Wanneer je aan een kernreactor denkt, zie je waarschijnlijk gigantische stalen koepels, kilometers aan pijpleidingen en controlekamers vol lampjes voor je. Maar de toekomst van kernenergie zou wel eens kunnen passen in iets dat dunner is dan een spaghetti.
In mijn masterproef heb ik gezocht naar een klein maar cruciaal antwoord op een groot probleem: hoe kunnen we kernenergie compacter en efficiënter maken, met behulp van belletjes die nauwelijks met het blote oog te zien zijn?
Klassieke kernreactoren zijn enorm, duur en traag om te bouwen. Dat maakt ze moeilijk te combineren met de flexibele, hernieuwbare energiemix van de toekomst. Kleine modulaire reactoren (SMRs) moeten dat veranderen: compacte reactoren die in een fabriek gebouwd worden, per vrachtwagen geleverd kunnen worden, op locatie geassembleerd worden en overal ter wereld schone energie kunnen leveren.
Om het voordeel uit een kleinere reactor te halen, moet de warmte sneller en efficiënter worden afgevoerd. Daarvoor gebruiken ingenieurs microkanaal-warmtewisselaars: kleine metalen blokken vol ultrafijne kanaaltjes (micrometers in diameter) waar water kookt tot stoom en zo de warmte meeneemt (Figuur 1).
Als zo’n microkanaal niet goed werkt, vermindert de totale efficiëntie van de reactor, wat resulteert in hogere kosten per geproduceerde kilowattuur en in sommige gevallen zelfs veiligheidsrisico’s. Begrijpen wat er precies gebeurt in een microkanaal is dus essentieel, maar ook één van de moeilijkste uitdagingen in de thermo-hydraulica (de wetenschap van warmtestroming in vloeistoffen en gassen).
Grote doorbraken beginnen soms met de kleinste belletjes
Koken lijkt eenvoudig: je ziet het elke dag in een waterkoker. Maar in een microkanaal is het allesbehalve simpel. Stel je een waterstroom voor die door een buisje van minder dan een millimeter breed raast, terwijl minuscule dampbelletjes ontstaan in specifieke vormen en patronen (flow regimes), afhankelijk van druk, temperatuur en snelheid (Figuur 2).
Bij sommige stromingspatronen ontstaat tussen de wand van het kanaal en de damp een vloeistoflaag van slechts enkele micrometers dik. Het is deze dunne film die bepaalt hoeveel warmte veilig kan worden uitgewisseld en dus hoe efficiënt de warmtewisselaar werkt.
Meten wat er exact in een microkanaal gebeurt, is bijna onmogelijk. Temperaturen veranderen in milliseconden, belletjes bewegen te snel, en elke sensor die je plaatst, verstoort de stroming. Daarom gebruiken ingenieurs Computational Fluid Dynamics (CFD): numerieke simulaties die de stroming en het koken virtueel nabootsen.
Wat we niet kunnen meten, kunnen we vandaag wél simuleren
Dat was het doel van mijn thesis: een betrouwbaar CFD-model ontwikkelen dat kan voorspellen hoe water kookt en stroomt in microkanalen, en dat globaal valideren met experimentele gegevens, die voor dit type microkanalen schaars zijn.
Het onderzoek begon met een adiabatisch model (een simulatie zonder warmteoverdracht) waarin enkel vloeistof en gas samen bewegen. Dit leerde het model hoe belletjes zich verdelen, hoe snel elke fase beweegt en hoe krachten tussen vloeistof en gas zich gedragen. De resultaten kwamen goed overeen met experimenten: de "basisfysica" klopte.
Vervolgens werd een verfijnd model ontwikkeld, gericht op drukval en energieverlies van het tweefasenmengsel doorheen het kanaal. De drukval bepaalt samen met de dunne vloeistoflaag hoe efficiënt warmte wordt verdeeld en uitgewisseld. Het model voorspelde de drukval accuraat voor het annulaire stromingspatroon (een patroon waarin een dunne vloeistoffilm langs de wand loopt en de damp in het midden stroomt). Dit is precies het patroon dat verwacht wordt onder de omstandigheden in SMR’s.
Tot slot werd het kookproces zelf toegevoegd. Met hulp van Amerikaanse collega’s van het Massachusetts Institute of Technology simuleerde ik het ontstaan, groeien en loslaten van dampbelletjes aan de wand. De simulatie voorspelde drukval en wandtemperatuur verrassend goed en volgde nauwkeurig de trends die in experimenten werden waargenomen. Zelfs zonder elke bel afzonderlijk te berekenen, wist het model het globale thermohydraulische gedrag correct te vangen.

Het ontwikkelde model en de resultaten zijn meer dan een numerieke simulatie. Ze vormen de fundering voor de volgende generatie warmtewisselaars in kernreactoren. Met dit type model kunnen ingenieurs veel sneller en goedkoper ontwerpen testen, optimaliseren en valideren, volledig digitaal, zonder dure proefopstellingen of maandenlange experimenten.
Dat maakt het mogelijk om reactoren te ontwikkelen die meer warmte uit minder brandstof halen, stabieler draaien en veiliger reageren op storingen. Een goed gevalideerd CFD-model kan honderden fysieke prototypes vervangen, waardoor onderzoek niet alleen versnelt, maar ook toegankelijker wordt voor kleinere onderzoeksinstellingen en bedrijven.
Het gaat dus niet enkel om nauwkeurige simulaties, maar om het hertekenen van het hele ontwikkelingsproces in de energietechnologie. Wie beter begrijpt hoe warmte zich microscopisch gedraagt, kan op macroschaal grote stappen zetten: efficiëntere warmte-uitwisseling, minder materiaalverbruik, en uiteindelijk goedkopere en duurzamere energieproductie.
Daarnaast reiken de inzichten uit dit onderzoek verder dan de nucleaire sector. Hoewel het model specifiek ontwikkeld werd voor SMRs, kan de opgedane kennis worden toegepast in andere stromings- en kookcondities. Denk aan koeltechnieken voor supercomputers en satellieten, of industriële processen waarin warmte op een gecontroleerde manier moet worden afgevoerd.
Elk procent winst in warmte-efficiëntie kan tonnen CO₂ en miljoenen euro’s besparen.
En die winst begint bij iets kleins: bij het correct voorspellen van hoe een enkel dampbelletje zich gedraagt in een microkanaal.
[1] P. A. Breeze, Nuclear power, ser. The power generation series. London, United
Kingdom: Academic Press, 2017, includes bibliographical references. - Print ver-
sion record.
[2] International Energy Agency, Energy and AI. Paris, France: International
Energy Agency, 2024, ch. 2, pp. 49–86, world Energy Outlook Special Report.
[Online]. Available: https://www.iea.org/reports/energy-and-ai
[3] K. Triplett, S. Ghiaasiaan, S. Abdel-Khalik, and D. Sadowski, “Gas–liquid two-
phase flow in microchannels part i: two-phase flow patterns,” International Jour-
nal of Multiphase Flow, vol. 25, no. 3, pp. 377–394, Apr. 1999.
[4] K. Bang, K. Kim, S. Lee, and B. Lee, “Pressure effect on flow boiling heat transfer
of water in minichannels,” International Journal of Thermal Sciences, vol. 50, no. 3,
pp. 280–286, Mar. 2011.
[5] B. Sumith, F. Kaminaga, and K. Matsumura, “Saturated flow boiling of water in
a vertical small diameter tube,” Experimental Thermal and Fluid Science, vol. 27,
no. 7, pp. 789–801, Sep. 2003.
[6] S. Laborie, C. Cabassud, L. Durand-Bourlier, and J. Lainé, “Characterisation
of gas–liquid two-phase flow inside capillaries,” Chemical Engineering Science,
vol. 54, no. 23, pp. 5723–5735, Dec. 1999.
[7] H. C. Kim, W.-P. Baek, and S. H. Chang, “Critical heat flux of water in vertical
round tubes at low pressure and low flow conditions,” Nuclear Engineering and
Design, vol. 199, no. 1–2, pp. 49–73, Jun. 2000.
[8] A. M. Lezzi, A. Niro, and G. P. Beretta, “Experimental data on chf for forced
convection water boiling in long horizontal capillary tubes,” in Proceeding of In-
ternational Heat Transfer Conference 10. Begellhouse, 1994, pp. 491–496.
[9] C. Shin, “Experimental study for pressure drop and flow instability of two-
phaseflow in the pche-type steam generator for smrs,” Nuclear Engineering
and Design, vol. 318, pp. 109–118, 2017. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S002954931730167X?via=ihub
[10] F. Verhaeghe, L.-S. Luo, and B. Blanpain, “Lattice boltzmann modeling of mi-
crochannel flow in slip flow regime,” Journal of Computational Physics, vol. 228,
no. 1, pp. 147–157, Jan. 2009.
[11] S. Rassame and T. Hibiki, “Drift-flux correlation for gas-liquid two-phase flow in
a horizontal pipe,” International Journal of Heat and Fluid Flow, vol. 69, pp. 33–42,
Feb. 2018.
[12] T. Hibiki, “One-dimensional drift-flux correlations for two-phase flow in
medium-size channels,” Experimental and Computational Multiphase Flow, vol. 1,
no. 2, pp. 85–100, Apr. 2019.
[13] S. Mohanty, O. Parkash, and R. Arora, “Analytical and comparative investi-
gations on counter flow heat exchanger using computational fluid dynamics,”
Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 2019.
[14] K. Foli, T. Okabe, M. Olhofer, Y. Jin, and B. Sendhoff, “Optimization of micro
heat exchanger: Cfd, analytical approach and multi-objective evolutionary al-
gorithms,” International Journal of Heat and Mass Transfer, vol. 49, no. 5–6, pp.
1090–1099, Mar. 2006.
[15] K. Ekambara, R. Sanders, K. Nandakumar, and J. Masliyah, “Cfd simulation of
bubbly two-phase flow in horizontal pipes,” Chemical Engineering Journal, vol.
144, no. 2, pp. 277–288, Oct. 2008.
[16] H. Aburema, B. Hanson, M. Fairweather, and M. Colombo, “A generalised mul-
tiphase modelling approach with heat transfer and thermal phase change,” In-
ternational Journal of Heat and Fluid Flow, vol. 109, p. 109524, Oct. 2024.
[17] M. A. Amidu and H. Kim, “Modeling and simulation of flow boiling heat trans-
fer on a downward-facing heating wall in the presence of vapor slugs,” Nuclear
Engineering and Design, vol. 351, pp. 175–188, Sep. 2019.
[18] S. Tom, P. Mangarjuna Rao, B. Venkatraman, and S. Raghupathy, “Development of cfd based model for sodium flow boiling in narrow channel akin to sfr fuel subchannel towards high void fraction regimes,” Nuclear Engineering and Design, vol. 396, p. 111877, Sep. 2022.
[19] E. Krepper, R. Rzehak, C. Lifante, and T. Frank, “Cfd for subcooled flow boiling:
Coupling wall boiling and population balance models,” Nuclear Engineering and
Design, vol. 255, pp. 330–346, Feb. 2013.
[20] X. Peng and G. Peterson, “The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels,” International Journal of Heat and Mass Transfer, vol. 38, no. 4, pp. 755–758, Mar. 1995.
[21] Y. Han, Y. Liu, M. Li, and J. Huang, “A review of development of micro-channel
heat exchanger applied in air-conditioning system,” Energy Procedia, vol. 14, pp.
148–153, 2012.
[22] D. Tuckerman and R. Pease, “High-performance heat sinking for vlsi,” IEEE Electron Device Letters, vol. 2, no. 5, pp. 126–129, May 1981.
[23] A. J. S.S. Mehendale, “Evaporative heat transfer in mesoscale heatexchangers,” in ASHRAE Trans, vol. 106, no. 1, 2000, pp. 446–452.
[24] S. G. Kandlikar and W. J. Grande, “Evolution of microchannel flow passages–
thermohydraulic performance and fabrication technology,” Heat Transfer Engi-
neering, vol. 24, no. 1, pp. 3–17, Jan. 2003.
[25] P. A. Kew and K. Cornwell, “Correlations for the prediction of boiling heat transfer in small-diameter channels,” Applied Thermal Engineering, vol. 17, no. 8–10, pp. 705–715, Aug. 1997.
[26] L. Cheng and G. Xia, “Flow patterns and flow pattern maps for adiabatic and diabatic gas liquid two phase flow in microchannels: fundamentals, mechanisms
and applications,” Experimental Thermal and Fluid Science, vol. 148, p. 110988, Oct. 2023.
[27] L. Cheng, G. Xia, and J. R. Thome, “Flow boiling heat transfer and two-phase
flow phenomena of co2 in macro- and micro-channel evaporators: Fundamen-
tals, applications and engineering design,” Applied Thermal Engineering, vol. 195,
p. 117070, Aug. 2021.
[28] R. Gupta and A. Deshpande, CFD Modeling of Two-Phase Flow in Mini and Microchannels. Springer Nature Singapore, 2023, pp. 1279–1304.
[29] V. Hernandez-Perez, M. Abdulkadir, and B. Azzopardi, “Grid generation issues
in the cfd modelling of two-phase flow in a pipe,” The Journal of Computational
Multiphase Flows, vol. 3, no. 1, pp. 13–26, Mar. 2011.
[30] S. Hardt and F. Wondra, “Evaporation model for interfacial flows based on a
continuum-field representation of the source terms,” Journal of Computational
Physics, vol. 227, no. 11, pp. 5871–5895, May 2008.
[31] M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow. Springer US,
2006.
[32] N. Kurul and M. Z. Podowski, “Multidimensional effects in forced convec-
tion subcooled boiling,” in Proceeding of International Heat Transfer Conference 9.
Begellhouse, 1990.
[33] T. Fouilland, D. Fletcher, and B. Haynes, “Film and slug behaviour in inter-
mittent slug–annular microchannel flows,” Chemical Engineering Science, vol. 65,
no. 19, pp. 5344–5355, Oct. 2010.
[34] N. Shao, A. Gavriilidis, and P. Angeli, “Flow regimes for adiabatic gas–liquid
flow in microchannels,” Chemical Engineering Science, vol. 64, no. 11, pp. 2749–
2761, Jun. 2009.
[35] M. K. Akbar, D. A. Plummer, and S. M. Ghiaasiaan, “Gas-liquid two-phase
flow regimes in microchannels,” in Heat Transfer, Volume 7, ser. IMECE2002.
ASMEDC, Jan. 2002, pp. 527–534.
[36] T. Harirchian and S. V. Garimella, “Boiling heat transfer and flow regimes in
microchannels—a comprehensive understanding,” Journal of Electronic Packag-
ing, vol. 133, no. 1, Mar. 2011.
[37] N. Thomas, “Entrapment and transport of bubbles by transient large eddies in turbulent shear flow,” BHRA International Conference on the Physical Modelling of Multiphase Flow, 1983.
[38] I. Ẑun, “The transverse migration of bubbles influenced by walls in vertical bubbly flow,” International Journal of Multiphase Flow, vol. 6, no. 6, pp. 583–588, Dec. 1980.
[39] D. Drew and R. Lahey, “The virtual mass and lift force on a sphere in rotating
and straining inviscid flow,” International Journal of Multiphase Flow, vol. 13, no. 1,
pp. 113–121, Jan. 1987.
[40] A. Tomiyama, H. Tamai, I. Zun, and S. Hosokawa, “Transverse migration of single bubbles in simple shear flows,” Chemical Engineering Science, vol. 57, no. 11,
pp. 1849–1858, Jun. 2002.
[41] E. Baglietto and M. Christon, “Demonstration and assessment of advanced modeling capabilities to multiphase flow with sub-cooled boiling,” CASL, Tech. Rep., 2013.
[42] D. LEGENDRE and J. MAGNAUDET, “The lift force on a spherical bubble in a
viscous linear shear flow,” Journal of Fluid Mechanics, vol. 368, pp. 81–126, Aug.
1998.
[43] P. G. Saffman, “The lift on a small sphere in a slow shear flow,” Journal of Fluid Mechanics, vol. 22, no. 2, pp. 385–400, Jun. 1965.
[44] T. Auton, “The lift force on a spherical rotational flow,” Journal of Fluid Mechanics, vol. 183, pp. 199–218, 1987.
[45] J. B. McLaughlin, “Inertial migration of a small sphere in linear shear flows,”
Journal of Fluid Mechanics, vol. 224, pp. 261–274, Mar. 1991.
[46] R. M. Sugrue, “A robust momentum closure approach for multiphase computational fluid dynamics applications,” Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, Sep. 2017.
[47] A. D. Burns, T. Frank, I. Hamill, and J.-M. Shi, “The favre averaged drag model
for turbulent dispersion in eulerian multi-phase flows,” in Proceedings of the 5th
International Conference on Multiphase Flow (ICMF’04), Yokohama, Japan, May
2004, paper No. 392.
[48] J. Laviéville, N. Mérigoux, M. Guingo, C. Baudry, and S. Mimouni, “A gen-
eralized turbulent dispersion model for bubbly flow numerical simulation in
neptune-cfd,” Nuclear Engineering and Design, vol. 312, pp. 284–293, Feb. 2017.
[49] A. D. Gosman, C. Lekakou, S. Politis, R. I. Issa, and M. K. Looney, “Multidimen-
sional modeling of turbulent two‐phase flows in stirred vessels,” AIChE Journal,
vol. 38, no. 12, pp. 1946–1956, Dec. 1992.
[50] C. Ljus, “On particle transport and turbulence modification in air-particle flows,” Ph.D. dissertation, Chalmers University of Technology, Sweden, 2000.
[51] M. López de Bertodano, “Turbulent bubbly two-phase flow in a triangular duct,” phdthesis, Rensselaer Polytechnic Institute, Troy, New York, 1992.
[52] P. Carrica, D. Drew, F. Bonetto, and R. Lahey, “A polydisperse model for bubbly two-phase flow around a surface ship,” International Journal of Multiphase Flow, vol. 25, no. 2, pp. 257–305, Mar. 1999.
[53] V. E. Nakoryakov, O. N. Kashinsky, V. V. Randin, and L. S. Timkin, “Gas-liquid
bubbly flow in vertical pipes,” Journal of Fluids Engineering, vol. 118, no. 2, pp.
377–382, Jun. 1996.
[54] J. Marié, E. Moursali, and S. Tran-Cong, “Similarity law and turbulence intensity profiles in a bubbly boundary layer at low void fractions,” International Journal of Multiphase Flow, vol. 23, no. 2, pp. 227–247, Apr. 1997.
[55] S. Antal, R. Lahey, and J. Flaherty, “Analysis of phase distribution in fully de-
veloped laminar bubbly two-phase flow,” International Journal of Multiphase Flow, vol. 17, no. 5, pp. 635–652, Sep. 1991.
[56] J. Lu and G. Tryggvason, “Dynamics of nearly spherical bubbles in a turbulent channel upflow,” Journal of Fluid Mechanics, vol. 732, pp. 166–189, Aug. 2013.
[57] A. Tomiyama, “Struggle with computational bubble dynamics,” Multiphase Science and Technology, vol. 10, no. 4, pp. 369–405, 1998.
[58] T. Frank, P. Zwart, E. Krepper, H.-M. Prasser, and D. Lucas, “Validation of cfd
models for mono- and polydisperse air–water two-phase flows in pipes,” Nuclear Engineering and Design, vol. 238, no. 3, pp. 647–659, Mar. 2008.
[59] N. Lubchenko, B. Magolan, R. Sugrue, and E. Baglietto, “A more fundamental
wall lubrication force from turbulent dispersion regularization for multiphase
cfd applications,” International Journal of Multiphase Flow, vol. 99, pp. 179–192,
2018.
[60] D. Shaver and M. Podowski, “Modeling of interfacial forces for bubbly flows in subcooled boiling conditions,” in Transactions of the American Nuclear Society, vol. 113. (Proc. ofANS Winter Meeting, 2015, pp. 1368–1371.
[61] Z. A. N. L. Schiller, “Drag coefficient correlation,” Z. Ver. Dtsch. Ing., vol. 77, pp.
318–320, 1935.
[62] A. Tomiyama, I. Kataoka, I. Zun, and T. Sakaguchi, “Drag coefficients of single
bubbles under normal and micro gravity conditions,” JSME International Journal.
Series B, Fluids and Thermal Engineering, vol. 41, no. 2, pp. 472–479, 1998.
[63] N. Z. M. Ishii, “Drag coecient and relative velocity in bubbly, droplet, or partic-
ulate flows,” AlChE Journal, vol. 25, no. 5, pp. 843–855, 1979.
[64] A. A. Kendoush, “The drag forces on a taylor bubble rising steadily in vertical
pipes,” Journal of Energy and Power Technology, vol. 3, no. 4, pp. 1–1, Oct. 2021.
[65] G. Bozzano and M. Dente, “Shape and terminal velocity of single bubble motion: a novel approach,” Computers &; Chemical Engineering, vol. 25, no. 4–6, pp. 571–576, May 2001.
[66] C. Y. Wen and Y. H. Yu, “A generalized method for predicting the minimum
fluidization velocity,” AIChE Journal, vol. 12, no. 3, pp. 610–612, May 1966.
[67] D. GIDASPOW, ONE-DIMENSIONAL STEADY GAS–SOLID FLOW. Elsevier,
1994, pp. 31–60.
[68] W. Liu, Y. He, M. Li, C. Huang, and Y. Liu, “Effect of drag models on hydro-
dynamic behaviors of slurry flows in horizontal pipes,” Physics of Fluids, vol. 34,
no. 10, Oct. 2022.
[69] R. Rzehak and E. Krepper, “Cfd modeling of bubble-induced turbulence,” International Journal of Multiphase Flow, vol. 55, pp. 138–155, Oct. 2013.
[70] B. Launder and D. Spalding, Mathematical Models of Turbulence. Academic Press, 1972.
[71] D. C. Wilcox, “Reassessment of the scale-determining equation for advanced
turbulence models,” AIAA Journal, vol. 26, no. 11, pp. 1299–1310, Nov. 1988.
[72] Y. Sato and K. Sekoguchi, “Liquid velocity distribution in two-phase bubble
flow,” International Journal of Multiphase Flow, vol. 2, no. 1, pp. 79–95, Jun. 1975.
[73] S. Lo and D. Zhang, “Modelling of break-up and coalescence in bubbly two-
phase flows,” The Journal of Computational Multiphase Flows, vol. 1, no. 1, pp. 23–
38, Jan. 2009.
[74] H. Hulburt and S. Katz, “Some problems in particle technology,” Chemical Engineering Science, vol. 19, no. 8, pp. 555–574, Aug. 1964.
[75] G. Vaessen, “Coalescence and breakup modelling in a two-phase cfd code: theoretical framework,” BRITE, Report III-1, Dec. 1998, developed under a European
Project, Brite/EuRam BE 4322.
[76] R. Bowring, “Physical model based on bubble detachmentand calculation of
steam voidage in the subcooled region of aheated channel. menergi,” Institute
for Atomenergi, Halden, Norway, Tech. Rep., 1963.
[77] D. Kenning and V. H. Del Valle M, “Fully-developed nucleate boiling: Overlap
of areas of influence and interference between bubble sites,” International Journal
of Heat and Mass Transfer, vol. 24, no. 6, pp. 1025–1032, Jun. 1981.
[78] R. L. Judd and K. S. Hwang, “A comprehensive model for nucleate pool boiling
heat transfer including microlayer evaporation,” Journal of Heat Transfer, vol. 98,
no. 4, pp. 623–629, Nov. 1976.
[79] T. Hibiki and M. Ishii, “Active nucleation site density in boiling systems,” In-
ternational Journal of Heat and Mass Transfer, vol. 46, no. 14, pp. 2587–2601, Jul.
2003.
[80] L. W. Jakob M., “Heat transfer from a horizontal plate,” Forch.Gebiete Ingenieur W, vol. 4, no. 2, pp. 75–81, 1933.
[81] R. Séméria, “La cinématographie ultra-rapide et l’ébullition à haute pression,”
La Houille Blanche, vol. 49, no. 6, pp. 679–686, Oct. 1963.
[82] R. Cole, “A photographic study of pool boiling in the region of the critical heat
flux,” AIChE Journal, vol. 6, no. 4, pp. 533–538, Dec. 1960.
[83] Z. Wang, D. Shaver, and M. Podowski, “On the modeling of wall heat flux par-
titioning in subcooled flow boiling,” Transactions of the American Nuclear Society,
vol. 114, pp. 881–883, 06 2016.
[84] R. Kommajosyula, “Development and assessment of a physics-based model
for subcooled flow boiling with application to cfd,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, Sep. 2020.
[85] L. Gilman and E. Baglietto, “A self-consistent, physics-based boiling heat transfer modeling framework for use in computational fluid dynamics,” International Journal of Multiphase Flow, vol. 95, pp. 35–53, Oct. 2017.
[86] E. Baglietto, “GEN-II Wall Boiling Models: A Self-Consistent, Physics-
Based Framework,” https://nuclear.mit.edu, 2023, lecture CMFD.07, Thermal-
Hydraulics in Power Technology, MIT.
[87] G. Kocamustafaogullari and Z. Wang, “An experimental study on local interfacial parameters in a horizontal bubbly two-phase flow,” International Journal of Multiphase Flow, vol. 17, no. 5, pp. 553–572, Sep. 1991.
[88] T. Hibiki and M. Ishii, “Lift force in bubbly flow systems,” Chemical Engineering
Science, vol. 62, no. 22, pp. 6457–6474, Nov. 2007.
[89] C. Reiss, A. Gerschenfeld, and C. Colin, “Boiling-flow multiphase cfd simula-
tions for nuclear reactor conditions without interfacial area transport equation,”
Nuclear Engineering and Design, vol. 428, p. 113453, Nov. 2024.
[90] M. Colombo and M. Fairweather, “Prediction of bubbly flow and flow regime
development in a horizontal air-water pipe flow with a morphology-adaptive
multifluid cfd model,” International Journal of Multiphase Flow, vol. 184, p. 105112,
Mar. 2025.
[91] N. Zuber, “On the dispersed two-phase flow in the laminar flow regime,” Chemical Engineering Science, vol. 19, no. 11, pp. 897–917, Nov. 1964.
[92] V. L. Burris, D. F. McGinnis, and J. C. Little, “Predicting oxygen transfer and
water flow rate in airlift aerators,” Water Research, vol. 36, no. 18, pp. 4605–4615,
Nov. 2002.
[93] K. Triplett, S. Ghiaasiaan, S. Abdel-Khalik, A. LeMouel, and B. McCord, “Gas–
liquid two-phase flow in microchannels part ii: void fraction and pressure drop,”
International Journal of Multiphase Flow, vol. 25, no. 3, pp. 395–410, Apr. 1999.
[94] D. Lucas, E. Krepper, and H.-M. Prasser, “Prediction of radial gas profiles in
vertical pipe flow on the basis of bubble size distribution,” International Journal
of Thermal Sciences, vol. 40, no. 3, pp. 217–225, Mar. 2001.
[95] A. Ebrahimi and E. Khamehchi, “A robust model for computing pressure drop in vertical multiphase flow,” Journal of Natural Gas Science and Engineering, vol. 26, pp. 1306–1316, Sep. 2015.
[96] W. Zhang, T. Hibiki, and K. Mishima, “Correlations of two-phase frictional pressure drop and void fraction in mini-channel,” International Journal of Heat and
Mass Transfer, vol. 53, no. 1–3, pp. 453–465, Jan. 2010.
[97] E. Krepper, D. Lucas, and H.-M. Prasser, “On the modelling of bubbly flow in
vertical pipes,” Nuclear Engineering and Design, vol. 235, no. 5, pp. 597–611, Feb.
2005.
[98] T. Fukano and T. Furukawa, “Prediction of the effects of liquid viscosity on in-
terfacial shear stress and frictional pressure drop in vertical upward gas–liquid
annular flow,” International Journal of Multiphase Flow, vol. 24, no. 4, pp. 587–603, Jun. 1998.
[99] A. Judd, “Convective boiling and condensation.” Chemical Engineering Science, vol. 28, no. 9, p. 1775, Sep. 1973.
[100] T. Höhne, E. Krepper, G. Montoya, and D. Lucas, “Cfd-simulation of boiling
in a heated pipe including flow pattern transitions using the gentop concept,”
Nuclear Engineering and Design, vol. 322, pp. 165–176, Oct. 2017.
[101] F. Bolourchifard, K. Ardam, F. Dadras Javan, B. Najafi, P. Vega Penichet Domecq, F. Rinaldi, and L. P. M. Colombo, “Pressure drop estimation of two-phase adiabatic flows in smooth tubes: Development of machine learning-based pipelines,” Fluids, vol. 9, no. 8, p. 181, Aug. 2024.