Lijmloze motor maakt elektrische voertuigen écht circulair

Vincent
Van de Peer

Lijmloze motor maakt elektrische voertuigen écht circulair

Door Vincent Van de Peer, UGent

De elektrische wagen wordt vaak gepresenteerd als hét symbool van duurzaamheid. Maar achter die groene façade schuilt een hardnekkig probleem: de motoren zelf zijn nauwelijks recycleerbaar. Ze zitten vol lijm, hars en complexe materialen die niet van elkaar te scheiden zijn. Het gevolg? Kostbare grondstoffen verdwijnen in de shredder.

In mijn masterproef als industrieel ingenieur aan de UGent wilde ik dat anders doen. Ik ontwierp een elektromotor die zo in elkaar zit dat ze na gebruik volledig kan worden gedemonteerd , zonder ook maar één druppel lijm.

 

Waarom dit belangrijk is

Vandaag eindigt het leven van een elektromotor meestal in een brute versnipperaar. Dat is goedkoop en snel, maar het vernietigt waardevolle componenten zoals koperdraden en permanente magneten. Die magneten bevatten zeldzame aardmetalen zoals neodymium en dysprosium: schaars, duur en vaak met een zware ecologische voetafdruk.

Als we elektrische mobiliteit echt duurzaam willen maken, moeten we verder kijken dan het energieverbruik tijdens het rijden. We moeten ook nadenken over wat er gebeurt aan het einde van de rit.

 

Mijn oplossing: bouten in plaats van lijm

De kern van mijn onderzoek? Een rotor waarin magneten niet worden vastgelijmd, maar mechanisch geklemd met bouten en stalen segmenten. Dat klinkt eenvoudig, maar technisch is dit niet zo voor de hand liggend. Een rotor draait aan duizenden omwentelingen per minuut. De magneten moeten dus perfect op hun plaats blijven, ook zonder lijm.

Met behulp van geavanceerde simulaties onderzocht ik hoe sterk en stabiel de constructie moest zijn.  De resultaten waren verrassend: de lijmloze rotor bleek niet alleen stevig genoeg, maar presteerde zelfs beter op sommige vlakken dan sommige klassieke ontwerpen. Door het weglaten van ‘magnetische ribben’ (stalen bruggen die normaal veel magnetische flux doen verliezen) steeg de efficiëntie van de motor.

 

Van theorie naar praktijk

Na de simulaties volgde het echte werk: bouwen. Eerst een 3D-geprint model om het ontwerp te testen, daarna een echt werkend prototype. De magneten werden via mechanische klemming op hun plaats gehouden met nauwkeurig passende schouderbouten.

Het resultaat? Een motor die volledig niet-destructief demonteerbaar is. Na montage konden we de segmenten individueel losmaken en de magneten opnieuw verwijderen. Dat is iets wat bij klassieke motoren gewoon onmogelijk is.

Tijdens de tests draaide de motor soepel en vertoonde hij hetzelfde gedrag als een conventioneel ontwerp zonder merkbare afwijkingen, met één groot voordeel: hij is volledig recycleerbaar.

 

Klaar voor opschaling

Om te onderzoeken of het ontwerp ook toepasbaar is op grotere motoren, zoals die in elektrische wagens, simuleerde ik een opgeschaalde versie met hogere snelheden. Daarbij bleek dat een andere boutconfiguratie met radiale in plaats van axiale bouten de constructie nog stabieler maakte. Die variant is ideaal voor industriële toepassingen.

Ons prototype is niet bedoeld om morgen in productie te gaan, maar het bewijst wel dat elektrische machines fundamenteel anders kunnen worden ontworpen. Als we van bij het begin rekening houden met recyclage, besparen we enorm veel materiaal en energie.

 

Van lineair naar circulair

Dit onderzoek past perfect binnen de principes van de circulaire economie: producten ontwerpen om te herstellen, hergebruiken of recycleren. In de motorindustrie staat dat idee nog in zijn kinderschoenen. De focus ligt vooral op prestaties en kostprijs. Maar duurzaamheid hoeft geen nadeel te zijn. Met enkele slimme ontwerpkeuzes kunnen we motoren bouwen die minstens even goed presteren én veel makkelijker uit elkaar te halen zijn.

 

Duurzaamheid begint bij het ontwerp

Voor mij was deze masterproef meer dan een technisch project. Ik wilde iets ontwikkelen dat niet alleen werkt op papier, maar ook maatschappelijk relevant is. Duurzaamheid begint niet bij recyclage, maar bij het ontwerp. Als ingenieur kun je met kleine beslissingen in het begin een groot verschil maken aan het einde van de levenscyclus.

Met mijn demonteerbare motor toon ik dat innovatie en duurzaamheid perfect kunnen samengaan. De uitvinding maakt het mogelijk om elektrische motoren te hergebruiken, grondstoffen te besparen en de ecologische voetafdruk van elektrische mobiliteit aanzienlijk te verkleinen.

De elektrische wagen van morgen mag dan wel stil zijn, maar hopelijk maakt hij ook wat minder lawaai voor het milieu.

Bibliografie

References
[1] F. M.-W. J.-O. M. C. T. F. T. T. W. U. Bast R. Blank M. Buchert T. Elwert F. Finsterwalder G. Hörnig T. Klier, S. Langkau,
“Abschlussbericht zum verbundvorhaben: Recycling von komponenten und strategischen metallen aus
elektrischen fahrantrieben,” Siemens AG, Daimler AG, Umicore AG & Co. KG, Vacuumschmelze GmbH & Co. KG,
Universität Erlangen-Nürnberg, Technische Universität Clausthal, Öko-Institut e.V., Fraunhofer -Institut für
System- und Innovationsforschung, München, Deutschland, Tech. Rep., 2014, fKZ: 03X4622, Projektträger:
PTJ, Jülich. [Online]. Available: n.v.t.
[2] A. Binder, T. Schneider, and M. Klohr, “Fixation of buried and surface-mounted magnets in high-speed
permanent-magnet synchronous machines,”
IEEE Transactions on Industry Applications, vol. 42, no. 4, pp.
1031–1037, July/August 2006. [Online]. Available: 10.1109/TIA.2006.876072
[3] M. Alatalo, S. T. Lundmark, and E. A. Grunditz, “Electric machine design for traction applications considering
recycling aspects - review and new solution,”
IEEE Xplore, pp. 1836–1841, 2011.
[4] L. G. Pranshu Upadhayay, Afef-Kedous Lebouc, “Applicability of direct reuse and recycled rare earth magnets
in electro-mobility,”
IEEE Xplore, 2025. [Online]. Available: https://ieeexplore.ieee.org/
[5] A. Garcia Gonzalez, D. Wang, J.-M. Dubus, and P. O. Rasmussen, “Design and experimental investigation
of a hybrid rotor permanent magnet modular machine with 3d flux paths accounting for recyclability
of permanent magnet material,”
Energies, vol. 13, no. 6, p. 1342, 2020. [Online]. Available: https:
//www.mdpi.com/1996-1073/13/6/1342
[6] A. W. R. H. M. Kimiabeigi J. D. Widmer R. S. Sheridan, “Design of high performance traction motors using
cheaper grade of materials,”
IEEE Xplore, 2015.
[7] Z. Q. Zhu and Y. X. Li, “Modularity techniques in high performance permanent magnet machines and applica-
tions,”
CES Transactions on Electrical Machines and Systems, vol. 2, no. 1, pp. 93–103, March 2018.
[8] M. Clauer and A. Binder, “Investigation of permanent magnet synchronous machines with buried magnets
and carbon fiber sleeve for automotive application,”
Elektrotechnik & Informationstechnik, 2023. [Online].
Available: https://doi.org/10.1007/s00502-023-01131-7
[9] K. M. Cisse, S. Hlioui, M. Belhadi, G. M. Rollet, M. Gabsi, and Y. Cheng, “Design optimization of multi-layer
permanent magnet synchronous machines for electric vehicle applications,”
Energies, vol. 14, no. 21, p. 7116,
2021. [Online]. Available: https://doi.org/10.3390/en14217116
[10] N. F. P. G. Technologies and P. C. M. L. Howard Penrose, “Motor rewind with zeus peek insulation products,”
2017, ©2017 Zeus Industrial Products, Inc.
[11] H. Memon, Y. Wei, and C. Zhu, “Recyclable and reformable epoxy resins based on dynamic covalent
96
5 References
bonds – present, past, and future,”
Polymer Testing, vol. 105, p. 107420, 2022. [Online]. Available:
https://doi.org/10.1016/j.polymertesting.2021.107420
[12] Lammotor. (2024) What is stator winding? Accessed on 2025-04-24. [Online]. Available: https:
//lammotor.com/what-is-stator-winding/
[13] ——. (2024) Tesla model s plaid vs lucid air motor stator rotor comparison. Accessed on 2025-04-24.
[Online]. Available: https://lammotor.com/tesla-model-s-plaid-vs-lucid-air-motor/
[14] M. Heim, F. Wirth, L. Boschert, and J. Fleischer, “An approach for the disassembly of permanent magnet
synchronous rotors to recover rare earth materials,”
Procedia CIRP, vol. 116, pp. 71–76, 2023. [Online].
Available: https://doi.org/10.1016/j.procir.2023.02.013
[15] Stack Exchange Community, “Information about tesla model 3’s ipmsrm motor construction and torque
production,” https://electronics.stackexchange.com/questions/481833/information-abou…-
ipmsrm-motor-construction-and-torque-productio, 2019, accessed: 2025-05-09.
[16] ——, “Tesla model 3 motor,” https://electronics.stackexchange.com/questions/479957/tesla-model-3-
motor, 2020, accessed: 2025-05-09.
[17] J. Jin, “Carbon fiber sleeve for permanent magnet rotor,” https://jonahjin.com/carbon-fiber-sleeve-for-
permanent-magnet-rotor/, 2023, accessed: 2025-05-09.
[18] Visumatic. (2025) Stand alone automated screwdriving systems. Accessed: 13-Mar-2025. [Online]. Available:
https://www.visumatic.com/automatic-screwdriving-systems/fixtured/stand…
[19] A. M. Ajamloo, M. N. Ibrahim, and P. Sergeant, “Design considerations of a new ipm rotor with efficient
utilization of pms enabled by additive manufacturing,”
IEEE Access, vol. 12, pp. 61 036–61 048, 2024.
[Online]. Available: 10.1109/ACCESS.2024.3394739
[20] Stack Exchange user: Aaron Stevens, “Why is the beam bending stiffness taken as ei/l?” 2021,
accessed: 2025-05-07. [Online]. Available: https://engineering.stackexchange.com/questions/44646/why-
is-the-beam-bending-stiffness-taken-as-ei-l
[21] K. C. Agudo. (2021) How to solve for the moment of inertia of irregular or compound shapes. Accessed:
2025-05-07. [Online]. Available: https://discover.hubpages.com/education/How-to-Solve-for-the-Moment-
of-Inertia-of-Irregular-or-Compound-Shapes
[22] CEN-CENELEC. (2021) Eu circular economy action plan. Accessed: 2025-05-22. [Online].
Available: https://www.cencenelec.eu/news-and-events/news/2021/briefnews/2021-02-0…-
economy-action-plan/
97
5 References
[23] United Nations, “Sustainable development goals,” 2025, accessed: 2025-05-07. [Online]. Available:
https://sdgs.un.org/goals
[24] E. A. Boulter and G. C. Stone, “Historical development of rotor and stator winding insulation materials and
systems,”
IEEE Electrical Insulation Magazine, vol. 20, no. 3, pp. 25–37, May/June 2004, adapted from ”Elec-
trical Insulation for Rotating Machines – Design, Evaluation, Aging, Testing and Repair,” published by IEEE
and John Wiley, 2004.
[25] ——, “Historical development of rotor and stator winding insulation materials and systems,”
IEEE Electrical
Insulation Magazine, vol. 20, no. 3, pp. 25–37, 2004, downloaded from IEEE Xplore, University of Gent,
October 12, 2024. [Online]. Available: 10.1109/IEEEXplore
[26] T. Glaessel, J. Seefried, A. Kuehl, and J. Franke, “Skinning of insulated copper wires within the production
chain of hairpin windings for electric traction drives,”
International Journal of Mechanical Engineering and
Robotics Research, vol. 9, no. 2, pp. 1–10, 2020.
[27] supermagnete. (n.d.) Questions and answers about the grade of ferrite magnets. Accessed: 2025-02-05.
[Online]. Available: https://www.supermagnete.de/eng/faq/Questions-and-answers-about-the-gra…-
ferrite-magnets
[28] E. E. Agency, “New registrations of electric vehicles,” 2024, accessed: March 17, 2025. [Online]. Available:
https://www.eea.europa.eu/en/analysis/indicators/new-registrations-of-e…
[29] Z. Li, A. S. Hamidi, Z. Yan, A. Sattar, S. Hazra, J. Soulard, C. Guest, S. H. Ahmed, and F. Tailor, “A circular
economy approach for recycling electric motors in the end-of-life vehicles: A literature review,”
Resources,
Conservation Recycling, vol. 205, p. 107582, 2024. [Online]. Available: 10.1016/j.resconrec.2024.107582
[30] W. Cai, X. Wu, M. Zhou, Y. Liang, and Y. Wang, “Review and development of electric motor systems and
electric powertrains for new energy vehicles,”
Automotive Innovation, vol. 4, no. 3, pp. 3–22, 2021. [Online].
Available: https://doi.org/10.1007/s42154-021-00139-z
[31] Z. Li, A. K. Lebouc, J.-M. Dubus, L. Garbuio, and S. Personnez, “Reuse and recycle strategies of rare earth
permanent magnets for electrical machines – an overview study,” in
Symposium de Génie Electrique (SGE
2018), 2018. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02981910
[32] V. Capitalist. (2021) Rare earth metals production is no longer monopolized by china. Accessed: 20-Feb-2025.
[Online]. Available: https://elements.visualcapitalist.com/rare-earth-metals-production-not-…-
china/
[33] A. Rassõlkin, A. Kallaste, S. Orlova, L. Gevorkov, T. Vaimann, and A. Belahcen, “Re-use and recycling of
different electrical machines,”
Latvian Journal of Physics and Technical Sciences, vol. 55, no. 4, pp. 13–23,
98
5 References
2018. [Online]. Available: https://www.researchgate.net/publication/327426799_Re-Use_and_Recycling…
Different_Electrical_Machines
[34] E. Kasagga and A. EL-Refaie, “Recyclable electrical machine designs: Current approaches and perspectives,”
International Conference on Electrical Machines (ICEM), 2024. [Online]. Available: 10.1109/ICEM60801.2024.
10700498
[35] R. Hernández-Millán and J. R. Pacheco-Pimentel, “Recycling rotating electrical machines,”
Revista Facultad de
Ingeniería, Universidad de Antioquia, no. 83, pp. 50–56, 2017. [Online]. Available: 10.17533/udea.redin.n83a07
[36] Z. Li, A. Kedous-Lebouc, J.-M. Dubus, L. Garbuio, and S. Personnez, “Reuse and recycle strategies of rare earth
permanent magnets for pm electrical machines – an overview study,” in
Symposium de Génie Electrique (SGE
2018). Université de Lorraine [UL], 2018. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02981910
[37] C. Henaux, B. Nogarede, and D. Harribey, “A new concept of modular permanent magnet and soft magnetic
compound motor dedicated to widespread application,”
IEEE Transactions on Magnetics, vol. 48, no. 6, pp.
2035–2043, 2012. [Online]. Available: 10.1109/TMAG.2011.2181530
[38] Z. Li, P. Wang, S. Che, S. Du, Y. Li, and H. Sun, “Recycling and remanufacturing technology analysis
of permanent magnet synchronous motor,”
Clean Technologies and Environmental Policy, vol. 24, pp.
1727–1740, 2022. [Online]. Available: 10.1007/s10098-022-02279-0
[39] V. P. u. Dosiertechnik GmbH, “Resin impregnation of electric motors,” 2020, accessed: 08.01.2020. [Online].
Available: https://www.viscotec.de/en/products/
[40] H. Liu, C. Liu, Y. Liu, Y. Jiang, X. Li, and Y. Bai, “Rapid repair and degradation: A study of high-performance
recyclable vitrimer epoxy resin based on disulfide bonds,”
Polymer Testing, vol. 137, p. 108528, 2024.
[Online]. Available: 10.1016/j.polymertesting.2024.108528
[41] E. A. Boulter and G. C. Stone, “Historical development of rotor and stator winding insulation materials
and systems,”
IEEE Electrical Insulation Magazine, vol. 20, no. 3, pp. 25–37, 2004. [Online]. Available:
10.1109/MEI.2004.1314968
[42] W. J. R. González, “Design of a permanent magnet direct recycling line: A comprehensive approach towards
a circular economy,” Master’s Thesis, Politecnico di Milano, 2023.
[43] T. Elwert, D. Goldmann, F. Römer, M. Buchert, C. Merz, D. Schueler, and J. Sutter, “Current developments and
challenges in the recycling of key components of (hybrid) electric vehicles,”
Recycling, vol. 1, pp. 25–60,
2016. [Online]. Available: https://www.mdpi.com/journal/recycling
[44] A. Lixandru, “Recycling of nd-fe-b permanent magnets by hydrogen processes,” PhD thesis, Technische
99
5 References
Universität Darmstadt, 2018, uRN: urn:nbn:de:tuda-tuprints-73922. [Online]. Available: https://tuprints.ulb.
tu-darmstadt.de/7392/
[45] K. Binnemans, P. T. Jones, B. Blanpain, T. V. Gerven, Y. Yang, A. Walton, and M. Buchert, “Recycling of rare earths:
a critical review,”
Journal of Cleaner Production, vol. 51, pp. 1–22, 2013.
[46] M. Kimiabeigi, R. S. Sheridan, J. D. Widmer, A. Walton, M. Farr, B. Scholes, and I. R. Harris, “Production and
application of hpms recycled bonded permanent magnets for a traction motor application,”
IEEE Transactions
on Industrial Electronics, vol. 65, no. 5, pp. 3795–3804, 2018.
[47] T. Elwert, D. Goldmann, F. Römer, M. Buchert, C. Merz, D. Schueler, and J. Sutter, “Current developments and
challenges in the recycling of key components of (hybrid) electric vehicles,”
Recycling, vol. 1, pp. 25–60,
2015. [Online]. Available: https://www.researchgate.net/publication/283523469
[48] HARMONY Project Consortium, “HARMONY: Recycling rare earth elements from end-of-life NdFeB permanent
magnets more efficiently,” https://www.harmonyproject.eu/, 2024, eU-funded project aiming to develop a
comprehensive recycling process for rare earth elements from end-of-life NdFeB magnets.
[49] M. M. L. Chang, S. K. Ong, and A. Y. C. Nee, “Approaches and challenges in product disassembly planning
for sustainability,”
Procedia CIRP, vol. 60, pp. 506–511, 2017, open access article under CC BY-NC-ND license.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2212827117300136
[50] S. T. Lundmark and M. Alatalo, “A segmented claw-pole motor for traction applications considering recy-
cling aspects,” in
2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable
Energies (EVER). IEEE, 2013, pp. 1–7.
[51] A. K. Jha, L. Garbuio, A. Kedous-Lebouc, J.-P. Yonnet, and J.-M. Dubus, “Design and comparison of outer rotor
bonded magnets halbach motor with different topologies,”
IEEE, 2025, accessed from IEEE Xplore on March
03, 2025.
[52] T. Inc., “Electrical machine with optimized design for efficiency and performance,” Patent WO2 021 225 902A1,
2021. [Online]. Available: https://worldwide.espacenet.com/
[53] D. Tiwari, J. Miscandlon, A. Tiwari, and G. W. Jewell, “A review of circular economy research for electric
motors and the role of industry 4.0 technologies,”
Sustainability, vol. 13, no. 9668, 2021. [Online]. Available:
https://doi.org/10.3390/su13179668
[54] X. Ling, X. Jing, C. Zhang, and S. Chen, “Polyether ether ketone (peek) properties and its application status,”
in
IOP Conference Series: Earth and Environmental Science, vol. 453, no. 1. IOP Publishing, 2020, p. 012080.
[Online]. Available: https://doi.org/10.1088/1755-1315/453/1/012080
[55] Bekaert, “Enamel vs peek: how hairpin wire coating makes all the difference for high-voltage electric vehi-
100
5 References
cles,” 2024, accessed: 2024-12. [Online]. Available: https://www.bekaert.com/en/products/energy-utilities/
alternative-energy/ampact-wired-to-power-up-high-voltage-mobility/difference-for-high-voltage-evs
[56] ——. (2024) Ampact™: Wired to power up high voltage mobility. Accessed: December 2024. [Online]. Avail-
able: https://www.bekaert.com/en/products/energy-utilities/alternative-energy…-
up-high-voltage-mobility
[57] A. van der Vegt and L. Govaert,
Polymeren: van keten tot kunststof, fifth edition ed. Delft, Netherlands:
VSSD, 2005.
[58] O. Ishida, S. Oda, and K. Uzawa, “Impregnation process of large-tow carbon-fiber woven fabric/polyamide
6 composites using solvent method,”
Composites: Part A, vol. 180, p. 108068, 2024. [Online]. Available:
https://doi.org/10.1016/j.compositesa.2024.108068
[59] S. M. Haque, J. A. Ardila-Rey, Y. Umar, A. A. Mas’ud, F. Muhammad-Sukki, B. H. Jume, H. Rahman, and N. A. Bani,
“Application and suitability of polymeric materials as insulators in electrical equipment,”
Energies, vol. 14,
no. 10, p. 2758, 2021. [Online]. Available: https://www.mdpi.com/1996-1073/14/10/2758
[60] J. D. Ferry,
Introduction to Polymer Viscoelasticity, 2nd ed. John Wiley & Sons, 1980.
[61] D. A. Kissounko, P. Taynton, and C. Kaffer, “New material: vitrimers promise to impact composites,”
Reinforced
Plastics, vol. 00, no. 00, pp. 1–5, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.repl.2017.06.084
[62] A. Kampker, H. H. Heimes, B. Dorn, F. Brans, and C. Stäck, “Challenges of the continuous hairpin technology
for production techniques,”
Energy Reports, vol. 9, pp. 107–114, 2023, 9th International Conference on Power
and Energy Systems Engineering (CPESE 2022), Doshisha University, Kyoto, Japan, 9–11 September 2022.
[Online]. Available: 10.1016/j.egyr.2022.10.370
[63] A. Haas and W. Hackmann, “Process for manufacturing stator wave windings for electric traction motors,”
MTZextra – Special Edition 2022, 2022, in cooperation with Vitesco Technologies GmbH. [Online]. Available:
https://www.vitesco-technologies.com/en-us
[64] HONEST Automation. (2023) W-pin motor stator process flow and advantages. Accessed: 2025-05-09.
[Online]. Available: https://en.cnhonest.com/news/151.html
[65] M. Marijuan, I. Martinez, and F. Garramiola, “A comparison between continuous and hairpin windings
for electric traction drives,” in
2023 13th International Electric Drives Production Conference (EDPC).
Regensburg, Germany: IEEE, 2023, pp. 1–8. [Online]. Available: https://doi.org/10.1109/EDPC60603.2023.
10372165
[66] T. Klier, F. Risch, and J. Franke, “Disassembly, recycling, and reuse of magnet material of electric drives,”
in
IEEE International Electric Drives Production Conference. Nuremberg, Germany: Friedrich-Alexander-
101
5 References
University Erlangen-Nuremberg, Institute for Factory Automation and Production Systems, 2013. [Online].
Available: 10.1109/EDPC.2013.6689743
[67] P. Dawkins, “Cylindrical coordinates,” https://tutorial.math.lamar.edu/classes/calciii/CylindricalCoords.aspx,
2024, accessed: 2024-12-11.
[68] Kethink, “Centrifugal force equation,” https://www.kethink.com/centrifugal-force-equation.html, 2024, ac-
cessed: 2024-12-11.
[69] G. Eniyan, K. Haridharani, B. Praveen Kumar, T. Suganesh, and M. Easwaramoorthi, “Design and analysis of
pmsm motor in skewing process,”
International Journal of Research Publication and Reviews, vol. 3, no. 12,
pp. 619–631, December 2022. [Online]. Available: http://www.ijrpr.com
[70] O. Ocak and M. Aydin, “An innovative semi-fea based, variable magnet-step-skew to minimize cogging torque
and torque pulsations in permanent magnet synchronous motors,”
IEEE Access, vol. 8, pp. 210 775–210 783,
2020, published: November 16, 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.3038340
[71] Courage Magnet, “Ceramic ferrite magnets bh curve y25 y30 y30bh y35,” 2024, accessed: 2025-05-02.
[Online]. Available: https://www.couragemagnet.com/magnet-blog/2390.html
[72] R4Y Magnetics, “Demagnetized curves of neodymium magnets,” 2025, accessed: 2025-05-02. [Online].
Available: https://www.r4ymagnetics.com/Demagnetized-Curves-of-Neodymium-Magnets.h…
[73] Fathom Digital Manufacturing, “How accurate is wire edm?” 2025, accessed: 2025-04-09. [Online].
Available: https://fathommfg.com/how-accurate-is-wire-edm
[74] F. Mahmouditabar, A. Vahedi, and F. Marignetti, “The demagnetization phenomenon in pm machines:
Principles, modeling, and design considerations,”
IEEE Access, vol. 11, pp. 47 750–47 767, 2023. [Online].
Available: 10.1109/ACCESS.2023.3274701
[75] F. Fiorillo, G. Bertotti, C. Appino, and M. Pasquale, “Soft magnetic materials,” in
Encyclopedia of
Applied Physics. John Wiley & Sons, Inc., 2016, pp. 1–42, author’s accepted version. [Online]. Available:
10.1002/047134608X
[76] E. M. Ltd., “Ferrite / ceramic magnets datasheet,” n.d., accessed: 2025-04-14. [Online]. Available:
https://www.eclipsemagnetics.com
[77] Henkel Adhesives, “LOCTITE® 2430 – Threadlocker,” 2025, accessed on May 16, 2025. [Online]. Available:
https://www.henkel-adhesives.com/be/nl/product/threadlockers/loctite_24…
[78] European Commission, “Regulation (eu) 2024/1252 of the european parliament and of the council estab-
lishing a framework for ensuring a secure and sustainable supply of critical raw materials,” https://eur-
102
5 References
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1252, May 2024, official Journal of the European
Union, L 2024/1252, 3.5.2024.
[79] ——, “A new circular economy action plan: For a cleaner and more competitive europe,” https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0098, March 2020, cOM(2020) 98 final.
[80] ——, “Proposal for a regulation on ecodesign for sustainable products,” https://ec.europa.eu/environment/
publications/proposal-ecodesign-sustainable-products-regulation_en, Mar. 2022, part of the Sustainable
Products Initiative, COM(2022) 142 final.
[81] European Parliament and Council, “Directive 2000/53/ec of the european parliament and of the council
of 18 september 2000 on end-of life vehicles,” https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32000L0053, Sep. 2000, official Journal of the European Communities, L 269, 21.10.2000, p. 34–43.
103

Download scriptie (27.68 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2025
Promotor(en)
Peter Sergeant, Mohamed Ibrahim