínez, M., Alkama, R., Sitch, S., Friedlingstein, P., Smith, W. K., Yuan, W., He, W., Lombardozzi, D., … Peñuelas, J. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370(6522), 1295–1300. https://doi.org/10.1126/science.abb7772
Warton, D. I., Wright, I. J., Falster, D. S., & Westoby, M. (2006). Bivariate line‐fitting methods for allometry. Biological Reviews, 81(2), 259–291. https://doi.org/10.1017/S1464793106007007
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821–827. https://doi.org/10.1038/nature02403
Yang, Y., Zhu, Q., Peng, C., Wang, H., & Chen, H. (2015). From plant functional types to plant functional traits. Progress in Physical Geography: Earth and Environment, 39(4), 514–535. https://doi.org/10.1177/0309133315582018
Zhang, G., Zhang, L., & Wen, D. (2018). Photosynthesis of subtropical forest species from different successional status in relation to foliar nutrients and phosphorus fractions. Scientific Reports, 8(1), 10455. https://doi.org/10.1038/s41598-018-28800-4
Zhu, F., Lu, X., & Mo, J. (2014). Phosphorus limitation on photosynthesis of two dominant understory species in a lowland tropical forest. Journal of Plant Ecology, 7(6), 526–534. https://doi.org/10.1093/jpe/rtu001
Zhu, S.-D., & Cao, K.-F. (2009). Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology, 204(2), 295–304. https://doi.org/10.1007/s11258-009-9592-5