Als je op deze link klikt (https://drive.google.com/file/d/1ps5qIqL9nn3Rff4R-CXufsk2-abW6gcI/view?…), kun je een opname van mijn hartslag horen (gebruik zeker een luidspreker). Deze opname heb ik met de elektronische stethoscoop gemaakt, die ik in het kader van mijn masterscriptie ontwikkelde. Ook jij kunt heel gemakkelijk zulke opnames maken! De Open-Source Multi-Sensor Modulaire Elektronische Stethoscoop, liefkozend OMES genoemd, zal openbaar beschikbaar zijn. Je kunt hem downloaden en zelf opnames maken van jouw hart, longen, buik of gewrichten.
Waarom hebben we elektronische stethoscopen nodig?
Analoge of conventionele stethoscopen ken je vast wel. Dat zijn medische instrumenten die de geluiden van inwendige organen hoorbaar maken door huidtrillingen om te zetten in geluidsgolven. Deze methode heet “auscultatie”. De kwaliteit van een analoge auscultatie is echter sterk afhankelijk van het gehoor van de arts en zijn of haar persoonlijke interpretatie. Daarentegen worden in elektronische stethoscopen vaak één of meerdere microfoons gebruikt om lichaamsgeluiden op te nemen. Deze manier is minder subjectief en beschikt daarnaast over een aantal bijzondere voordelen ten opzichte van analoge stethoscopen. Zo kun je geluiden opslaan en opnieuw beluisteren, achtergrondgeluiden van de opname verwijderen en de audiokwaliteit verbeteren. Sinds kort kun je zelfs AI inzetten, om diagnosen te ondersteunen.
Wat is er uniek aan OMES?
Analoge stethoscopen zijn een veelgebruikt medisch instrument. Met OMES kun je deze analoge stethoscopen op eenvoudige wijze elektrificeren en ze zo meerdere nieuwe functies geven. Maar ook als je geen analoge stethoscoop thuis hebt, kun je OMES gebruiken.
OMES is op een heel flexibele en aanpasbare manier gebouwd en is dus ideaal geschikt om bijvoorbeeld nieuwe signaalverwekingstechnieken te ontwikkelen of om audio engineering laboratoria aan universiteiten te ondersteunen.
OMES staat voor “Open-Source Multi-Sensor Modulaire Elektronische Stethoscoop”, ik leg kort uit waarom deze features belangrijk zijn:
Hoe werkt OMES?
Zoals hierboven reeds vermeld, kun je OMES als een upgrade voor analoge stethoscopen of als een stand-alone device gebruiken. Hier zie je twee foto’s voor beide toepassingen. Op Afbeelding 2 zie je hoe je een analoge stethoscoop via een 3D-geprinte behuizing met OMES kunt combineren. Er zijn vier plaatsen voor de printplaten met de verschillende microfoons. Je kunt kiezen uit drie microfoontypes: piezoelectric transducers, condensatormicrofoons en MEMS-microfoons. Zoals in Afbeelding 3, kun je OMES ook zonder een analoge stethoscoop gebruiken en gemakkelijk tussen de drie microfoontypes wisselen. Je kunt dan opnamen maken en opslaan of visualiseren, zoals weergegeven in Afbeelding 4.

Hoe jij ook aan de slag kan gaan met OMES?
Alle voor OMES benodigde bestanden (bijvoorbeeld printplaten, behuizingen, firmware, …), zullen gratis en openbaar beschikbaar zijn in deze GitLab repository: https://gitlab.com/etrovub/embedded-systems/publications/omes(de link is nog niet actief, wees dus nog een beetje geduldig, alsjeblieft). Daar vind je ook een uitgebreide gebruiksaanwijzing hoe je OMES kunt opbouwen en gebruiken. Veel plezier! 😊
[1] 3M. 3M™ Littmann® CORE Digital Stethoscope. url: https://www.littmann.com/3M/
en_US/p/d/b5005222000/. (accessed: 07.11.2023).
[2] 3M. 3M™ Littmann® CORE Digital Stethoscope FAQs. url: https://www.littmann.
com/3M/en_US/littmann- stethoscopes/advantages/core- digital- stethoscope/.
(accessed: 07.11.2023).
[3] Abbas K Abbas and Rasha Bassam. “Phonocardiography signal processing”. In: vol. 31.
Morgan & Claypool Publishers, 2009. Chap. 1, pp. 1–27.
[4] Antonio Arnau and David Soares. “Piezoelectric Transducers and Applications”. In: Springer,
2008. Chap. Fundamentals of Piezoelectricity, pp. 1–37.
[5] Ayesha Azmeen et al. “Heart sounds: Past, present, and future from a technological and
clinical perspective–a systematic review”. In: Proceedings of the Institution of Mechanical
Engineers, Part H: Journal of Engineering in Medicine 237.6 (2023), pp. 669–682.
[6] Heather Baid. “A critical review of auscultating bowel sounds”. In: British journal of
nursing 18.18 (2009), pp. 1125–1129.
[7] Dipali Bansal. “Potential of piezoelectric sensors in bio-signal acquisition”. In: Sensors &
Transducers 136.1 (2012), pp. 147–157.
[8] Cardionics. Clinical E-Scope® Electronic Stethoscope. url: https://cardionics.com/
en/product/clinical-e-scope-electronic-stethoscope/. (accessed: 08.11.2023).
[9] Cardionics. Operator’s Manual E-Scope® II Electronic Stethoscope. English. 23 pp.
[10] Muhammad EH Chowdhury et al. “Real-time smart-digital stethoscope system for heart
diseases monitoring”. In: Sensors 19.12 (2019), p. 2781.
[11] Rijuven Corp. Cardiosleeve. url: https://www.rijuven.com/cardiosleeve. (accessed:
08.11.2023).
[12] Medical Device Depot. Clinical E-Scope Stethoscope. url: https://www.medicaldevicedepot.
com/Clinical-E-Scope-Stethoscope-p/718-7700.htm. (accessed: 08.11.2023).
[13] Analog Devices. LT8653S. url: https://www.analog.com/en/products/lt8653s.html.
(accessed: 12.01.2025).
[14] Digikey. CEB-20D64. url: https://www.digikey.com/en/products/detail/samesky-
formerly-cui-devices/CEB-20D64/412385. (accessed: 12.01.2025).
[15] Digikey. CMA-4544PF-W. url: https://www.digikey.be/en/products/detail/cuidevices/
CMA-4544PF-W/1869981. (accessed: 08.12.2024).
[16] Digikey. DMM-4026-B-I2S-R. url: https://www.digikey.com/en/products/detail/
pui-audio-inc/DMM-4026-B-I2S-R/11587483. (accessed: 28.12.2024).
[17] Digikey. NCP164CSN180T1G. url: https://www.digikey.com/en/products/detail/
onsemi/NCP164CSN180T1G/11592813. (accessed: 29.12.2024).
[18] Omar Diouri et al. “Comparison study of hardware architectures performance between
FPGA and DSP processors for implementing digital signal processing algorithms: Application
of FIR digital filter”. In: Results in Engineering 16 (2022), p. 100639.
[19] eKuore. eKuore Pro User manual. English. 144 pp.
[20] eKuore. eKuore Pro Electronic Stethoscope. url: https://ekuore.com/product/ekuorepro-
electronic-stethoscope/. (accessed: 09.11.2023).
[21] eKuore. eKuore Trajectory. url: https://ekuore.com/about/. (accessed: 09.11.2023).
[22] Ltd. GS Technology Co. JABES Electronic stethoscope Sister Products. English. 2022.
19 pp.
[23] GST. JABES Digital Electronic Stethoscope. url: https://cardionics.com/en/product/
clinical-e-scope-electronic-stethoscope/. (accessed: 08.11.2023).
[24] Eko Health. Instructions for Use CORE 500™ Digital Stethoscope. English. 29 pp.
[25] Eko Health Inc. 3M™ Littmann®CORE Digital Stethoscope. url: https://www.ekohealth.
com/products/3m-littmann-core-digital-stethoscope?variant=39410642190432&
gad=1&gclid=CjwKCAiA3aeqBhBzEiwAxFiOBuEhdp8upEQ9diGMh2xEfmJ-E6DoqE8Gl_ScgGS38QmZZLcmznVxxoCtxUQAvD_
BwE. (accessed: 07.11.2023).
[26] Eko Health Inc. Eko Core 500™ Digital Stethoscope. url: https : / / www . ekohealth .
com/products/core-500-digital-stethoscope?variant=39662120304736. (accessed:
06.11.2023).
[27] Eko Health Inc. Eko’s Story. url: https : / / www . ekohealth . com / pages / about - us.
(accessed: 12.11.2023).
[28] Texas Instruments. ADS131A04. url: https://www.ti.com/product/ADS131A04. (accessed:
30.12.2024).
[29] Ninik Irawati et al. “Heart rate monitoring sensor based on singlemode-multimode-singlemode
fiber”. In: Photonic Sensors 10 (2020), pp. 186–193.
[30] Agam Jain et al. “Development and validation of a low-cost electronic stethoscope: DIY
digital stethoscope”. In: BMJ Innovations (2021), bmjinnov–2021.
[31] Yoojin Jeong et al. “Methods for improving deep learning-based cardiac auscultation accuracy:
Data augmentation and data generalization”. In: Applied Sciences 11.10 (2021),
p. 4544.
[32] Licheng Jia et al. “Design and characterization of an aluminum nitride-based MEMS hydrophone
with biologically honeycomb architecture”. In: IEEE Transactions on Electron
Devices 68.9 (2021), pp. 4656–4663.
[33] Licheng Jia et al. “Piezoelectric micromachined ultrasonic transducer array-based electronic
stethoscope for internet of medical things”. In: IEEE Internet of Things Journal
9.12 (2022), pp. 9766–9774.
[34] Keith H Johnson and David A Underwood. Recording, digital stethoscope for identifying
PCG signatures. US Patent 5,025,809. June 1991.
[35] Michael Klum et al. “Wearable cardiorespiratory monitoring employing a multimodal digital
patch stethoscope: estimation of ECG, PEP, LVET and respiration using a 55 mm
single-lead ECG and phonocardiogram”. In: Sensors 20.7 (2020), p. 2033.
[36] Michael Klum et al. “Wearable multimodal stethoscope patch for wireless biosignal acquisition
and long-term auscultation”. In: 2019 41st annual international conference of the
IEEE engineering in medicine and biology society (EMBC). IEEE. 2019, pp. 5781–5785.
[37] Konstanze K¨olle et al. “Data driven filtering of bowel sounds using multivariate empirical
mode decomposition”. In: BioMedical Engineering OnLine 18 (2019), pp. 1–20.
[38] Steve S Kraman et al. “Measurement of respiratory acoustic signals: effect of microphone
air cavity width, shape, and venting”. In: Chest 108.4 (1995), pp. 1004–1008.
[39] Rinat K Kusainov and Vladimir K Makukha. “Evaluation of the applicability of MEMS
microphone for auscultation”. In: 2015 16th International Conference of Young Specialists
on Micro/Nanotechnologies and Electron Devices. IEEE. 2015, pp. 595–597.
[40] KunHyuck Lee et al. “Mechano-acoustic sensing of physiological processes and body motions
via a soft wireless device placed at the suprasternal notch”. In: Nature biomedical
engineering 4.2 (2020), pp. 148–158.
[41] Shuenn-Yuh Lee et al. “Intelligent Stethoscope System and Diagnosis Platform with Synchronized
Heart Sound and Electrocardiogram Signals”. In: IEEE Access (2023).
[42] Soo Hyun Lee et al. “A wearable stethoscope for accurate real-time lung sound monitoring
and automatic wheezing detection based on an AI algorithm”. In: (2023).
[43] Sung Hoon Lee, Yun-Soung Kim, and Woon-Hong Yeo. “Advances in microsensors and
wearable bioelectronics for digital stethoscopes in health monitoring and disease diagnosis”.
In: Advanced Healthcare Materials 10.22 (2021), p. 2101400.
[44] Shuang Leng et al. “The electronic stethoscope”. In: Biomedical engineering online 14.1
(2015), pp. 1–37.
[45] Jerad Lewis. “Common inter-IC digital interfaces for audio data transfer”. In: EDNElectronic
Design News 57.16 (2012), p. 46.
[46] Shih-Hong Li et al. “Design of wearable breathing sound monitoring system for real-time
wheeze detection”. In: Sensors 17.1 (2017), p. 171.
[47] Steven McGee. “Evidence-Based Physical Diagnosis (Second Edition)”. In: Elsevier Health
Sciences, 2007, pp. 411–471.
[48] Trang Nguyen Minh et al. “Design of Real-time and Low-cost Electronic Stethoscope”. In:
2023 International Conference on Communication, Circuits, and Systems (IC3S). IEEE.
2023, pp. 1–4.
[49] Roshan D. Modi, Christopher S. Massad, and B. Robinson Williams. “Handbook of Outpatient
Cardiology”. In: Springer, 2022. Chap. 5 - The Cardiovascular Physical Exam,
pp. 75–88.
[50] Maximilian Nussbaumer and Anurag Agarwal. “Stethoscope acoustics”. In: Journal of
Sound and Vibration 539 (2022), p. 117194.
[51] World Health Organization. Electronic waste (e-waste). url: https://www.who.int/
news-room/fact-sheets/detail/electronic-waste-(e-waste). (accessed: 08.01.2025).
[52] Geoffrey Ottoy, Bart Thoen, and Lieven De Strycker. “A low-power MEMS microphone
array for wireless acoustic sensors”. In: 2016 IEEE Sensors Applications Symposium (SAS).
IEEE. 2016, pp. 1–6.
[53] Achilles J. Pappano and Withrow Gil Wier. “Cardiovascular Physiology”. In: Elsevier,
2013. Chap. 4 - The Cardiac Pump, pp. 55–90.
[54] Heejoon Park et al. “Novel Design of a Multimodal Technology-Based Smart Stethoscope
for Personal Cardiovascular Health Monitoring”. In: Sensors 22.17 (2022), p. 6465.
[55] Sandra Reichert et al. “Analysis of respiratory sounds: state of the art”. In: Clinical
medicine. Circulatory, respiratory and pulmonary medicine 2 (2008), CCRPM–S530.
[56] Rijuven. CardioSleeve: User Manual. English. 2013. 40 pp.
[57] Muhammad Ali Shah et al. “Design approaches of MEMS microphones for enhanced performance”.
In: Journal of sensors 2019 (2019).
[58] Mubashar Hussain Sherazi. “The Objective Structured Clinical Examination Review”. In:
Springer, 2019. Chap. 4 - The Cardiovascular System, pp. 111–130.
[59] Clive Smith. Stethoscope and electronic device structure. US20160262717A1. Oct. 2016.
[60] Clive Smith. Transducer for sensing body sounds. US Patent 6,661,897. Dec. 2003.
[61] Jeff Smoot. PDM vs. I²S: Comparing Digital Interfaces in MEMS Microphones. url:
https://www.sameskydevices.com/blog/pdm-vs-i2s-comparing-digital-interf…-
mems-microphones?srsltid=AfmBOorQ48KbVuqcUhw-vZTsvaz2_i2nOHmpclHLueCz_
6cDoxo_lppr. (accessed: 28.12.2024).
[62] ´Angel Sol´e Morillo et al. “Ppg edukit: An adjustable photoplethysmography evaluation
system for educational activities”. In: Sensors 22.4 (2022), p. 1389.
[63] Caitlin N Teague et al. “Novel methods for sensing acoustical emissions from the knee for
wearable joint health assessment”. In: IEEE Transactions on Biomedical Engineering 63.8
(2016), pp. 1581–1590.
[64] TelehealthTechnology. Electronic Stethoscopes – JABES. url: https://telehealthtechnology.
org/toolkit/electronic-stethoscopes-jabes/. (accessed: 08.11.2023).
[65] Thinklabs. Thinklabs ONE - Digital Stethoscope. url: https://www.thinklabs.com/.
(accessed: 07.11.2023).
[66] Thinklabs. Thinklabs One User’s Manual. English. 2014. 33 pp.
[67] Thinklabs. Thinklabs Support. url: https://support.thinklabs.com/support/solutions/
48000449526. (accessed: 07.11.2023).
[68] Arie Van Rhijn. “Integrated circuits for high performance electret microphones”. In: Audio
Engineering Society Convention 114. Audio Engineering Society. 2003.
[69] V Nivitha Varghees and KI Ramachandran. “A novel heart sound activity detection framework
for automated heart sound analysis”. In: Biomedical Signal Processing and Control
13 (2014), pp. 174–188.
[70] Fengle Wang et al. “A flexible skin-mounted wireless acoustic device for bowel sounds
monitoring and evaluation”. In: Science China Information Sciences 62 (2019), pp. 1–11.
[71] Tian Wang et al. “Acoustic-pressure sensor array system for cardiac-sound acquisition”.
In: Biomedical Signal Processing and Control 69 (2021), p. 102836.
[72] Weidong Wang et al. “A bat-shape piezoresistor electronic stethoscope based on MEMS
technology”. In: Measurement 147 (2019), p. 106850.
[73] George R Wodicka et al. “Measurement of respiratory acoustic signals: effect of microphone
air cavity depth”. In: Chest 106.4 (1994), pp. 1140–1144.
[74] Yu-Chi Wu et al. “Development of an electronic stethoscope and a classification algorithm
for cardiopulmonary sounds”. In: Sensors 22.11 (2022), p. 4263.
[75] Chuan Yang et al. “A low-cost, ear-contactless electronic stethoscope powered by Raspberry
Pi for auscultation of patients with COVID-19: prototype development and feasibility
study”. In: JMIR Medical Informatics 9.1 (2021), e22753.
[76] G¨urkan Yilmaz et al. “A wearable stethoscope for long-term ambulatory respiratory health
monitoring”. In: Sensors 20.18 (2020), p. 5124.
[77] Damjan Zazula, Denis Donlagi´c, and Sebastijan ˇSprager. “Fibre-optic interferometry as a
means for the first heart sound detection”. In: Advances in applied information science
(2012), pp. 31–35.