Stel je voor dat medische instellingen wereldwijd hun kennis en gegevens bundelen om jouw hersengezondheid nauwkeurig te voorspellen, zonder het risico dat je persoonlijke gegevens in de verkeerde handen geraakt. Klinkt te mooi om waar te zijn? Niet met de opkomst van federated learning, een veelbelovende AI-powered technologie die in mijn onderzoek centraal stond. We gebruikten federated learning om een voorspellingsmodel te ontwikkelen dat nauwkeurig de hersenleeftijd van een persoon kan inschatten, ook wel gekend als brain age.
Het concept van brain age draait om het schatten van de biologische leeftijd van de hersenen aan de hand van MRI-scans. Deze schatting biedt waardevolle inzichten, vooral wanneer de hersenleeftijd afwijkt van de werkelijke leeftijd. Een hoger dan verwachte hersenleeftijd kan wijzen op vroege tekenen van neurodegeneratieve ziekten zoals Alzheimer, terwijl een jonger brein kan duiden op een gezondere cognitieve staat. Het accuraat kunnen voorspellen van hersenleeftijd biedt de mogelijkheid voor vroegtijdige interventies, waardoor we beter in staat zijn om neurodegeneratieve aandoeningen te identificeren en te behandelen.
Een van de grootste uitdagingen bij het ontwikkelen van voorspellingsmodellen is het gebrek aan voldoende data. Het voorspellen van eigenschappen op complexe structuren, zoals de hersenleeftijd, vereist een enorme hoeveelheid gegevens, en dit probleem beperkt de vooruitgang in de medische sector. Een belangrijke oorzaak is de strikte privacywetgeving: medische instellingen mogen geen patiëntinformatie delen zonder expliciete toestemming. Door deze strikte regels blijven veel waardevolle patiëntgegevens ongebruikt, wat de ontwikkeling van kunstmatige intelligentie (AI) in de gezondheidszorg belemmert. We hebben een alternatieve leermethode nodig die de privacy van gegevens beschermt en tegelijkertijd deze gegevens benut om betere voorspellingsmodellen te ontwikkelen.
Stel je voor dat verschillende ziekenhuizen samen een slim medisch model willen ontwikkelen om ziektes beter te voorspellen. In plaats van hun gegevens naar één centrale plek te sturen, houdt elk ziekenhuis zijn eigen data veilig en privé. Elk ziekenhuis maakt een lokaal voorspellingsmodel op basis van zijn eigen patientgegevens en stuurt het lokaal model, zonder patientgegevens, naar een centrale server. Deze server combineert alle lokale modellen om een algemeen, verbeterd model te creëren, dat daarna weer naar elk ziekenhuis wordt teruggestuurd. Dit proces kan meerdere keren worden herhaald, waardoor het model steeds slimmer wordt zonder dat de oorspronkelijke patientgegevens ooit worden gedeeld tussen de instellingen. Op deze manier bundelen de ziekenhuizen hun kennis om een beter voorspellingsmodel te ontwikkelen, terwijl de privacy van de patiëntengegevens volledig gewaarborgd blijft door enkel de voorspellingsmodellen uit te wisselen, niet de gevoelige patientendata. Dit is het idee achter federated learning!
Om te testen hoe goed federated learning werkt bij het voorspellen van hersenleeftijd, heb ik een experiment uitgevoerd. Het doel was om te zien hoe de leeftijdsverdeling van patiënten invloed heeft op de nauwkeurigheid van het voorspellingsmodel. Voor het experiment gebruikten we gegevens van 9573 gezonde mensen. We deden alsof deze mensen verdeeld waren over zes verschillende ziekenhuizen. Elk "ziekenhuis" kreeg een eigen set gegevens, zodat we de situatie konden nabootsen waarin zes medische instellingen samenwerken zonder data te delen.
We probeerden drie verschillende scenario's:
Om te vergelijken, hebben we ook een traditioneel machine learning model gemaakt, waarbij alle gegevens op één plek opgeslagen zijn. Dit model zou theoretisch de beste prestaties moeten leveren omdat het alle data direct kan gebruiken. De resultaten waren bemoedigend: zolang elk ziekenhuis ten minste een basisrepresentatie van alle leeftijden had, deed het federated learning model het bijna even goed als het traditionele model. Dit betekent dat we met deze technologie vergelijkbare nauwkeurigheid kunnen bereiken zonder dat ziekenhuizen hun gevoelige patiëntgegevens hoeven te delen. Kortom, zolang ziekenhuizen een redelijke mix van leeftijden hebben, is federated learning een zeer haalbare en veilige optie voor het ontwikkelen van voorspellingsmodellen voor hersenleeftijd.
Uit dit onderzoek blijkt dat federated learning een grote toekomst heeft, vooral in sectoren waar dataveiligheid belangrijk is, zoals de medische wereld. Hoewel het nog een relatief nieuwe techniek is, met haar eigen uitdagingen zoals hoge rekeneisen, communicatieproblemen, algemene beschikbaarheid van gegevens, en zorgen over de veiligheid van de trainingsdata, bieden de mogelijkheden die het opent een spannende blik op de toekomst. Federated learning maakt het mogelijk om kunstmatige intelligentie te gebruiken zonder dat ziekenhuizen hun gevoelige patiëntgegevens hoeven te delen. Hierdoor kunnen artsen straks wellicht net zo profiteren van AI als mensen in andere beroepen dat al doen.
Stel je voor: artsen die hun krachten bundelen en een super slim AI-model creëren dat hen helpt om ziektes sneller en beter te herkennen. Dit kan zonder ooit gevoelige patiëntendata te delen met anderen. Door mijn onderzoek hoop ik dat meer mensen het potentieel van federated learning gaan inzien en overwegen om het breder in te zetten. In een wereld waar dataveiligheid steeds belangrijker wordt, kan deze techniek een echte doorbraak betekenen.
LECUN, Yann, BENGIO, Yoshua y HINTON, Geoffrey. Deep learning. 2015, 436-444. (521). https://doi.org/10.1038/nature14539. ISSN: 1476-4687. LI, Guangjun, WANG, Xianzhi y LI, Minxi. A Review of Recent Trends and Industry Prospects for Artificial Intelligence Technologies. 2021.p. 1-7. CHONG, Eunsuk, CHULWOO HAN, y C. PARK, Frank. Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. 2017, 187-205. (83). https://www.sciencedirect.com/science/article/pii/S0957417417302750. ISSN: 0957-4174. SCHULTZ, M. G., BETANCOURT, C., GONG, B., KLEINERT, F., LANGGUTH, M., LEUFEN, L. H., MOZAFFARI, A. y STADTLER, S.. Can deep learning beat numerical weather prediction?. The Royal Society, 2021, 20200097. (379). http://dx.doi.org/10.1098/rsta.2020.0097. ISSN: 1471-2962. LI, He, OTA, Kaoru y DONG, Mianxiong. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. 2018, 96-101. (32). GENTNER, Tobias, TIMON NEITZEL, , JACOB SCHULZE, , FELIX GERSCHNER, y ANDREAS THEISSLER, . Data Lakes in Healthcare: Applications and Benefits from the Perspective of Data Sources and Players. 2023, 1302-1311. (225). 27th International Conference on Knowledge Based and Intelligent Information and Engineering Sytems (KES 2023). https://www.sciencedirect.com/science/article/pii/S1877050923012760. ISSN: 1877-0509. VOIGT, Paul y VON DEM BUSSCHE, Axel. The eu general data protection regulation (gdpr). Springer, 2017, 10–5555. (10). GOLDMAN, Eric. An introduction to the california consumer privacy act (ccpa). 2020, BRAUNECK, Alissa, SCHMALHORST, Louisa, KAZEMI MAJDABADI, Mohammad Mahdi, BAKHTIARI, Mohammad, VÖLKER, Uwe, BAUMBACH, Jan, BAUMBACH, Linda y BUCHHOLTZ, Gabriele. Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review. 2023, e41588. (25). https://www.jmir.org/2023/1/e41588. ISSN: 1438-8871. BRENDAN MCMAHAN, H., EIDER MOORE, , DANIEL RAMAGE, , SETH HAMPSON, y . Communication-Efficient Learning of Deep Networks from Decentralized Data. 2016, KONEČNÝ, Jakub, BRENDAN MCMAHAN, H., DANIEL RAMAGE, y PETER RICHTÁRIK, . Federated Optimization: Distributed Machine Learning for On-Device Intelligence. 2016, KONEČNÝ, Jakub, BRENDAN MCMAHAN, H., X. YU, Felix, PETER RICHTÁRIK, , AN, , THEERTHA SURESH, a y DAVE BACON, . Federated Learning: Strategies for Improving Communication Efficiency. 2017, LI, Li, YUXI FAN, , MIKE TSE, y KUO-YI LIN, . A review of applications in federated learning. 2020, 106854. (149). https://www.sciencedirect.com/science/article/pii/S0360835220305532. ISSN: 0360-8352. MARY MAMMEN, Priyanka. Federated Learning: Opportunities and Challenges. 2021, MARTÍNEZ BELTRÁN, Enrique Tomás, PÉREZ, Mario Quiles, SÁNCHEZ, Pedro Miguel Sánchez, BERNAL, Sergio López, BOVET, Gérôme, PÉREZ, Manuel Gil, PÉREZ, Gregorio Martínez y CELDRÁN, Alberto Huertas. Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges. 2023, 2983-3013. (25). TRUONG, Nguyen, KAI SUN, , SIYAO WANG, , FLORIAN GUITTON, y YIKE GUO, . Privacy preservation in federated learning: An insightful survey from the GDPR perspective. 2021, 102402. (110). https://www.sciencedirect.com/science/article/pii/S0167404821002261. ISSN: 0167-4048. HARD, Andrew, M KIDDON, Chloé, R RAMAGE, Daniel, SIMONE BEAUFAYS, Françoise, HUBERT EICHNER, , KANISHKA RAO, , RAJIV MATHEWS, , SEAN AUGENSTEIN, y SWAROOP RAMASWAMY, . Federated Learning for Mobile Keyboard Prediction. 2019, IKIZ, Burcin. A Pandemic AI Engine Without Borders — hai.stanford.edu. 2020, [Accessed 23-01-2024]. MCMAHAN, Brendan y DANIEL RAMAGE, . Federated Learning: Collaborative Machine Learning without Centralized Training Data — blog.research.google. 2017, [Accessed 24-01-2024]. RIEKE, Nicola. What Is Federated Learning? | NVIDIA Blog — blogs.nvidia.com. 2019, [Accessed 25-01-2024]. PRAKASH, Kritika, LUCILE SAULNIER, , DMITRII USYNIN, y NAOWAL REZA, Zarreen. Private Deep Learning of Medical Data for Hospitals using Federated Learning and Differential Privacy — blog.openmined.org. 2021, [Accessed 25-01-2024]. ZHAO, Yue, LI, Meng, LAI, Liangzhen, SUDA, Naveen, CIVIN, Damon, CH, y RA, Vikas. Federated Learning with Non-IID Data. arXiv, 2018, https://arxiv.org/abs/1806.00582. YANG, Qiang, YANG LIU, , TIANJIAN CHEN, y YONGXIN TONG, . Federated Machine Learning: Concept and Applications. 2019, ROTH, Holger R., CHANG, Ken, SINGH, Praveer, NEUMARK, Nir, LI, Wenqi, GUPTA, Vikash, GUPTA, Sharut, QU, Liangqiong, IHSANI, Alvin, BIZZO, Bernardo C., WEN, Yuhong, BUCH, Varun, SHAH, Meesam, KITAMURA, Felipe, MENDONÇA, Matheus, LAVOR, Vitor, HAROUNI, Ahmed, COMPAS, Colin, TETREAULT, Jesse, DOGRA, Prerna, CHENG, Yan, ERDAL, Selnur, WHITE, Richard, HASHEMIAN, Behrooz, SCHULTZ, Thomas, ZHANG, Miao, MCCARTHY, Adam, YUN, B. Min, SHARAF, Elshaimaa, HOEBEL, Katharina V., PATEL, Jay B., CHEN, Bryan, KO, Sean, LEIBOVITZ, Evan, PISANO, Etta D., COOMBS, Laura, XU, Daguang, DREYER, Keith J., DAYAN, Ittai, NAIDU, Ram C., FLORES, Mona, RUBIN, Daniel y KALPATHY-CRAMER, Jayashree. Federated Learning for Breast Density Classification: A Real-World Implementation. Springer International Publishing. 2020.p. 181–191. CHEN, Yujing, NING, Yue, SLAWSKI, Martin y RANGWALA, Huzefa. Asynchronous Online Federated Learning for Edge Devices with Non-IID Data. 2020.p. 15-24. XU, Chenhao, QU, Youyang, XIANG, Yong y GAO, Longxiang. Asynchronous federated learning on heterogeneous devices: A survey. Elsevier, 2023, 100595. (50). ZHANG, Tuo, GAO, Lei, HE, Chaoyang, ZHANG, Mi, KRISHNAMACHARI, Bhaskar y AVESTIMEHR, A. Salman. Federated Learning for the Internet of Things: Applications, Challenges, and Opportunities. 2022, 24-29. (5). LI, Tian, SAHU, Anit Kumar, TALWALKAR, Ameet y SMITH, Virginia. Federated Learning: Challenges, Methods, and Future Directions. Institute of Electrical and Electronics Engineers (IEEE), 2020, 50–60. (37). http://dx.doi.org/10.1109/MSP.2020.2975749. ISSN: 1558-0792. SENANAYAKE, Nipuna, PODSCHWADT, Robert, TAKABI, Daniel, CALHOUN, Vince D. y PLIS, Sergey M.. NeuroCrypt: Machine Learning Over Encrypted Distributed Neuroimaging Data. Springer Science and Business Media LLC, 2021, 91–108. (20). http://dx.doi.org/10.1007/s12021-021-09525-8. ISSN: 1559-0089. WANG, Zhilin y QIN HU, . Blockchain-based Federated Learning: A Comprehensive Survey. 2021, AI DEPARTMENT, WeBank. Federated Learning White Paper V1.0. 2018. LIU, Yang, YAN KANG, , TIANYUAN ZOU, , YANHONG PU, , YUANQIN HE, , XIAOZHOU YE, , YE OUYANG, , YA-QIN ZHANG, y QIANG YANG, . Vertical Federated Learning: Concepts, Advances and Challenges. 2023, LIU, Yang, KANG, Yan, XING, Chaoping, CHEN, Tianjian y YANG, Qiang. A Secure Federated Transfer Learning Framework. 2020, 70-82. (35). YEMINI, Michal, SAHA, Rajarshi, OZFATURA, Emre, GÜNDÜZ, Deniz y GOLDSMITH, Andrea J.. Semi-Decentralized Federated Learning with Collaborative Relaying. 2022.p. 1471-1476. LIN, Frank Po Chen, SEYYEDALI HOSSEINALIPOUR, , AZAM, Sheikh Shams, BRINTON, Christopher G. y NICOLO MICHELUSI, . Semi-Decentralized Federated Learning with Cooperative D2D Local Model Aggregations. Institute of Electrical and Electronics Engineers Inc., 2021, 3851–3869. (39). Publisher Copyright: \textcopyright 1983-2012 IEEE.. ISSN: 0733-8716. QU, Youyang, UDDIN, Md Palash, GAN, Chenquan, XIANG, Yong, GAO, Longxiang y YEARWOOD, John. Blockchain-enabled Federated Learning: A Survey. New York, NY, USA: Association for Computing Machinery, 2022, (55). https://doi.org/10.1145/3524104. ISSN: 0360-0300. BIMAL DESAI, Harsh, SAFA OZDAYI, Mustafa y MURAT KANTARCIOGLU, . BlockFLA: Accountable Federated Learning via Hybrid Blockchain Architecture. 2020, QU, Xidi, SHENGLING WANG, , QIN HU, y XIUZHEN CHENG, . Proof of Federated Learning: A Novel Energy-recycling Consensus Algorithm. 2019, LYU, Lingjuan, HAN YU, y QIANG YANG, . Threats to Federated Learning: A Survey. 2020, DEVAUX, Elise. What is Differential Privacy: definition, mechanisms, and examples - Statice — statice.ai. 2022, [Accessed 05-04-2024]. CHESHMI, Seyyed Saeid, MAHYAR, Abtin, SOROUSH, Anita, REZVANI, Zahra y FARAHANI, Bahar. Brain Age Estimation Using Structural MRI: A Clustered Federated Learning Approach. 2023.p. 1–6. STRIPELIS, Dimitris, UMANG GUPTA, , HAMZA SALEEM, , NIKHIL DHINAGAR, , TANMAY GHAI, , CHRYSOVALANTIS ANASTASIOU, Rafael, ARMAGHAN ASGHAR, , VER STEEG, Greg, SRIVATSAN RAVI, , MUHAMMAD NAVEED, , M. THOMPSON, Paul y LUIS AMBITE, Jose. Secure & Private Federated Neuroimaging. 2023, TANVEER, M., GANAIE, M.A., BEHESHTI, Iman, GOEL, Tripti, AHMAD, Nehal, LAI, Kuan-Ting, HUANG, Kaizhu, ZHANG, Yu-Dong, DEL SER, Javier y LIN, Chin-Teng. Deep learning for brain age estimation: A systematic review. Elsevier BV, 2023, 130–143. (96). http://dx.doi.org/10.1016/j.inffus.2023.03.007. ISSN: 1566-2535. SERAFIM SILVA, André Vital. Deep Learning for Brain Age Prediction from T1-Weighted Magnetic Resonance Images. [Master's Thesis]. Vrije Universiteit Brussel (VUB), Boulevard de la Plaine 2, 1050 Ixelles, 2023. WOOD, David A, SINA KAFIABADI, , BUSAIDI, Ayisha Al, EMILY GUILHEM, , ANTANAS MONTVILA, , JEREMY LYNCH, , MATTHEW TOWNEND, , SIDDHARTH AGARWAL, , ASIF MAZUMDER, , BARKER, Gareth J, SEBASTIAN OURSELIN, , COLE, James H y BOOTH, Thomas C. Accurate brain-age models for routine clinical MRI examinations. ACADEMIC PRESS INC ELSEVIER SCIENCE, 2022, 118871. (249). Funding Information: This work was supported by the Royal College of Radiologists , King's College Hospital Research and Innovation , King's Health Partners Challenge Fund , NVIDIA (through the unrestricted use of a GPU obtained in a competition), and the Wellcome/Engineering and Physical Sciences Research Council Centre for Medical Engineering ( WT 203148/Z/16/Z ). Publisher Copyright: \textcopyright 2022 The Author(s). ISSN: 1053-8119. KUMARI, LK Soumya y SUNDARRAJAN, R. A review on brain age prediction models. Elsevier, 2023, 148668. GORGOLEWSKI, Krzysztof J, AUER, Tibor, CALHOUN, Vince D, CRADDOCK, R Cameron, DAS, Samir, DUFF, Eugene P, FL, , IN, Guillaume, GHOSH, Satrajit S, GLATARD, Tristan, HALCHENKO, Yaroslav O, H, , WERKER, Daniel A, HANKE, Michael, KEATOR, David, LI, Xiangrui, MICHAEL, Zachary, MAUMET, Camille, NICHOLS, B Nolan, NICHOLS, Thomas E, PELLMAN, John, POLINE, Jean-Baptiste, ROKEM, Ariel, SCHAEFER, Gunnar, SOCHAT, Vanessa, TRIPLETT, William, TURNER, Jessica A, VAROQUAUX, Gaël y POLDRACK, Russell A. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. 2016, 160044. (3). https://europepmc.org/articles/PMC4978148. ISSN: 2052-4463. PENG, Han, WEIKANG GONG, , F. BECKMANN, Christian, ANDREA VEDALDI, y M. SMITH, Stephen. Accurate brain age prediction with lightweight deep neural networks. 2021, 101871. (68). https://www.sciencedirect.com/science/article/pii/S1361841520302358. ISSN: 1361-8415. H. LEONARDSEN, Esten, HAN PENG, , TOBIAS KAUFMANN, , INGRID AGARTZ, , A. ANDREASSEN, Ole, GULOWSEN CELIUS, Elisabeth, THOMAS ESPESETH, , F. HARBO, Hanne, A. HØGESTØL, Einar, DE LANGE, Ann-Marie, F. MARQU, Andre, , DIDAC VIDAL-PIÑEIRO, , M. ROE, James, GEIR SELBÆK, , ØYSTEIN SØRENSEN, , M. SMITH, Stephen, T. WESTLYE, Lars, THOMAS WOLFERS, y YUNPENG WANG, . Deep neural networks learn general and clinically relevant representations of the ageing brain. 2022, 119210. (256). https://www.sciencedirect.com/science/article/pii/S1053811922003342. ISSN: 1053-8119. FRANKE, Katja y GASER, Christian. Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained?. 2019, (10). KARIMIREDDY, Sai Praneeth, KALE, Satyen, MOHRI, Mehryar, REDDI, Sashank, STICH, Sebastian, SURESH, An y THEERTHA, a. En: III, Hal Daumé and Singh, Aarti. SCAFFOLD: Stochastic Controlled Averaging for Federated Learning. PMLR. 2020.p. 5132–5143. LI, Tian, KUMAR SAHU, Anit, MANZIL ZAHEER, , MAZIAR SANJABI, , AMEET TALWALKAR, y VIRGINIA SMITH, . Federated Optimization in Heterogeneous Networks. 2020, REDDI, Sashank, ZACHARY CHARLES, , MANZIL ZAHEER, , ZACHARY GARRETT, , KEITH RUSH, , JAKUB KONEČNÝ, , SANJIV KUMAR, y BRENDAN MCMAHAN, H.. Adaptive Federated Optimization. 2021, SHOHAM, Neta, TOMER AVIDOR, , AVIV KEREN, , NADAV ISRAEL, , DANIEL BENDITKIS, , LIRON MOR-YOSEF, y ITAI ZEITAK, . Overcoming Forgetting in Federated Learning on Non-IID Data. 2019, SMITH, Virginia, CHAO-KAI CHIANG, , MAZIAR SANJABI, y AMEET TALWALKAR, . Federated Multi-Task Learning. 2018, LI, Qinbin, BINGSHENG HE, y DAWN SONG, . Practical One-Shot Federated Learning for Cross-Silo Setting. 2021, LI, Xiaoxiao, YUFENG GU, , NICHA DVORNEK, , LAWRENCE STAIB, , PAMELA VENTOLA, y S. DUNCAN, James. Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and Domain Adaptation: ABIDE Results. 2020, PENG, Xingchao, ZIJUN HUANG, , YIZHE ZHU, y KATE SAENKO, . Federated Adversarial Domain Adaptation. 2019, PETERSON, Daniel, PALLIKA KANANI, y J. MARATHE, Virendra. Private Federated Learning with Domain Adaptation. 2019, WANG, Su, HOSSEINALIPOUR, Seyyedali y BRINTON, Christopher G.. Multi-Source to Multi-Target Decentralized Federated Domain Adaptation. 2024, 1-1. KANG, Yan, HE, Yuanqin, LUO, Jiahuan, FAN, Tao, LIU, Yang y YANG, Qiang. Privacy-preserving Federated Adversarial Domain Adaptation over Feature Groups for Interpretability. 2022, 1-12. KARIMIREDDY, Sai Praneeth, JAGGI, Martin, KALE, Satyen, MOHRI, Mehryar, REDDI, Sashank, STICH, Sebastian U, SURESH, An y THEERTHA, a. En: M. Ranzato and A. Beygelzimer and Y. Dauphin and P.S. Liang and J. Wortman Vaughan. Breaking the centralized barrier for cross-device federated learning. Curran Associates, Inc.. 2021.p. 28663–28676. DONG, Xibin, YU, Zhiwen, CAO, Wenming, SHI, Yifan y MA, Qianli. A survey on ensemble learning. Springer, 2020, 241–258. (14). MABROUK, Alhassan, , ABD ELAZIZ, Mohamed y MOHAMMED KAYED, . Ensemble Federated Learning: An approach for collaborative pneumonia diagnosis. 2023, 110500. (144). https://www.sciencedirect.com/science/article/pii/S1568494623005185. ISSN: 1568-4946. HEJAZINIA, Meisam, DZMITRY HUBA, , ILIAS LEONTIADIS, , KIWAN MAENG, , MANI MALEK, , LUCA MELIS, , ILYA MIRONOV, , MILAD NASR, , KAIKAI WANG, y CAROLE-JEAN WU, . FEL: High Capacity Learning for Recommendation and Ranking via Federated Ensemble Learning. 2022, WANG, Kangkang, RAJIV MATHEWS, , CHLOÉ KIDDON, , HUBERT EICHNER, , FRANÇOISE BEAUFAYS, y DANIEL RAMAGE, . Federated Evaluation of On-device Personalization. 2019, FALLAH, Alireza, ARYAN MOKHTARI, y ASUMAN OZDAGLAR, . Personalized Federated Learning: A Meta-Learning Approach. 2020, RAUNIYAR, Ashish, HAILESELASSIE HAGOS, Desta, DEBESH JHA, , ERIK HÅKEGÅRD, Jan, ULAS BAGCI, , D, , B. RAWAT, a y VLADIMIR VLASSOV, . Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions. 2023, KAIROUZ, Peter, BRENDAN MCMAHAN, H., BRENDAN AVENT, , AURÉLIEN BELLET, , MEHDI BENNIS, , NITIN BHAGOJI, Arjun, KALLISTA BONAWITZ, , ZACHARY CHARLES, , GRAHAM CORMODE, , RACHEL CUMMINGS, , , HUBERT EICHNER, , EL ROUAYHEB, Salim, DAVID EVANS, , JOSH GARDNER, , ZACHARY GARRETT, , ADRIÀ GASCÓN, , BADIH GHAZI, , B. GIBBONS, Phillip, MARCO GRUTESER, , ZAID HARCHAOUI, , CHAOYANG HE, , LIE HE, , ZHOUYUAN HUO, , BEN HUTCHINSON, , JUSTIN HSU, , MARTIN JAGGI, , TARA JAVIDI, , GAURI JOSHI, , MIKHAIL KHODAK, , JAKUB KONEČNÝ, , ALEKS, , KOROLOVA, ra, FARINAZ KOUSHANFAR, , SANMI KOYEJO, , TANCRÈDE LEPOINT, , YANG LIU, , PRATEEK MITTAL, , MEHRYAR MOHRI, , RICHARD NOCK, , AYFER ÖZGÜR, , RASMUS PAGH, , MARIANA RAYKOVA, , HANG QI, , DANIEL RAMAGE, , RAMESH RASKAR, , DAWN SONG, , WEIKANG SONG, , U. STICH, Sebastian, ZITENG SUN, , AN, , THEERTHA SURESH, a, FLORIAN TRAMÈR, , PRANEETH VEPAKOMMA, , JIANYU WANG, , LI XIONG, , ZHENG XU, , QIANG YANG, , X. YU, Felix, HAN YU, y SEN ZHAO, . Advances and Open Problems in Federated Learning. 2021, YANG, Qiang, LIU, Yang y CHENG, Yong. Federated Learning. Morgan & Claypool Publishers, 2019. YAO, Andrew C.. Protocols for secure computations. 1982.p. 160-164. EVANS, David, KOLESNIKOV, Vladimir, ROSULEK, Mike y OTHERS, . A pragmatic introduction to secure multi-party computation. Now Publishers, Inc., 2018, 70–246. (2). BOGETOFT, Peter, LUND, Dan, DAMGÅRD, Ivan, GEISLER, Martin, JAKOBSEN, Thomas, KRØIGAARD, Mikkel, NIELSEN, Janus, NIELSEN, Jesper, NIELSEN, Kurt, PAGTER, Jakob, SCHWARTZBACH, Michael y TOFT, Tomas. Secure Multiparty Computation Goes Live. 2009.p. 325-343. SMAJLOVIĆ, Haris, SHAJII, Ariya, BERGER, Bonnie, CHO, Hyunghoon y NUMANAGIĆ, Ibrahim. Sequre: a high-performance framework for secure multiparty computation enables biomedical data sharing. 2023, 5. (24). https://doi.org/10.1186/s13059-022-02841-5. ISSN: 1474-760X. LINDELL, Yehuda. Secure multiparty computation. New York, NY, USA: Association for Computing Machinery, 2020, 86–96. (64). https://doi.org/10.1145/3387108. ISSN: 0001-0782. ORL y I, Claudio. Is multiparty computation any good in practice?. 2011.p. 5848-5851. AYO AKINYELE, J.. Intro to Secure Multi-Party Computation — medium.com. 2020, [Accessed 25-01-2024]. MALKHI, Dahlia, NOAM NISAN, , BENNY PINKAS, y YARON SELLA, . Fairplay—A Secure Two-Party Computation System. San Diego, CA: USENIX Association. 2004. BOGDANOV, Dan, LAUR, Sven y WILLEMSON, Jan. Sharemind: A Framework for Fast Privacy-Preserving Computations. 2008.p. 289. SHINDE, Pramila P. y SHAH, Seema. A Review of Machine Learning and Deep Learning Applications. 2018.p. 1-6. JUVEKAR, Chiraag, VAIKUNTANATHAN, Vinod, CH, y RAKASAN, Anantha. GAZELLE: a low latency framework for secure neural network inference. USA: USENIX Association. 2018.p. 1651–1668. GASCÓN, Adrià, PHILLIPP SCHOPPMANN, , BORJA BALLE, , MARIANA RAYKOVA, , JACK DOERNER, , SAMEE ZAHUR, y DAVID EVANS, . Privacy-Preserving Distributed Linear Regression on High-Dimensional Data. 2017, 345 - 364. (2017). https://api.semanticscholar.org/CorpusID:717272. SHOKRI, Reza y SHMATIKOV, Vitaly. Privacy-preserving deep learning. 2015.p. 909-910. SONG, Yong, XIE, Yuchen, ZHANG, Hongwei, LIANG, Yuxin, YE, Xiaozhou, YANG, Aidong y OUYANG, Ye. Federated Learning Application on Telecommunication-Joint Healthcare Recommendation. 2021.p. 1443-1448. PAN, Sinno Jialin y YANG, Qiang. A Survey on Transfer Learning. 2010, 1345-1359. (22). NITIN BHAGOJI, Arjun, SUPRIYO CHAKRABORTY, , PRATEEK MITTAL, y SERAPHIN CALO, . Analyzing Federated Learning through an Adversarial Lens. 2019, BAGDASARYAN, Eugene, ANDREAS VEIT, , YIQING HUA, , DEBORAH ESTRIN, y VITALY SHMATIKOV, . How To Backdoor Federated Learning. 2019, SO, Jinhyun, GÜLER, Başak y AVESTIMEHR, A. Salman. Byzantine-Resilient Secure Federated Learning. 2021, 2168-2181. (39). FUNG, Clement, y IVAN BESCHASTNIKH, . Mitigating Sybils in Federated Learning Poisoning. 2020, ANH DINH, Tien Tuan, RUI LIU, , MEIHUI ZHANG, , GANG CHEN, , CHIN OOI, Beng y JI WANG, . Untangling Blockchain: A Data Processing View of Blockchain Systems. 2017, ZYSKIND, Guy, OZ NATHAN, , ALEX 'S, y PENTL, y'. Decentralizing Privacy: Using Blockchain to Protect Personal Data. 2015, 180-184. https://api.semanticscholar.org/CorpusID:10184767. NATOLI, Christopher, YU, Jiangshan, GRAMOLI, Vincent y VERÍSSIMO, Paulo. Deconstructing Blockchains: A Comprehensive Survey on Consensus, Membership and Structure. 2019, NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System. 2009, TAHERDOOST, Hamed. Smart Contracts in Blockchain Technology: A Critical Review. 2023, (14). https://www.mdpi.com/2078-2489/14/2/117. ISSN: 2078-2489. GERVAIS, Arthur, KARAME, Ghassan O, WÜST, Karl, GLYKANTZIS, Vasileios, RITZDORF, Hubert y CAPKUN, Srdjan. On the security and performance of proof of work blockchains. 2016.p. 3–16. LYU, Lingjuan, JIANGSHAN YU, , KARTHIK N, , AKUMAR, YITONG LI, , XINGJUN MA, , JIONG JIN, , HAN YU, y SIONG NG, Kee. Towards Fair and Privacy-Preserving Federated Deep Models. 2020, SU, Hang y HAOYU CHEN, . Experiments on Parallel Training of Deep Neural Network using Model Averaging. 2018, YU, Chen, HANLIN TANG, , CEDRIC RENGGLI, , SIMON KASSING, , ANKIT SINGLA, , DAN ALISTARH, , CE ZHANG, y JI LIU, . Distributed Learning over Unreliable Networks. 2019, CHEN, Jianmin, XINGHAO PAN, , RAJAT MONGA, , SAMY BENGIO, y RAFAL JOZEFOWICZ, . Revisiting Distributed Synchronous SGD. 2017, XU, Kele, HAIBO MI, , DAWEI FENG, , HUAIMIN WANG, , CHUAN CHEN, , ZIBIN ZHENG, y XU LAN, . Collaborative Deep Learning Across Multiple Data Centers. 2018, YU, Hao, SEN YANG, y SHENGHUO ZHU, . Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning. 2018, CHOI, Dami, SHALLUE, Christopher J, NADO, Zachary, LEE, Jaehoon, MADDISON, Chris J y DAHL, George E. On empirical comparisons of optimizers for deep learning. 2019, KIRKPATRICK, James, PASCANU, Razvan, RABINOWITZ, Neil, VENESS, Joel, DESJARDINS, Guillaume, RUSU, Andrei A., MILAN, Kieran, QUAN, John, RAMALHO, Tiago, GRABSKA-BARWINSKA, Agnieszka, HASSABIS, Demis, CLOPATH, Claudia, KUMARAN, Dharshan y HADSELL, Raia. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 2017, 3521–3526. (114). http://dx.doi.org/10.1073/pnas.1611835114. ISSN: 1091-6490. VAN DER VORST, Tommy, R. BRENNENRAEDTS, , VAN KERKHOF, David y R.N.A. BEKKERS, . Fast forward : How the speed of the internet will develop between now and 2020. Netherlands: Dialogic innovatie & interactie, 2014. Publication 2013.048-1262. - Report commissioned by NLkabel & Cable Europe. LIN, Yujun, SONG HAN, , HUIZI MAO, , YU WANG, y J. DALLY, William. Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training. 2020, PRANEETH KARIMIREDDY, Sai, QUENTIN REBJOCK, , U. STICH, Sebastian y MARTIN JAGGI, . Error Feedback Fixes SignSGD and other Gradient Compression Schemes. 2019, VOGELS, Thijs, KARIMIREDDY, Sai Praneeth y JAGGI, Martin. En: H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alché-Buc and E. Fox and R. Garnett. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. Curran Associates, Inc.. 2019. TANG, Hanlin, XIANGRU LIAN, , SHUANG QIU, , LEI YUAN, , CE ZHANG, , TONG ZHANG, y JI LIU, . 𝙳𝚎𝚎𝚙𝚂𝚚𝚞𝚎𝚎𝚣𝚎: Decentralization Meets Error-Compensated Compression. 2019, U. STICH, Sebastian y PRANEETH KARIMIREDDY, Sai. The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication. 2021, LAU, F., RUBIN, S.H., SMITH, M.H. y TRAJKOVIC, L.. Distributed denial of service attacks. 2000.p. 2275-2280 vol.3. BHUSHAN, Bharat, SAHOO, G. y RAI, Amit Kumar. Man-in-the-middle attack in wireless and computer networking — A review. 2017.p. 1-6. COSTAN, Victor y SRINIVAS DEVADAS, . Intel SGX Explained. 2016, \url{https://eprint.iacr.org/2016/086}. https://eprint.iacr.org/2016/086. HITAJ, Bril, , ATENIESE, Giuseppe, PEREZ-CRUZ, Fern y O. Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning. 2017.p. 603-618. ZHU, Ligeng, LIU, Zhijian y HAN, Song. En: H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alché-Buc and E. Fox and R. Garnett. Deep Leakage from Gradients. Curran Associates, Inc.. 2019. PHONG, Le Trieu, AONO, Yoshinori, HAYASHI, Takuya, WANG, Lihua y MORIAI, Shiho. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. 2018, 1333-1345. (13). SU, Lili y JIAMING XU, . Securing Distributed Gradient Descent in High Dimensional Statistical Learning. 2019, MELIS, Luca, CONGZHENG SONG, , DE CRISTOFARO, Emiliano y VITALY SHMATIKOV, . Exploiting Unintended Feature Leakage in Collaborative Learning. 2018, DAVI, Lucas, DMITRIENKO, Alex, RA, SADEGHI, Ahmad-Reza, WIN, y Y, Marcel. Privilege escalation attacks on android. 2011.p. 346–360. VEUGEN, Thijs, BLOM, Frank, DE HOOGH, Sebastiaan JA y ERKIN, Zekeriya. Secure comparison protocols in the semi-honest model. IEEE, 2015, 1217–1228. (9). BIGGIO, Battista, NELSON, Blaine y LASKOV, Pavel. Support Vector Machines Under Adversarial Label Noise.. 2011, 97-112. (20). BARRENO, Marco, NELSON, Blaine, SEARS, Russell, JOSEPH, Anthony y TYGAR, J.. Can machine learning be secure?. 2006.p. 16-25. HUANG, Ling, JOSEPH, Anthony D., NELSON, Blaine, RUBINSTEIN, Benjamin I.P. y TYGAR, J. D.. Adversarial machine learning. New York, NY, USA: Association for Computing Machinery. 2011.p. 43–58. CHEN, Xinyun, CHANG LIU, , BO LI, , KIMBERLY LU, y DAWN SONG, . Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. 2017, LIU, Yingqi, SHIQING MA, , YOUSRA AAFER, , WEN-CHUAN LEE, , JUAN ZHAI, , WEIHANG WANG, y X. ZHANG, . Trojaning Attack on Neural Networks. 2018. GU, Tianyu, BRENDAN DOLAN-GAVITT, y SIDDHARTH GARG, . BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. 2019, SHAFAHI, Ali, RONNY HUANG, W., MAHYAR NAJIBI, , OCTAVIAN SUCIU, , CHRISTOPH STUDER, , TUDOR DUMITRAS, y TOM GOLDSTEIN, . Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks. 2018, NASR, Milad, SHOKRI, Reza y HOUMANSADR, Amir. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning. 2019.p. 739-753. VERBRAEKEN, Joost, WOLTING, Matthijs, KATZY, Jonathan, KLOPPENBURG, Jeroen, VERBELEN, Tim y RELLERMEYER, Jan S.. A Survey on Distributed Machine Learning. New York, NY, USA: Association for Computing Machinery, 2020, (53). https://doi.org/10.1145/3377454. ISSN: 0360-0300. LIU, Ji, HUANG, Jizhou, ZHOU, Yang, LI, Xuhong, JI, Shilei, XIONG, Haoyi y DOU, Dejing. From distributed machine learning to federated learning: A survey. Springer, 2022, 885–917. (64). DWORK, Cynthia. Differential privacy. 2006.p. 1–12. DWORK, Cynthia. Differential privacy: A survey of results. 2008.p. 1–19. BLANCO-JUSTICIA, Alberto, SANCHEZ, David, DOMINGO-FERRER, Josep y MURALIDHAR, Krishnamurty. A critical review on the use (and misuse) of differential privacy in machine learning. ACM New York, NY, 2022, 1–16. (55). RIVEST, Ronald L, ADLEMAN, Len, DERTOUZOS, Michael L y OTHERS, . On data banks and privacy homomorphisms. Citeseer, 1978, 169–180. (4). GOLDWASSER, Shafi, MICALI, Silvio y TONG, Po. Why and how to establish a private code on a public network. 1982.p. 134–144. YI, Xun, PAULET, Russell, BERTINO, Elisa, YI, Xun, PAULET, Russell y BERTINO, Elisa. Homomorphic encryption. Springer, 2014. NAEHRIG, Michael, LAUTER, Kristin y VAIKUNTANATHAN, Vinod. Can homomorphic encryption be practical?. 2011.p. 113–124. ZHANG, Chengliang, SUYI LI, , JUNZHE XIA, , WEI WANG, , FENG YAN, y YANG LIU, . BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning. USENIX Association. 2020.p. 493–506. PAILLIER, Pascal. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. 1999.p. 223-238. BONEH, Dan, GOH, Eu-Jin y NISSIM, Kobbi. Evaluating 2-DNF Formulas on Ciphertexts. 2005.p. 325-341. BONEH, Dan, ROSARIO GENNARO, , STEVEN GOLDFEDER, , AAYUSH JAIN, , SAM KIM, , M.R. RASMUSSEN, Peter y AMIT SAHAI, . Threshold cryptosystems from threshold fully homomorphic encryption. Switzerland: Springer. 2018.p. 565–596. GENTRY, Craig. Fully Homomorphic Encryption Using Ideal Lattices. 2009.p. 169-178. FANG, Haokun y QIAN, Quan. Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning. 2021, (13). https://www.mdpi.com/1999-5903/13/4/94. ISSN: 1999-5903. SABT, Mohamed, ACHEMLAL, Mohammed y BOUABDALLAH, Abdelmadjid. Trusted Execution Environment: What It is, and What It is Not. 2015.p. 57-64. AMD SEV-TIO Whitepaper. 2021. EKBERG, Jan-Erik, KOSTIAINEN, Kari y ASOKAN, N.. Trusted execution environments on mobile devices. New York, NY, USA: Association for Computing Machinery. 2013.p. 1497–1498. VUCINICH, Sean y ZHU, Qiang. The Current State and Challenges of Fairness in Federated Learning. 2023, 80903-80914. (11). LI, Tian, SHENGYUAN HU, , AHMAD BEIRAMI, y VIRGINIA SMITH, . Ditto: Fair and Robust Federated Learning Through Personalization. 2021, MEHRABI, Ninareh, MORSTATTER, Fred, SAXENA, Nripsuta, LERMAN, Kristina y GALSTYAN, Aram. A survey on bias and fairness in machine learning. ACM New York, NY, USA, 2021, 1–35. (54). DWORK, Cynthia, HARDT, Moritz, PITASSI, Toniann, REINGOLD, Omer y ZEMEL, Rich. Fairness through awareness. 2012.p. 214–226. TU, Xuezhen, ZHU, Kun, LUONG, Nguyen Cong, NIYATO, Dusit, ZHANG, Yang y LI, Juan. Incentive Mechanisms for Federated Learning: From Economic and Game Theoretic Perspective. 2022, 1566-1593. (8). ZENG, Rongfei, CHAO ZENG, , XINGWEI WANG, , BO LI, y XIAOWEN CHU, . A Comprehensive Survey of Incentive Mechanism for Federated Learning. 2021, ZHAN, Yufeng, ZHANG, Jie, HONG, Zicong, WU, Leijie, LI, Peng y GUO, Song. A Survey of Incentive Mechanism Design for Federated Learning. 2022, 1035-1044. (10). MOHRI, Mehryar, SIVEK, Gary, SURESH, An y THEERTHA, a. En: Chaudhuri, Kamalika and Salakhutdinov, Ruslan. Agnostic Federated Learning. PMLR. 2019.p. 4615–4625. RAUNIYAR, Ashish, HAGOS, Desta Haileselassie, JHA, Debesh, HÅKEGÅRD, Jan Erik, BAGCI, Ulas, RAWAT, D, B., a y VLASSOV, Vladimir. Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions. 2023, 1-1. BRENCIC, N. S., DRAGOI, M., MOCANU, I. y WINIARSKI, T.. Intuitive and Intelligent Solutions for Elderly Care. Springer International Publishing. 2020.p. 101–108. RIEKE, Nicola, HANCOX, Jonny, LI, Wenqi, MILLETARÌ, Fausto, ROTH, Holger R., ALBARQOUNI, Shadi, BAKAS, Spyridon, GALTIER, Mathieu N., L, , MAN, Bennett A., MAIER-HEIN, Klaus, OURSELIN, Sébastien, SHELLER, Micah, SUMMERS, Ronald M., TRASK, Andrew, XU, Daguang, BAUST, Maximilian y CARDOSO, M. Jorge. The future of digital health with federated learning. 2020, 119. (3). https://doi.org/10.1038/s41746-020-00323-1. ISSN: 2398-6352. CHA, Dongchul, SUNG, MinDong y PARK, Yu-Rang. Implementing Vertical Federated Learning Using Autoencoders: Practical Application, Generalizability, and Utility Study. 2021, e26598. (9). CHEN, Yiqiang, JINDONG WANG, , CHAOHUI YU, , WEN GAO, y XIN QIN, . FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. 2021, DAYAN, I., ROTH, H. R., ZHONG, A., HAROUNI, A., GENTILI, A., ABIDIN, A. Z., LIU, A., COSTA, A. B., WOOD, B. J., TSAI, C.-S. y OTHERS, . Federated learning for predicting clinical outcomes in patients with COVID-19. 2021, 1735–1743. (27). VAID, A., JALADANKI, S. K., XU, J., TENG, S., KUMAR, A., LEE, S., SOMANI, S., PARANJPE, I., DE FREITAS, J. K., WANYAN, T. y OTHERS, . Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach. 2021, e24207. (9). DOU, Q., SO, T. Y., JIANG, M., LIU, Q., VARDHANABHUTI, V., KAISSIS, G., LI, Z., SI, W., LEE, H. H., YU, K. y OTHERS, . Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. 2021, 1–11. (4). BRAUNGARDT, Alex. FATE, Flower, PySyft & Co. — Federated Learning Frameworks in Python. 2023, Published in ELCAL IT. https://medium.com/elca-it/flower-pysyft-co-federated-learning-framewor…. ZILLER, Alex, ER, TRASK, Andrew, LOPARDO, Antonio, SZYMKOW, Benjamin, WAGNER, Bobby, BLUEMKE, Emma, NOUNAHON, Jean-Mickael, PASSERAT-PALMBACH, Jonathan, PRAKASH, Kritika, ROSE, Nick y OTHERS, . Pysyft: A library for easy federated learning. Springer, 2021, 111–139. RYFFEL, Theo, ANDREW TRASK, , MORTEN DAHL, , BOBBY WAGNER, , JASON MANCUSO, , DANIEL RUECKERT, y JONATHAN PASSERAT-PALMBACH, . A generic framework for privacy preserving deep learning. 2018, OPENMINED. PySyft. 2024, Perform data science on data that remains in someone else's server. DAMGARD, Ivan, MARCEL KELLER, , ENRIQUE LARRAIA, , VALERIO PASTRO, , PETER SCHOLL, y P. SMART, Nigel. Practical Covertly Secure MPC for Dishonest Majority – or: Breaking the SPDZ Limits. 2012, \url{https://eprint.iacr.org/2012/642}. https://eprint.iacr.org/2012/642. WAGH, Sameer, GUPTA, Divya, CH, y RAN, Nishanth. SecureNN: 3-Party Secure Computation for Neural Network Training. 2019, 26-49. (2019). ALEX, J. TITUS, er, SHASHWAT KISHORE, , TODD STAVISH, , M. ROGERS, Stephanie y KARL NI, . PySEAL: A Python wrapper implementation of the SEAL homomorphic encryption library. 2018, BEUTEL, Daniel J, TOPAL, Taner, MATHUR, Akhil, QIU, Xinchi, FERN, , EZ-MARQUES, Javier, GAO, Yan, SANI, Lorenzo, KWING, Hei Li, PARCOLLET, Titouan, GUSMÃO, Pedro PB de y LANE, Nicholas D. Flower: A Friendly Federated Learning Research Framework. 2020, KAPSECKER, Maximilian, NUGRAHA, Daniel N, WEINHUBER, Christoph, LANE, Nicholas y JONAS, Stephan M. Federated Learning with Swift: An Extension of Flower and Performance Evaluation. Elsevier, 2023, 101533. (24). ZHU, Juncen, CAO, Jiannong, SAXENA, Divya, JIANG, Shan y FERRADI, Houda. Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions. New York, NY, USA: Association for Computing Machinery, 2023, (55). https://doi.org/10.1145/3570953. ISSN: 0360-0300. BELL, James, A. BONAWITZ, K., ADRIÀ GASCÓN, , TANCRÈDE LEPOINT, y MARIANA RAYKOVA, . Secure Single-Server Aggregation with (Poly)Logarithmic Overhead. 2020, \url{https://eprint.iacr.org/2020/704}. https://eprint.iacr.org/2020/704. BONAWITZ, Keith, VLADIMIR IVANOV, , BEN KREUTER, , ANTONIO MARCEDONE, , BRENDAN MCMAHAN, H., SARVAR PATEL, , DANIEL RAMAGE, , AARON SEGAL, y KARN SETH, . Practical Secure Aggregation for Federated Learning on User-Held Data. 2016, MORITZ, Philipp, ROBERT NISHIHARA, , STEPHANIE WANG, , ALEXEY TUMANOV, , RICHARD LIAW, , ERIC LIANG, , MELIH ELIBOL, , ZONGHENG YANG, , WILLIAM PAUL, , I. JORDAN, Michael y ION STOICA, . Ray: A Distributed Framework for Emerging AI Applications. 2018, FOLEY, Patrick, SHELLER, Micah J, EDWARDS, Br, ON, PATI, Sarthak, RIVIERA, Walter, SHARMA, Mansi, MOORTHY, Prakash Narayana, WANG, Shi-han, MARTIN, Jason, MIRHAJI, Parsa, SHAH, Prashant y BAKAS, Spyridon. OpenFL: the open federated learning library. IOP Publishing, 2022, http://iopscience.iop.org/article/10.1088/1361-6560/ac97d9. PATI, Sarthak, UJJWAL BAID, , MAXIMILIAN ZENK, , BR, , EDWARDS, on, MICAH SHELLER, , ANTHONY REINA, G., PATRICK FOLEY, , ALEXEY GRUZDEV, , JASON MARTIN, , SHADI ALBARQOUNI, , YONG CHEN, , TAKI SHINOHARA, Russell, ANNIKA REINKE, , DAVID ZIMMERER, , B. FREYMANN, John, S. KIRBY, Justin, CHRISTOS DAVATZIKOS, , R. COLEN, Rivka, AIKATERINI KOTROTSOU, , DANIEL MARCUS, , MIKHAIL MILCHENKO, , ARASH NAZERI, , HASSAN FATHALLAH-SHAYKH, , ROL, , WIEST, , ANDRAS JAKAB, , MARC-ANDRE WEBER, , ABHISHEK MAHAJAN, , LENA MAIER-HEIN, , JENS KLEESIEK, , BJOERN MENZE, , KLAUS MAIER-HEIN, y SPYRIDON BAKAS, . The Federated Tumor Segmentation (FeTS) Challenge. 2021, GOOGLE. TensorFlow Federated: Machine Learning on Decentralized Data. 2019, Accessed: 9/02/2024. ROTH, Holger R., CHENG, Yan, WEN, Yuhong, YANG, Isaac, XU, Ziyue, HSIEH, Yuan-Ting, KERSTEN, Kristopher, HAROUNI, Ahmed, ZHAO, Can, LU, Kevin, ZHANG, Zhihong, LI, Wenqi, MYRONENKO, Andriy, YANG, Dong, YANG, Sean, RIEKE, Nicola, QURAINI, Abood, CHEN, Chester, XU, Daguang, MA, Nic, DOGRA, Prerna, FLORES, Mona y FENG, Andrew. NVIDIA FLARE: Federated Learning from Simulation to Real-World. 2023, NVIDIA. NVIDIA Clara: AI-powered Solutions for Healthcare. 2018, Accessed: 9/02/2024. LIU, Yang, TAO FAN, , TIANJIAN CHEN, , QIAN XU, y QIANG YANG, . FATE: An Industrial Grade Platform for Collaborative Learning With Data Protection. 2021, 1–6. (22). http://jmlr.org/papers/v22/20-815.html. CALDAS, Sebastian, , PETER WU, , TIAN LI, , JAKUB KONEČNÝ, , BRENDAN MCMAHAN, H., VIRGINIA SMITH, y AMEET TALWALKAR, . LEAF: A Benchmark for Federated Settings. 2019, What is a DDoS Attack: Types, Prevention & Remediation | OneLogin — onelogin.com. [Accessed 06-06-2024]. JIANLUAN, Guo y XIAOYAN, Wang. Computer Vision Operating System of Bank Economic Management Security under 5G Wireless Communication Technology. 2022, 1-7. (2022). P. KINGMA, Diederik y JIMMY BA, . Adam: A Method for Stochastic Optimization. 2017, DUCHI, John, ELAD HAZAN, y YORAM SINGER, . Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. 2011, 2121–2159. (12). http://jmlr.org/papers/v12/duchi11a.html. ZAHEER, Manzil, REDDI, Sashank, SACHAN, Devendra, KALE, Satyen y KUMAR, Sanjiv. En: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett. Adaptive Methods for Nonconvex Optimization. Curran Associates, Inc.. 2018. BEHESHTI, Iman, GANAIE, M. A., PALIWAL, Vardhan, RASTOGI, Aryan, RAZZAK, Imran y TANVEER, M.. Predicting Brain Age Using Machine Learning Algorithms: A Comprehensive Evaluation. 2022, 1432-1440. (26). HUANG, Gao, ZHUANG LIU, , y Q. WEINBERGER, Kilian. Densely Connected Convolutional Networks. 2018, LE, Trang T., KUPLICKI, Rayus T., MCKINNEY, Brett A., YEH, Hung-Wen, THOMPSON, Wesley K., PAULUS, Martin P., , Tulsa 1000 Investigators, AUPPERLE, Robin L, BODURKA, Jerzy, CHA, Yoon-Hee, FEINSTEIN, Justin S., KHALSA, Sahib S., SAVITZ, Jonathan, SIMMONS, W Kyle y VICTOR, Teresa A. A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE. 2018, (10). https://www.frontiersin.org/articles/10.3389/fnagi.2018.00317. ISSN: 1663-4365.