De geheime bondgenoten van het zeeleven: hoe microben kelpwouden kunnen redden

Axelle
Defossez


Laminaria ochroleuca, ook wel bekend als het gouden kelp, vormt de basis van een van van de rijkste ecosystemen op aarde. Ze slaan koolstof op, beschermen de kust tegen erosie en bieden voedsel en schuilplaats aan talloze zeeorganismen. Helaas staan deze kelpwouden onder zware druk.

Klimaatverandering, vervuiling en overbevissing zorgen ervoor dat kelp wereldwijd verdwijnt. Vooral de stijgende zeetemperaturen en mariene hittegolven die niet alleen toenemen in frequentie maar ook in intensiteit, zijn de grootste boosdoener: ze brengen de delicate balans in het ecosysteem uit evenwicht. Terwijl de oceanen sneller veranderen dan de natuur kan volgen, groeit de vraag: kunnen we het tij nog keren?

Een onverwachte redder: microben

Een groep wetenschappers denkt van wel, namelijk met behulp van onverwachte bondgenoten: bacteriën. Hun onderzoek toont aan dat bepaalde microben, zoals Cobetia amphilecti, kelp kunnen helpen beter bestand te zijn tegen hitte en andere stressfactoren. Deze ‘probiotische’ bacteriën stimuleren de voortplanting van kelp en versterken hun natuurlijke afweer.

Het idee is even eenvoudig als vernieuwend: in plaats van de natuur te manipuleren, werken onderzoekers mét haar samen. De bacteriën zijn immers al onderdeel van het natuurlijke microbioom van kelp. Door die symbiose te versterken, krijgt de hele onderwatergemeenschap een duwtje in de rug.

 

In gecontroleerde experimenten wordt het kelp blootgesteld aan hogere watertemperaturen, met en zonder toevoeging van probiotische bacteriën. Door groei, voortplanting en stressreacties te meten, ontdekken onderzoekers welke bacteriestammen – zoals Cobetia amphilecti – de kelp helpen om beter bestand te zijn tegen hitte. Zo ontstaat stap voor stap inzicht in hoe deze microscopische bondgenoten kunnen bijdragen aan het herstel en de toekomst van onze kustecosystemen.

 

Meer dan herstel: een toekomstbestendige oceaan

De mogelijke toepassingen reiken verder dan enkel natuurherstel. Gezondere, veerkrachtig kelp zijn ook interessant voor duurzame zeewierteelt – een sector in volle groei. Zeewier wordt niet alleen gezien als een bron van gezond voedsel, maar ook als een pijler van de zogenaamde ‘blauwe koolstofeconomie’, waarbij oceanen een cruciale rol spelen in de opslag van CO₂.

Door de natuurlijke veerkracht van kelp te versterken, helpen we dus niet enkel ecosystemen herstellen, maar dragen we ook bij aan een klimaatbestendige toekomst.

Wetenschap met respect voor de natuur

Belangrijk is dat dit onderzoek geen genetische manipulatie inhoudt. Het gaat om een subtiele, ecologisch verantwoorde manier om natuurlijke processen te ondersteunen. Wetenschappers spreken van “werken mét de natuur, niet ertegenin”. Het is een voorbeeld van vooruitgang met voorzichtigheid: vernieuwend, maar met oog voor de complexiteit van het ecosysteem.

Een boodschap van hoop

De opwarming van de aarde lijkt onstuitbaar, maar deze vorm van biologische innovatie toont dat er nog ruimte is voor optimisme. Door de natuurlijke relaties in zee te versterken, vergroten we de kans dat het oceaanleven zich kan aanpassen en overleven.

De boodschap is helder: veerkracht betekent niet dat we verandering moeten tegenhouden, maar dat we leren ermee mee te bewegen. In de samenwerking tussen kelp en zijn microscopische partners ligt misschien wel een blauwdruk voor hoe mens en natuur sámen de toekomst kunnen trotseren.
 


 

Bibliografie

Aires, T., Kläui, A., & Engelen, A. (2022). Regional microbiome differentiation of the invasiveSargassum muticum(Fucales, Phaeophyceae) follows the generalist host hypothesis across the North East Atlantic. European Journal of Phycology, 58(3), 268–283. https://doi.org/10.1080/09670262.2022.2103738

Alsuwaiyan, N., Vranken, S., Filbee-Dexter, K., Cambridge, M., Coleman, M., & Wernberg, T. (2021). Genotypic variation in response to extreme events may facilitate kelp adaptation under future climates. Marine Ecology Progress Series, 672, 111– 121. https://doi.org/10.3354/meps13802

Amin, S. A., Green, D. H., Hart, M. C., Küpper, F. C., Sunda, W. G., & Carrano, C. J. (2009). Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proceedings of the National Academy of Sciences, 106(40), 17071–17076. https://doi.org/10.1073/pnas.0905512106

Amin, S. A., Hmelo, L. R., Van Tol, H. M., Durham, B. P., Carlson, L. T., Heal, K. R., Morales, R. L., Berthiaume, C. T., Parker, M. S., Djunaedi, B., Ingalls, A. E., Parsek, M. R., Moran, M. A., & Armbrust, E. V. (2015). Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 522(7554), 98–101. https://doi.org/10.1038/nature14488

Ananieva, M. M., Nazarchuk, O. A., Faustova, M. O., Basarab, Y. O., Loban, G. A., Ананьєва, М. М., Назарчук, О. А., Фаустова, М. О., Басараб, Я. О., & Лобань, Г. А. (2018). Pathogenicity Factors of Kocuria kristinae Contributing to the Development of Peri-Implant Mucositis. Malaysian Journal of Medicine and Health Sciences. http://elib.umsa.edu.ua/jspui/bitstream/umsa/8728/1/2018092410472706_MJ… Oct_2018.pdf

Apprill, A. (2017). Marine Animal Microbiomes: Toward Understanding Host– Microbiome Interactions in a Changing Ocean. Frontiers in Marine Science, 4. https://doi.org/10.3389/fmars.2017.00222

Arahal, D. R., Castillo, A. M., Ludwig, W., Schleifer, K. H., & Ventosa, A. (2002). Proposal of Cobetia marina gen. nov., comb. nov., within the Family Halomonadaceae, to Include the Species Halomonas marina. Systematic and Applied Microbiology, 25(2), 207–211. https://doi.org/10.1078/0723-2020-00113

Assis, J., Serrão, E. Á., Coelho, N. C., Tempera, F., Valéro, M., & Alberto, F. (2018). Past climate changes and strong oceanographic barriers structured low‐latitude genetic relics for the golden kelp Laminaria ochroleuca. Journal of Biogeography, 45(10), 2326–2336. https://doi.org/10.1111/jbi.13425

Balabanova, L. A., Golotin, V. A., Kovalchuk, S. N., Babii, A. V., Shevchenko, L. S., Son, O. M., Kosovsky, G. Y., & Rasskazov, V. A. (2016). The Genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853). Russian Journal of Marine Biology, 42(1), 106–109. https://doi.org/10.1134/s106307401601003x

Balabanova, L., Podvolotskaya, A., Slepchenko, L., Eliseikina, M., Noskova, Y., Nedashkovskaya, O., Son, O., Tekutyeva, L., & Rasskazov, V. (2017). Nucleolytic enzymes from the marine bacterium Cobetia amphilecti KMM 296 with antibiofilm

59

activity and biopreservative effect on meat products. Food Control, 78, 270–278.

https://doi.org/10.1016/j.foodcont.2017.02.029
Bengtsson, M. M., Sjøtun, K., Lanzén, A., & Øvreås, L. (2012). Bacterial diversity in

relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. The ISME Journal, 6(12), 2188–2198. https://doi.org/10.1038/ismej.2012.67

Bengtsson, M., Sjøtun, K., & Øvreås, L. (2010). Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea. Aquatic Microbial Ecology, 60(1), 71–83. https://doi.org/10.3354/ame01409

Bertocci, I., Godino, J. D., Freitas, C., Incera, M., Araújo, R., Bio, A., Arenas, F., Sousa- Pinto, I., Reis, P. A., & Domínguez, R. (2014). The regime of climate-related disturbance and nutrient enrichment modulate macroalgal invasions in rockpools. Biological Invasions, 17(1), 133–147. https://doi.org/10.1007/s10530-014-0711-4

Biskup, S., Bertocci, I., Arenas, F., & Tuya, F. (2014). Functional responses of juvenile kelps, Laminaria ochroleuca and Saccorhiza polyschides, to increasing temperatures. Aquatic Botany, 113, 117–122. https://doi.org/10.1016/j.aquabot.2013.10.003

Bourne, D. G., Garren, M., Work, T. M., Rosenberg, E., Smith, G. W., & Harvell, C. D. (2009). Microbial disease and the coral holobiont. Trends in Microbiology, 17(12), 554–562. https://doi.org/10.1016/j.tim.2009.09.004

Brodie, J., Williamson, C., Barker, G. L., Walker, R. H., Briscoe, A., & Yallop, M. (2016). Characterising the microbiome ofCorallina officinalis, a dominant calcified intertidal red alga. FEMS Microbiology Ecology, 92(8), fiw110. https://doi.org/10.1093/femsec/fiw110

Bronstein, J. L. (1994). Conditional outcomes in mutualistic interactions. Trends in Ecology & Evolution, 9(6), 214–217. https://doi.org/10.1016/0169-5347(94)90246-1

Burgunter-Delamare, B., Shetty, P., Vuong, T., & Mittag, M. (2024). Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. Plants, 13(6), 829. https://doi.org/10.3390/plants13060829

Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., & Thomas, T. (2011). Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14288– 14293. https://doi.org/10.1073/pnas.1101591108

Campbell, A. H., Harder, T., Nielsen, S., Kjelleberg, S., & Steinberg, P. D. (2011). Climate change and disease: bleaching of a chemically defended seaweed. Global Change Biology, 17(9), 2958–2970. https://doi.org/10.1111/j.1365-2486.2011.02456.x

Campbell, A. H., Marzinelli, E. M., Vergés, A., Coleman, M. A., & Steinberg, P. D. (2014). Towards Restoration of Missing Underwater Forests. PLoS ONE, 9(1), e84106. https://doi.org/10.1371/journal.pone.0084106

Camus, C., Solas, M., Martínez, C., Vargas, J., Garcés, C., Gil‐Kodaka, P., Ladah, L. B., Serrão, E. A., & Faugeron, S. (2021). Mates Matter: Gametophyte Kinship Recognition and Inbreeding in the Giant Kelp,Macrocystispyrifera(Laminariales, Phaeophyceae). Journal of Phycology, 57(3), 711–725. https://doi.org/10.1111/jpy.13146

60

Chauhan, A., & Singh, R. (2018). Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis, 77(2), 99–113. https://doi.org/10.1007/s13199- 018-0580-1

Chemello, S., Santos, I. a. D., Sousa-Pinto, I., & Pereira, T. R. (2024). Unlocking the Potential of Green Gravel Production for Efficient Kelp Restoration: How Seeding Density Affects the Development of the Golden Kelp Laminaria ochroleuca. Phycology, 4(3), 443–449. https://doi.org/10.3390/phycology4030025

Cirri, E., & Pohnert, G. (2019). Algae−bacteria interactions that balance the planktonic microbiome. New Phytologist, 223(1), 100–106. https://doi.org/10.1111/nph.15765

Coleman, M. A., & Goold, H. D. (2019). Harnessing synthetic biology for kelp forest conservation 1. Journal of Phycology, 55(4), 745–751. https://doi.org/10.1111/jpy.12888

Coleman, M., & Wernberg, T. (2020). The Silver Lining of Extreme Events. Trends in Ecology & Evolution, 35(12), 1065–1067. https://doi.org/10.1016/j.tree.2020.08.013

Crispo, E. (2007). The baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution, 61(11), 2469–2479. https://doi.org/10.1111/j.1558-5646.2007.00203.x

Dash, H. R., Mangwani, N., Chakraborty, J., Kumari, S., & Das, S. (2012). Marine bacteria: potential candidates for enhanced bioremediation. Applied Microbiology and Biotechnology, 97(2), 561–571. https://doi.org/10.1007/s00253-012-4584-0

Dayton, P. K. (1985). Ecology of Kelp Communities. Annual Review of Ecology and Systematics, 16, 215–245. https://www.jstor.org/stable/2097048

De Clerck, O., Kao, S. M., Bogaert, K. A., Blomme, J., Foflonker, F., Kwantes, M., Vancaester, E., Vanderstraeten, L., Aydogdu, E., Boesger, J., Califano, G., Charrier, B., Clewes, R., Del Cortona, A., D’Hondt, S., Fernandez-Pozo, N., Gachon, C. M., Hanikenne, M., Lattermann, L., . . . Bothwell, J. H. (2018). Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. CB/Current Biology, 28(18), 2921- 2933.e5. https://doi.org/10.1016/j.cub.2018.08.015

Dieck, I. T. (1992). North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia, 31(2), 147–163. https://doi.org/10.2216/i0031-8884-31-2-147.1

Dittami, S. M., Arboleda, E., Auguet, J. C., Bigalke, A., Briand, E., Cárdenas, P., Cardini, U., Decelle, J., Engelen, A. H., Eveillard, D., Gachon, C. M., Griffiths, S. M., Harder, T., Kayal, E., Kazamia, E., Lallier, F. H., Medina, M., Marzinelli, E. M., Morganti, T. M., . . . Not, F. (2021). A community perspective on the concept of marine holobionts: current status, challenges, and future directions. PeerJ, 9, e10911. https://doi.org/10.7717/peerj.10911

Dittami, S. M., Duboscq-Bidot, L., Perennou, M., Gobet, A., Corre, E., Boyen, C., & Tonon, T. (2016). Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. ̃the œISME Journal, 10(1), 51–63. https://doi.org/10.1038/ismej.2015.104

Ebert, D. (2013). The Epidemiology and Evolution of Symbionts with Mixed-Mode Transmission. Annual Review of Ecology Evolution and Systematics, 44(1), 623–643. https://doi.org/10.1146/annurev-ecolsys-032513-100555

Edwards, M. S., & Connell, S. D. (2012). Competition, a Major Factor Structuring Seaweed Communities. In Ecological studies (pp. 135–156). https://doi.org/10.1007/978-3-642-28451-9_7

61

Egan, S., & Gardiner, M. (2016). Microbial Dysbiosis: Rethinking disease in marine ecosystems. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00991

Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2013). The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiology Reviews, 37(3), 462–476. https://doi.org/10.1111/1574-6976.12011

Eger, A. M., Marzinelli, E. M., Beas-Luna, R., Blain, C. O., Blamey, L. K., Byrnes, J. E. K., Carnell, P. E., Choi, C. G., Hessing-Lewis, M., Kim, K. Y., Kumagai, N. H., Lorda, J., Moore, P., Nakamura, Y., Pérez-Matus, A., Pontier, O., Smale, D., Steinberg, P. D., & Vergés, A. (2023). The value of ecosystem services in global marine kelp forests. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-37385-0

Eger, A. M., Marzinelli, E. M., Christie, H., Fagerli, C. W., Fujita, D., Gonzalez, A. P., Hong, S. W., Kim, J. H., Lee, L. C., McHugh, T. A., Nishihara, G. N., Tatsumi, M., Steinberg, P. D., & Vergés, A. (2022). Global kelp forest restoration: past lessons, present status, and future directions. Biological Reviews/Biological Reviews of the Cambridge Philosophical Society, 97(4), 1449–1475. https://doi.org/10.1111/brv.12850

Erwin, P. M., Pita, L., López-Legentil, S., & Turon, X. (2012). Stability of Sponge- Associated Bacteria over Large Seasonal Shifts in Temperature and Irradiance. Applied and Environmental Microbiology, 78(20), 7358–7368. https://doi.org/10.1128/aem.02035-12

Fernandes, N., Steinberg, P., Rusch, D., Kjelleberg, S., & Thomas, T. (2012). Community Structure and Functional Gene Profile of Bacteria on Healthy and Diseased Thalli of the Red Seaweed Delisea pulchra. PLoS ONE, 7(12), e50854. https://doi.org/10.1371/journal.pone.0050854

Fernández, C. (2011). The retreat of large brown seaweeds on the north coast of Spain: the case ofSaccorhiza polyschides. European Journal of Phycology, 46(4), 352–360. https://doi.org/10.1080/09670262.2011.617840

Filbee-Dexter, K., Feehan, C. J., & Scheibling, R. E. (2016). Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Marine Ecology. Progress Series, 543, 141–152. https://doi.org/10.3354/meps11554

Franco, J. N., Tuya, F., Bertocci, I., Rodríguez, L., Martínez, B., Sousa‐Pinto, I., & Arenas, F. (2017). The ‘golden kelp’ Laminaria ochroleuca under global change: Integrating multiple eco‐physiological responses with species distribution models. Journal of Ecology, 106(1), 47–58. https://doi.org/10.1111/1365-2745.12810

Freitas, S., Hatosy, S., Fuhrman, J. A., Huse, S. M., Welch, D. B. M., Sogin, M. L., & Martiny, A. C. (2012). Global distribution and diversity of marine Verrucomicrobia. The ISME Journal, 6(8), 1499–1505. https://doi.org/10.1038/ismej.2012.3

Frenkel, J., Vyverman, W., & Pohnert, G. (2014). Pheromone signaling during sexual reproduction in algae. The Plant Journal, 79(4), 632–644. https://doi.org/10.1111/tpj.12496

Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. Nature, 560(7718), 360–364. https://doi.org/10.1038/s41586-018-0383-9

Ghaderiardakani, F., Coates, J. C., & Wichard, T. (2017). Bacteria-induced morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): a contribution to the lottery theory. FEMS Microbiology Ecology/FEMS Microbiology, Ecology, 93(8). https://doi.org/10.1093/femsec/fix094

62

Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria Isolated From Laminaria ochroleuca: A Source of New Bioactive Compounds. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00683

Goecke, F., Labes, A., Wiese, J., & Imhoff, J. (2010). Chemical interactions between marine macroalgae and bacteria. Marine Ecology Progress Series, 409, 267–299. https://doi.org/10.3354/meps08607

Graham, M. H., Kinlan, B. P., Druehl, L. D., Garske, L. E., & Banks, S. (2007). Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proceedings of the National Academy of Sciences, 104(42), 16576–16580. https://doi.org/10.1073/pnas.0704778104

Grueneberg, J., Engelen, A. H., Costa, R., & Wichard, T. (2016). Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PloS One, 11(1), e0146307. https://doi.org/10.1371/journal.pone.0146307

Gundlapally, S. R., Ara, S., & Sisinthy, S. (2015). Draft genome of Kocuria polaris CMS 76orT isolated from cyanobacterial mats, McMurdo Dry Valley, Antarctica: an insight into CspA family of proteins from Kocuria polaris CMS 76orT. Archives of Microbiology, 197(8), 1019–1026. https://doi.org/10.1007/s00203-015-1138-8

Hamdeno, M., & Alvera-Azcaráte, A. (2023). Marine heatwaves characteristics in the Mediterranean Sea: Case study the 2019 heatwave events. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1093760

Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Gupta, A. S., & Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography/Progress in Oceanography, 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014

Hollarsmith, J. A., Buschmann, A. H., Camus, C., & Grosholz, E. D. (2019). Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations. Journal of Experimental Marine Biology and Ecology, 522, 151247. https://doi.org/10.1016/j.jembe.2019.151247

Hördt, A., López, M. G., Meier-Kolthoff, J. P., Schleuning, M., Weinhold, L., Tindall, B. J., Gronow, S., Kyrpides, N. C., Woyke, T., & Göker, M. (2020). Analysis of 1,000+ Type- Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00468

Hu, T., Wang, S., Shan, Y., Zhang, Y., Zhu, Y., & Zheng, L. (2021). Complete Genome of Marine Microalgae Associated Algicidal Bacterium Sulfitobacter pseudonitzschiae H46 with Quorum Sensing System. Current Microbiology, 78(10), 3741–3750. https://doi.org/10.1007/s00284-021-02632-4

Huber, J. A., Welch, D. B. M., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A., & Sogin, M. L. (2007). Microbial Population Structures in the Deep Marine Biosphere. Science, 318(5847), 97–100. https://doi.org/10.1126/science.1146689

Ihua, M. W., FitzGerald, J. A., Guihéneuf, F., Jackson, S. A., Claesson, M. J., Stengel, D. B., & Dobson, A. D. W. (2020). Diversity of bacteria populations associated with different thallus regions of the brown alga Laminaria digitata. PLoS ONE, 15(11), e0242675. https://doi.org/10.1371/journal.pone.0242675

63

Inderjit, N., Wardle, D. A., Karban, R., & Callaway, R. M. (2011). The ecosystem and evolutionary contexts of allelopathy. Trends in Ecology & Evolution, 26(12), 655–662. https://doi.org/10.1016/j.tree.2011.08.003

IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp. https://doi.org/10.1017/9781009157964.

Isolauri, E., Sütas, Y., Kankaanpää, P., Arvilommi, H., & Salminen, S. (2001). Probiotics: effects on immunity. ̃the œAmerican Journal of Clinical Nutrition, 73(2), 444s–450s. https://doi.org/10.1093/ajcn/73.2.444s

Ivanova, E. P., Christen, R., Sawabe, T., Alexeeva, Y. V., Lysenko, A. M., Chelomin, V. P., & Mikhailov, V. V. (2005). Presence of Ecophysiologically Diverse Populations within Cobetia marina Strains Isolated from Marine Invertebrate, Algae and the Environments. Microbes and Environments, 20(4), 200–207. https://doi.org/10.1264/jsme2.20.200

Izquierdo, J., Pérez-Ruzafa, I. M., & Gallardo, T. (2001). Effect of temperature and photon fluence rate on gametophytes and young sporophytes of Laminaria ochroleuca Pylaie. Helgoland Marine Research, 55(4), 285–292. https://doi.org/10.1007/s10152-001-0087-6

Kessler, R. W., Crecelius, A. C., Schubert, U. S., & Wichard, T. (2017). In situ monitoring of molecular changes during cell differentiation processes in marine macroalgae through mass spectrometric imaging. Analytical and Bioanalytical Chemistry/Analytical & Bioanalytical Chemistry, 409(20), 4893–4903. https://doi.org/10.1007/s00216-017-0430-7

Kim, S., & Bhatnagar, I. (2011). Physical, chemical, and biological properties of wonder Kelp—Laminaria. In Advances in food and nutrition research (pp. 85–96). https://doi.org/10.1016/b978-0-12-387669-0.00007-7

Krause-Jensen, D., Lavery, P., Serrano, O., Marbà, N., Masque, P., & Duarte, C. M. (2018). Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biology Letters, 14(6), 20180236. https://doi.org/10.1098/rsbl.2018.0236

Krumhansl, K. A., Okamoto, D. K., Rassweiler, A., Novak, M., Bolton, J. J., Cavanaugh, K. C., Connell, S. D., Johnson, C. R., Konar, B., Ling, S. D., Micheli, F., Norderhaug, K. M., Pérez-Matus, A., Sousa-Pinto, I., Reed, D. C., Salomon, A. K., Shears, N. T., Wernberg, T., Anderson, R. J., . . . Byrnes, J. E. K. (2016). Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13785–13790. https://doi.org/10.1073/pnas.1606102113

Lachnit, T., Blümel, M., Imhoff, J., & Wahl, M. (2009). Specific epibacterial communities on macroalgae: phylogeny matters more than habitat. Sexuality and Early Development in Aquatic Organism/Aquatic Biology/Sexuality and Early Development in Aquatic Organisms, 5(2), 181–186. https://doi.org/10.3354/ab00149

Layton, C., Coleman, M. A., Marzinelli, E. M., Steinberg, P. D., Swearer, S. E., Vergés, A., Wernberg, T., & Johnson, C. R. (2020). Kelp Forest Restoration in Australia. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00074

64

Lemay, M. A., Davis, K. M., Martone, P. T., & Parfrey, L. W. (2021). Kelp‐associated Microbiota are Structured by Host Anatomy1. Journal of Phycology, 57(4), 1119– 1130. https://doi.org/10.1111/jpy.13169

Li, J., Majzoub, M. E., Marzinelli, E. M., Dai, Z., Thomas, T., & Egan, S. (2022). Bacterial controlled mitigation of dysbiosis in a seaweed disease. The ISME Journal, 16(2), 378–387. https://doi.org/10.1038/s41396-021-01070-1

Li, J., Pang, S., Liu, F., Shan, T., & Gao, S. (2013). Spermatozoid life-span of two brown seaweeds, Saccharina japonica and Undaria pinnatifida, as measured by fertilization efficiency. Chinese Journal of Oceanology and Limnology, 31(4), 774–781. https://doi.org/10.1007/s00343-013-2207-y

Li, N., He, X., Liu, N., Gu, T., Li, J., Geng, Y., Zhang, S., Wang, P., Fu, H., Shi, M., Chen, X., Zhang, Y., Zhang, X., & Qin, Q. (2021). Tritonibacter aquimaris sp. nov. and Tritonibacter litoralis sp. nov., two novel members of the Roseobacter group isolated from coastal seawater. Antonie Van Leeuwenhoek, 114(6), 787–798. https://doi.org/10.1007/s10482-021-01558-y

Liang, K. Y. H., Orata, F. D., Boucher, Y. F., & Case, R. J. (2021). Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the “Roseobacter Clade” Into a Novel Family, Roseobacteraceae fam. nov. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.683109

Lüning, K. (1981). Egg release in gametophytes ofLaminaria saccharina: Induction by darkness and inhibition by blue light and u.v. British Phycological Journal, 16(4), 379– 393. https://doi.org/10.1080/00071618100650441

Mabeau, S., & Kloareg, B. (1987). Isolation and Analysis of the Cell Walls of Brown Algae:Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcataandLaminaria digitata. Journal of Experimental Botany, 38(9), 1573–1580. https://doi.org/10.1093/jxb/38.9.1573

Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., Kelleway, J. J., Kennedy, H., Kuwae, T., Lavery, P. S., Lovelock, C. E., Smale, D. A., Apostolaki, E. T., Atwood, T. B., Baldock, J., Bianchi, T. S., Chmura, G. L., Eyre, B. D., Fourqurean, J. W., . . . Duarte, C. M. (2019). The future of Blue Carbon science. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11693-w

Maestre, F. T., Callaway, R. M., Valladares, F., & Lortie, C. J. (2009). Refining the stress‐ gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97(2), 199–205. https://doi.org/10.1111/j.1365-2745.2008.01476.x

Maier, I., Hertweck, C., & Boland, W. (2001). Stereochemical Specificity of Lamoxirene, the Sperm-Releasing Pheromone in Kelp (Laminariales, Phaeophyceae). Biological Bulletin, 201(2), 121–125. https://doi.org/10.2307/1543327

Mamer, F. (1984). Lamoxirene. Structural Proof of the Spermatozoid Releasing and Attracting Pheromone of Laminariales. Zeitschrift Für Naturforschung C, 39(6), 689– 691. https://doi.org/10.1515/znc-1984-0629

Mann, K. H. (1973). Seaweeds: Their Productivity and Strategy for Growth. Science, 182(4116), 975–981. https://doi.org/10.1126/science.182.4116.975

Marín‐Guirao, L., Entrambasaguas, L., Ruiz, J. M., & Procaccini, G. (2019). Heat‐stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Molecular Ecology, 28(10), 2486–2501. https://doi.org/10.1111/mec.15089

65

Martin-Platero, A. M., Cleary, B., Kauffman, K., Preheim, S. P., McGillicuddy, D. J., Alm, E. J., & Polz, M. F. (2018). High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-02571-4

Martins, N., Pearson, G. A., Bernard, J., Serrão, E. A., & Bartsch, I. (2020). Thermal traits for reproduction and recruitment differ between Arctic and Atlantic kelp Laminaria digitata. PloS One, 15(6), e0235388. https://doi.org/10.1371/journal.pone.0235388

Martins, N., Pearson, G. A., Gouveia, L., Tavares, A. I., Serrão, E. A., & Bartsch, I. (2019). Hybrid vigour for thermal tolerance in hybrids between the allopatric kelpsLaminaria digitataandL. pallida(Laminariales, Phaeophyceae) with contrasting thermal affinities. European Journal of Phycology, 54(4), 548–561. https://doi.org/10.1080/09670262.2019.1613571

McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217

Morris, R. L., Graham, T. D. J., Kelvin, J., Ghisalberti, M., & Swearer, S. E. (2019). Kelp beds as coastal protection: wave attenuation of Ecklonia radiata in a shallow coastal bay. Annals of Botany. https://doi.org/10.1093/aob/mcz127

Morrissey, K. L., Çavaş, L., Willems, A., & De Clerck, O. (2019). Disentangling the Influence of Environment, Host Specificity and Thallus Differentiation on Bacterial Communities in Siphonous Green Seaweeds. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00717

Müller, R., Wiencke, C., & Bischof, K. (2008). Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Climate Research, 37(2–3), 203–213. https://doi.org/10.3354/cr00762

Noskova, Y., Nedashkovskaya, O., & Balabanova, L. (2025). Production, Purification, and Biochemical Characterization of a Novel ATP-Dependent Caseinolytic Protease from the Marine Bacterium Cobetia amphilecti KMM 296. Microorganisms, 13(2), 307. https://doi.org/10.3390/microorganisms13020307

Oliver, E. C. J., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J., Holbrook, N. J., Schlegel, R. W., & Gupta, A. S. (2021). Marine heatwaves. Annual Review of Marine Science, 13(1), 313–342. https://doi.org/10.1146/annurev-marine-032720- 095144

Pastor, F., & Khodayar, S. (2022). Marine heat waves: Characterizing a major climate impact in the Mediterranean. The Science of the Total Environment, 861, 160621. https://doi.org/10.1016/j.scitotenv.2022.160621

Peixoto, R. S., Rosado, P. M., De Assis Leite, D. C., Rosado, A. S., & Bourne, D. G. (2017). Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00341

Pereira, T., Engelen, A., Pearson, G., Serrao, E., Destombe, C., & Valero, M. (2011). Temperature effects on the microscopic haploid stage development of L. ochroleuca and S. polyschides, kelps with contrasting life histories. Cahiers De Biologie Marine, 52, 395–403.

Pita, L., Rix, L., Slaby, B. M., Franke, A., & Hentschel, U. (2018). The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome, 6(1). https://doi.org/10.1186/s40168-018-0428-1

66

Rao, D., Webb, J. S., & Kjelleberg, S. (2005). Competitive Interactions in Mixed-Species Biofilms Containing the Marine Bacterium Pseudoalteromonas tunicata. Applied and Environmental Microbiology, 71(4), 1729–1736. https://doi.org/10.1128/aem.71.4.1729-1736.2005

Roohi, N., Zaheer, M. R., & Kuddus, M. (2017). PHB (poly‐β‐hydroxybutyrate) and its enzymatic degradation. Polymers for Advanced Technologies, 29(1), 30–40. https://doi.org/10.1002/pat.4126

Rosenberg, E., & Zilber-Rosenberg, I. (2016). Microbes Drive Evolution of Animals and Plants: the Hologenome Concept. MBio, 7(2). https://doi.org/10.1128/mbio.01395- 15

Saha, M., Berdalet, E., Carotenuto, Y., Fink, P., Harder, T., John, U., Not, F., Pohnert, G., Potin, P., Selander, E., Vyverman, W., Wichard, T., Zupo, V., & Steinke, M. (2019). Using chemical language to shape future marine health. Frontiers in Ecology and the Environment, 17(9), 530–537. https://doi.org/10.1002/fee.2113

Saha, M., Dove, S., & Weinberger, F. (2020). Chemically Mediated Microbial “Gardening” Capacity of a Seaweed Holobiont Is Dynamic. Microorganisms, 8(12), 1893. https://doi.org/10.3390/microorganisms8121893

Saha, M., Rempt, M., Gebser, B., Grueneberg, J., Pohnert, G., & Weinberger, F. (2012). Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus vesiculosus inhibit bacterial attachment. Biofouling, 28(6), 593–604. https://doi.org/10.1080/08927014.2012.698615

Schiel, D. R., & Foster, M. S. (2006). The Population Biology of Large Brown Seaweeds: Ecological Consequences of Multiphase Life Histories in Dynamic Coastal Environments. Annual Review of Ecology Evolution and Systematics, 37(1), 343–372. https://doi.org/10.1146/annurev.ecolsys.37.091305.110251

Seyedsayamdost, M. R., Case, R. J., Kolter, R., & Clardy, J. (2011). The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nature Chemistry, 3(4), 331–335. https://doi.org/10.1038/nchem.1002

Si, X., Liu, Z., Cheng, S., Xi, J., Zeng, B., Li, M., Zhu, L., Yan, S., & Zhang, N. (2024). Genomic analysis of Marinobacter sp. M5B reveals its role in alginate biosynthesis. Marine Genomics, 79, 101163. https://doi.org/10.1016/j.margen.2024.101163

Singh, R. P., & Reddy, C. (2014). Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88(2), 213–230. https://doi.org/10.1111/1574-6941.12297

Smale, D. A. (2019). Impacts of ocean warming on kelp forest ecosystems. New Phytologist, 225(4), 1447–1454. https://doi.org/10.1111/nph.16107

Smale, D. A., Pessarrodona, A., King, N., & Moore, P. J. (2021). Examining the production, export, and immediate fate of kelp detritus on open‐coast subtidal reefs in the Northeast Atlantic. Limnology and Oceanography, 67(S2). https://doi.org/10.1002/lno.11970

Smale, D. A., & Wernberg, T. (2013). Extreme climatic event drives range contraction of a habitat-forming species. Proceedings - Royal Society. Biological Sciences/Proceedings - Royal Society. Biological Sciences, 280(1754), 20122829. https://doi.org/10.1098/rspb.2012.2829

Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Gupta, A. S., Payne, B.

67

L., & Moore, P. J. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9(4), 306–312. https://doi.org/10.1038/s41558-019-0412-1

Smale, D. A., Wernberg, T., Yunnie, A. L. E., & Vance, T. (2014). The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Marine Ecology, 36(4), 1033–1044. https://doi.org/10.1111/maec.12199

Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M., & Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proceedings of the National Academy of Sciences, 103(32), 12115– 12120. https://doi.org/10.1073/pnas.0605127103

Spoerner, M., Wichard, T., Bachhuber, T., Stratmann, J., & Oertel, W. (2012). Growth and Thallus Morphogenesis of Ulva mutabilis (Chlorophyta) Depends on A Combination of Two Bacterial Species Excreting Regulatory Factors. Journal of Phycology, 48(6), 1433–1447. https://doi.org/10.1111/j.1529-8817.2012.01231.x

Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A., & Tegner, M. J. (2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation, 29(4), 436–459. https://doi.org/10.1017/s0376892902000322

Strasser, F., Barreto, L. M., Kaidi, S., Sabour, B., Serrão, E. A., Pearson, G. A., & Martins, N. (2022). Population level variation in reproductive development and output in the golden kelp Laminaria ochroleuca under marine heat wave scenarios. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.943511

Tapia, J. E., González, B., Goulitquer, S., Potin, P., & Correa, J. A. (2016). Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00197

Teagle, H., Hawkins, S. J., Moore, P. J., & Smale, D. A. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492, 81–98. https://doi.org/10.1016/j.jembe.2017.01.017

Thøgersen, M. S., Melchiorsen, J., Ingham, C., & Gram, L. (2018a). A Novel Microbial Culture Chamber Co-cultivation System to Study Algal-Bacteria Interactions Using Emiliania huxleyi and Phaeobacter inhibens as Model Organisms. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01705

Thøgersen, M. S., Melchiorsen, J., Ingham, C., & Gram, L. (2018b). A Novel Microbial Culture Chamber Co-cultivation System to Study Algal-Bacteria Interactions Using Emiliania huxleyi and Phaeobacter inhibens as Model Organisms. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01705

Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J. T., Mirarab, S., Xu, Z. Z., Jiang, L., . . . Zhao, H. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551(7681), 457–463. https://doi.org/10.1038/nature24621

Tujula, N. A., Crocetti, G. R., Burke, C., Thomas, T., Holmström, C., & Kjelleberg, S. (2009). Variability and abundance of the epiphytic bacterial community associated

68

with a green marine Ulvacean alga. The ISME Journal, 4(2), 301–311.

https://doi.org/10.1038/ismej.2009.107
Van Den Hoek, C., Mann, D. G., & Jahns, H. M. (1998). Algae. An Introduction to

Phycology. Photosynthetica, 35(4), 506. https://doi.org/10.1023/a:1006955729654 Van Der Loos, L. M., Eriksson, B. K., & Salles, J. F. (2019). The macroalgal holobiont in a

changing sea. Trends in Microbiology, 27(7), 635–650.

https://doi.org/10.1016/j.tim.2019.03.002
Van Der Loos, L. M., Steinhagen, S., Stock, W., Weinberger, F., D’hondt, S., Willems, A.,

& De Clerck, O. (2025). Low functional change despite high taxonomic turnover characterizes the Ulva microbiome across a 2000-km salinity gradient. Science Advances, 11(3). https://doi.org/10.1126/sciadv.adr6070

Vannini, A. (2002). The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. The EMBO Journal, 21(17), 4393–4401. https://doi.org/10.1093/emboj/cdf459

Veenhof, R. J., Champion, C., Dworjanyn, S. A., Wernberg, T., Minne, A. J., Layton, C., Bolton, J. J., Reed, D. C., & Coleman, M. A. (2022). Kelp Gametophytes in Changing Oceans. In CRC Press eBooks (pp. 335–371). https://doi.org/10.1201/9781003288602-7

Veenhof, R. J., McGrath, A. H., Champion, C., Dworjanyn, S. A., Marzinelli, E. M., & Coleman, M. A. (2025). The role of microbiota in kelp gametophyte development and resilience to thermal stress. Journal of Phycology. https://doi.org/10.1111/jpy.70018

Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. E., & Cebrian, E. (2018). Restoration of a Canopy-Forming Alga Based on Recruitment Enhancement: Methods and Long- Term Success Assessment. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01832

Wahl, M., Goecke, F., Labes, A., Dobretsov, S., & Weinberger, F. (2012). The Second Skin: Ecological Role of Epibiotic Biofilms on Marine Organisms. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00292

Wernberg, T., Coleman, M. A., Bennett, S., Thomsen, M. S., Tuya, F., & Kelaher, B. P. (2018). Genetic diversity and kelp forest vulnerability to climatic stress. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20009-9

Wernberg, T., Krumhansl, K., Filbee-Dexter, K., & Pedersen, M. F. (2019). Status and Trends for the World’s Kelp Forests. In Elsevier eBooks (pp. 57–78). https://doi.org/10.1016/b978-0-12-805052-1.00003-6

Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., De Bettignies, T., Bennett, S., & Rousseaux, C. S. (2012). An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3(1), 78–82. https://doi.org/10.1038/nclimate1627

Wichard, T. (2015a). Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00086

Wichard, T. (2015b). Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00086

Wichard, T. (2023). From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in

69

algal aquaculture. Seminars in Cell & Developmental Biology, 134, 69–78.

https://doi.org/10.1016/j.semcdb.2022.04.007
Wiese, J., Thiel, V., Nagel, K., Staufenberger, T., & Imhoff, J. F. (2008). Diversity of

Antibiotic-Active Bacteria Associated with the Brown Alga Laminaria saccharina from the Baltic Sea. Marine Biotechnology, 11(2), 287–300. https://doi.org/10.1007/s10126-008-9143-4

Wilkins, L. G. E., Leray, M., O’Dea, A., Yuen, B., Peixoto, R. S., Pereira, T. J., Bik, H. M., Coil, D. A., Duffy, J. E., Herre, E. A., Lessios, H. A., Lucey, N. M., Mejia, L. C., Rasher, D. B., Sharp, K. H., Sogin, E. M., Thacker, R. W., Thurber, R. V., Wcislo, W. T., . . . Eisen, J. A. (2019). Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biology, 17(11), e3000533. https://doi.org/10.1371/journal.pbio.3000533

Yumoto, I., Hirota, K., Iwata, H., Akutsu, M., Kusumoto, K., Morita, N., Ezura, Y., Okuyama, H., & Matsuyama, H. (2004). Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2. Archives of Microbiology, 181(5), 345–351. https://doi.org/10.1007/s00203-004-0662-8

Zhou, J., Lyu, Y., Richlen, M. L., Anderson, D. M., & Cai, Z. (2016). Quorum Sensing Is a Language of Chemical Signals and Plays an Ecological Role in Algal-Bacterial Interactions. Critical Reviews in Plant Sciences, 35(2), 81–105. https://doi.org/10.1080/07352689.2016.1172461

Download scriptie (4.37 MB)
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2025
Promotor(en)
Olivier de Clerck, Sofie Peeters
Thema('s)