Van vuile diesel naar groene methanol: hoe scheepsmotoren duurzamer kunnen worden

Sebastiaan
Malfait
  • Matthijs
    Van Duyse

Het nieuws staat er vol van: de klimaatopwarming is geen verre dreiging meer, maar dagelijkse realiteit. Terwijl elektrische wagens steeds populairder worden, blijft de zware transportsector (scheepvaart, vrachtwagens …) een grote uitstoter. Samen zijn ze goed voor bijna een tiende van de wereldwijde broeikasgassen. En voorlopig varen de meeste schepen nog steeds op diesel, een brandstof die niet alleen CO₂ uitstoot en bijdraagt tot de klimaatopwarming, maar ook schadelijke stoffen zoals roet en stikstofoxiden wat de luchtkwaliteit doet dalen.

Maar wat als we die enorme scheepsmotoren toch een groene toekomst kunnen geven? Dat was de onderzoeksvraag tijdens onze masterproef aan de UGent. Ons antwoord: methanol.

Waarom geen batterijen of waterstof?

Misschien denkt u: waarom schakelen we die schepen niet gewoon over op batterijen, net zoals bij elektrische auto’s? Helaas werkt dat niet zo eenvoudig. Een containerschip dat wekenlang de oceaan oversteekt, zou batterijen nodig hebben die letterlijk duizenden keren groter zijn dan die van een Tesla, dat is veel te zwaar en te groot. Ook waterstof lijkt op papier aantrekkelijk, maar vraagt tanks die extreem onder druk staan of vloeibaar gehouden moeten worden bij -250 °C. Dat is duur, ingewikkeld en moeilijk te combineren met de beperkte ruimte aan boord.

Methanol heeft dat probleem niet. Het is vloeibaar bij kamertemperatuur, makkelijk op te slaan en te vervoeren, en kan zelfs getankt worden in havens met bestaande infrastructuur. Het is dus een praktische oplossing die niet decennialang wachten op nieuwe en dure technologie vraagt.

Methanol als verrassend alternatief

Wat methanol extra aantrekkelijk maakt, is de combinatie van eigenschappen die haast gemaakt lijken voor motoren. Het verbrandt schoner, koelt de motor van nature en kan gemaakt worden uit hernieuwbare bronnen zoals CO₂ en groene elektriciteit. Daardoor kan methanol, als het op de juiste manier wordt geproduceerd, bijna klimaatneutraal zijn: wat bij de verbranding vrijkomt, werd eerder uit de lucht gehaald. Bovendien kan er in de transitieperiode gewerkt worden met diesel-methanol mengsels om de omschakeling te vereenvoudigen.

Hoe maak je een motor proper én efficiënt?

Een dieselmotor laten draaien op methanol is echter niet simpel. Diesel ontbrandt vanzelf door de hoge druk in de cilinder, terwijl methanol een vonk nodig heeft, zoals bij een benzinemotor. Daarom werd een marine dieselmotor omgebouwd tot een motor die volledig op methanol draait.

Daarbij waren er echter een aantal problemen: bij hoge belasting dreigde de motor instabiel te worden of ongecontroleerde ontploffingen te krijgen. We onderzochten daarom experimenteel twee slimme technieken op deze omgebouwde scheepsmotor:

  • Meer lucht toevoegen (arme verbranding): hierdoor verloopt de verbranding rustiger en koeler.
  • Een deel van de uitlaatgassen terug de motor in sturen (Exhaust Gas Recirculation of EGR): dat klinkt misschien vreemd, maar die uitlaatgassen zorgen ervoor dat de temperatuur in de cilinder lager blijft en de verbranding beter beheersbaar wordt.

Het resultaat was verrassend positief. Met de uitlaatgas-truc (EGR) werd de motor even efficiënt als de originele dieselversie, maar met veel minder vervuilende stoffen. En omdat de uitlaat samenstelling hierdoor nog geschikt blijft voor een standaard katalysator, hoeft de scheepvaart geen dure nieuwe filtersystemen te installeren.

Arme verbranding had ook veel potentieel, maar maakte de motor gevoeliger voor instabiliteit en zou veel complexere filters vragen. Conclusie: EGR is de meest haalbare en praktische oplossing.

Een extra vonk: de prechamber

Alsof dat nog niet genoeg was, werd nog een nieuwe techniek onderzocht: de passieve prechamber. Dat is een kleine kamer bovenop de cilinder waar de vonk eerst plaatsvindt. Daar ontstaat een soort mini-vlammenwerper die het mengsel in de hoofdkamer veel beter en sneller doet ontbranden. Dit belooft vooral nuttig te zijn wanneer het mengsel extreem verdund verbrandt, wat de efficiëntie en netheid nog verder kan verhogen. De prechamber werd al ontworpen en gebouwd, klaar voor verder onderzoek.

Waarom dit belangrijk is

De scheepvaart is een sector die moeilijk te verduurzamen is. Elektrische motoren in de zware transportsector zijn momenteel niet realistisch, maar de motoren ombouwen naar methanol verbranding kan wel al. Op die manier vermijd je vervangingskosten en haal je tegelijk de uitstoot drastisch naar beneden.

De conclusie is dan ook hoopgevend: methanolmotoren kunnen dieselprestaties evenaren, maar met veel minder vervuiling. Voeg daar innovatieve technieken zoals de prechamber aan toe, en we komen een stap dichter bij écht groene scheepvaart. Natuurlijk zijn er nog uitdagingen. De grootschalige productie van groene methanol moet op gang komen en de scheepvaartsector moet durven investeren, maar technisch staat de deur wijd open.

Richting duurzame scheepsvaart

De klimaatuitdaging vraagt geen wonderen, maar slimme keuzes. Soms zit de oplossing niet in futuristische technologie, maar in het heruitvinden van wat we vandaag al hebben. Oude dieselmotoren ombouwen tot moderne methanolmotoren kan het verschil maken. Misschien varen de schepen die vandaag de wereld rondgaan binnenkort op methanol, een schoner en groener alternatief. Methanol is geen wondermiddel, maar wel de missing link: praktisch, betaalbaar en klaar voor opschaling.

Bibliografie

[1] United Nations Climate change. The paris agreement, Oct 2020. 
[2] Kate Whiting. How 6 heavy-emitting industries are working to decarbonize, Sept 2024. 
[3] M.J. Wernke. Diesel exhaust. In Philip Wexler, editor, Encyclopedia of Toxicology (Third Edition), pages 111–114. Academic Press, Oxford, third edition edition, 2014. 
[4] Ahmad Fayyazbakhsh, Michelle L. Bell, Xingbao Zhu, Xueyi Mei, Marek Koutn´y, Nima Hajinajaf, and Yexin Zhang. Engine emissions with air pollutants and greenhouse gases and their control technologies. Journal of Cleaner Production, 376:134260, 2022. 
[5] Panshuo Li, Anh-Tu Nguyen, Haiping Du, Yan Wang, and Hui Zhang. Polytopic lpv approaches for intelligent automotive systems: State of the art and future challenges. Mechanical Systems and Signal Processing, 161:107931, 2021. 
[6] Sebastian Verhelst Quinten Dejaegere. Renewable alternatives for fossil fuels in non road mobile machinery: A multicriteria analysis. SAE Technical Paper, 2023. 
[7] DNV.GL. Comparison of alternative marine fuels, 2019. 
[8] R.J. Pearson and J.W.G. Turner. 2- the role of alternative and renewable liquid fuels in environmentally sustainable transport. In Richard Folkson, editor, Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, pages 19–51. Woodhead Publishing, 2014. 
[9] Nancy W. Stauffer. Designing better batteries for electric vehicles, August 2021. 
[10] Hongli Diao, Hang Yang, Tan Tan, Gui Ren, Minhua You, Longyue Wu, Mingxiang Yang, Yabin Bai, Shibin Xia, Shaoxian Song, Mildred Quintana, Lei Liu, and Qiang Xue. Navigating the rare earth elements landscape: Challenges, innovations, and sustainability. Minerals Engineering, 216:108889, 2024. 
[11] Zachary J. Baum, Robert E. Bird, Xiang Yu, and Jia Ma. Lithium-ion battery recycling-overview of techniques and trends. ACS Energy Letters, 7(2):712–719, 2022. 
[12] Zongao Xie, Qihang Jin, Guanli Su, and Wei Lu. A review of hydrogen storage and transportation: Progresses and challenges. Energies, 17(16), 2024. 
[13] Debora Mignogna, Paolo Ceci, Claudia Cafaro, Giulia Corazzi, and Pasquale Avino. Production of biogas and biomethane as renewable energy sources: A review. Applied 149 Sciences, 13(18), 2023. 
[14] J. Rochussen, N.S.B. Jaeger, H. Penner, A. Khan, and P. Kirchen. Development and demonstration of strategies for ghg and methane slip reduction from dual-fuel natural gas coastal vessels. Fuel, 349:128433, 2023. 
[15] Ebrahim Nadimi, Grzegorz Przybyla, Michal T. Lewandowski, and Wojciech Adam czyk. Effects of ammonia on combustion, emissions, and performance of the am monia/diesel dual-fuel compression ignition engine. Journal of the Energy Institute, 107:101158, 2023. 
[16] L. Bromberg and W.K. Cheng. Methanol as an alternative transportation fuel in the us: Options for sustainable and/or energy-secure transportation. Massachusetts Institute of Technology, November 2010. 
[17] Yanhui Zhang, Yunhao Zhong, Shengsen Lu, Zhiqing Zhang, and Dongli Tan. A comprehensive review of the properties, performance, combustion, and emissions of the diesel engine fueled with different generations of biodiesel. Processes, 10(6), 2022. 
[18] Rebecca Moore. Stena line orders two methanol dual-fuelled ferries, may 2023. 
[19] Martyn Wingrove. World’s first methanol-fuelled tug named in port of antwerp bruges, may 2024. 
[20] A.P. Moller Maersk. Maersk to deploy first large methanol-enabled vessel on asia europe trade lane, december 2023. 
[21] Thomas Vanderbeken Sheldon Demiddeleer. Experimental evaluation of the perfor mance of methanol in a marine diesel engine retrofitted to si operation. Master’s thesis, Ghent University, 2024. 
[22] Ben Gyselinck Kwinten Bracke. Exploring the potential of a heavy-duty ci diesel engine retrofitted to methanol si operation. Master’s thesis, Ghent University, 2023. 
[23] Hardikk Valera and Avinash Kumar Agarwal. Methanol as an Alternative Fuel for Diesel Engines, pages 9–33. Springer Singapore, Singapore, 2019. 
[24] Jeroen Dierickx, Jip Verbiest, Tom Janvier, Jens Peeters, L. Sileghem, and Sebas tian Verhelst. Retrofitting a high-speed marine engine to dual-fuel methanol-diesel operation: A comparison of multiple and single point methanol port injection. Fuel Communications, 7:100010, 03 2021. 
[25] Xudong Zhen and Yang Wang. An overview of methanol as an internal combustion engine fuel. Renewable and Sustainable Energy Reviews, 52:477–493, 2015. 
[26] J. Vancoillie, J. Demuynck, L. Sileghem, M. Van De Ginste, S. Verhelst, L. Brabant, and L. Van Hoorebeke. The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines. Applied Energy, 102:140–149, 2013. Special Issue on Advances in sustainable biofuel production and use- XIX International Symposium on Alcohol Fuels- ISAF. 
[27] Sebastian Verhelst, James WG Turner, Louis Sileghem, and Jeroen Vancoillie. Methanol as a fuel for internal combustion engines. Progress in Energy and Combus 150 tion Science, 70:43–88, 2019. 
[28] Datta Bharadwaz Yellapragada and Govinda Rao Budda. Methanol—A Sustainable Fuel for SI Engine, pages 103–137. Springer Singapore, Singapore, 2021. 
[29] Maritime Page. What is the lifespan of a cargo ship? https://maritimepage.com/ lifespan-of-cargo-ships/, n.d. Accessed: 2024-11-18. 
[30] MAN engine Energy retrofit Solutions. solutions Agreement signed. for methanol main https://www.man-es. com/company/press-releases/press-details/2023/07/06/ agreement-for-methanol-main-engine-retrofit-solutions-signed, Accessed: 2024-11-18. 2023. 
[31] Jianqin Fu, Banglin Deng, Jingping Liu, Linjun Wang, Zhengxin Xu, Jing Yang, and Gequn Shu. Study of si engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol. Energy Conversion and Management, 79:213–223, 2014. 
[32] Ankur Kalwar and Avinash Agarwal. Overview, Advancements and Challenges in Gasoline Direct Injection Engine Technology, pages 111–147. Advanced Combustion Techniques and Engine Technologies for the Automotive Sector, 01 2020. 
[33] Joseph O. Amaechi, Chinujinim Godstime Thomas, and Chukwumela Obulor Ochogba. Comparative factors in spark ignition (si) and compression ignition (ci) engines for a sustainable technological economy. International Journal of Science and Research (IJSR), 4(12):67–72, 2015. Licensed under Creative Commons Attribution CC BY. 
[34] Nguyen, Duc-Khanh and Stepman, Bram and Vergote, Viktor and Sileghem, Louis and Verhelst, Sebastian. Combustion characterization of methanol in a lean burn Di rect Injection Spark Ignition (DISI) engine. In SAE TECHNICAL PAPER SERIES, page 11. Society of Automotive Engineers (SAE), 2019. 
[35] Jun Li, Chang-Ming Gong, Yan Su, Hui-Li Dou, and Xun-Jun Liu. Effect of injection and ignition timings on performance and emissions from a spark-ignition engine fueled with methanol. Fuel, 89(12):3919–3925, 2010. 
[36] Matthew Brusstar, Mark Stuhldreher, David Swain, and William Pidgeon. High efficiency and low emissions from a port-injected engine with neat alcohol fuels. SAE Technical Paper Series, 2002-01-2743, 2002. Presented at the 2002 SAE Powertrain and Fluid Systems Conference and Exhibition. 
[37] Senthil Krishnan Mahendar, Anders Erlandsson, and Ludvig Adlercreutz. Challenges for spark ignition engines in heavy duty applications: A review. SAE Technical Paper, 2018. © 2018 SAE International. All Rights Reserved. 
[38] Zhi Wang, Hui Liu, and Rolf D Reitz. Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science, 61:78–112, 2017. 
[39] Zengqiang Zhu, Zhiqiang Mu, Yanju Wei, Ruiheng Du, and Shenghua Liu. Exper imental evaluation of performance of heavy-duty si pure methanol engine with egr. 151 Fuel, 325:124948, 2022. 
[40] Duc-Khanh Nguyen, Bram Stepman, Viktor Vergote, Louis Sileghem, and Sebastian Verhelst. Combustion characterization of methanol in a lean burn direct injection spark ignition (disi) engine. SAE Technical Paper Series, 2019. Published 02 Apr 2019. 
[41] Zhi Wang, Hui Liu, and Rolf D Reitz. Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science, 61:78–112, 2017. 
[42] Nishchay Sharma. Knock model evaluation- gas engine. Master of science thesis, KTH Industrial Engineering and Management, Machine Design, August 2018. Com missioned by AVL, S¨odert¨alje. Examiner: Dr. Andreas Cronhjort; Supervisor: Dr. Johan Fj¨allman. 
[43] P. Bares, D. Selmanaj, C. Guardiola, and C. Onder. A new knock event definition for knock detection and control optimization. Applied Thermal Engineering, 131:80–88, 2018. 
[44] Ward Suijs, Stijn Broekaert, Thomas De Cuyper, and Sebastian Verhelst. The sen sitivity of pressure-based knock threshold values to alternative fuels: A comparison of methanol vs. gasoline. Fuel, 362:130850, 2024. 
[45] Enzo Galloni. Dynamic knock detection and quantification in a spark ignition engine by means of a pressure based method. Energy Conversion and Management, 64:256 262, 2012. IREC 2011, The International Renewable Energy Congress. 
[46] Zengqiang Zhu, Zhiqiang Mu, Yanju Wei, Ruiheng Du, Wei Guan, and Shenghua Liu. Cylinder-to-cylinder variation of knock and effects of mixture formation on knock tendency for a heavy-duty spark ignition methanol engine. Energy, 254:124197, 2022. 
[47] Stephen Russ. A review of the effect of engine operating conditions on borderline knock. SAE Technical Paper 960497, 1996. 
[48] L. Patterson, W. Sutherland, M. Hsu, and L. Smith. A study of the effects of air-fuel ratio and egr on knock in a si engine. SAE Technical Paper 983026, 1998. [49] Pascal Granier Maxime Jean and Thomas Leroy. Combustion stability control based on cylinder pressure for high efficiency gasoline engines. Energies, 2022. 
[50] Bahram Bahri, Azhar Abdul Aziz, Mahdi Shahbakhti, and Mohd Farid Muhamad Said. Understanding and detecting misfire in an hcci engine fuelled with ethanol. Applied Energy, 108:24–33, 2013. 
[51] Eric Randolph, Kelsey Fieseler, Graham Conway, Terrence Alger, and Christopher Chadwell. The effects of egr composition on combustion performance and efficiency. SAE International Journal of Advances and Current Practices in Mobility-V130 99EJ, 2020. 
[52] Changming Gong, Baoqing Deng, Shu Wang, Yan Su, Qing Gao, and Xunjun Liu. Combustion of a spark-ignition methanol engine during cold start under cycle-by cycle control. Energy & Fuels- ENERG FUEL, 22, 07 2008. 152 
[53] Zhaohui Li, Changming Gong, Xiang Qu, Fenghua Liu, Jingzhen Sun, Kang Wang, and Yufeng Li. Critical firing and misfiring boundary in a spark ignition methanol engine during cold start based on single cycle fuel injection. Energy, 89:236–243, 2015. 
[54] DieselNet. Eu nonroad emission standards, 2024. Accessed: 2024-11-24. [55] James W. G. Turner, Andrew G. J. Lewis, Sam Akehurst, Chris J. Brace, Sebastian Verhelst, Jeroen Vancoillie, Louis Sileghem, Felix C. P. Leach, and Peter P. Edwards. Alcohol fuels for spark-ignition engines: Performance, efficiency, and emission effects at mid to high blend rates for ternary mixtures. Energies, 13(23), 2020. 
[56] Xin Wang, Yunshan Ge, Linlin Liu, and Huiming Gong. Regulated, carbonyl emis sions and particulate matter from a dual-fuel passenger car burning neat methanol and gasoline. SAE Technical Papers, 2015, 04 2015. 
[57] Chung Song Ho, Jianfei Peng, UnHyok Yun, Qijun Zhang, and Hongjun Mao. Im pacts of methanol fuel on vehicular emissions: A review. Frontiers of Environmental Science and Engineering, 16(9):121, 2022. 
[58] Erik Svensson, Changle Li, Sam Shamun, Bengt Johansson, Martin Tuner, Cathleen Perlman, Harry Lehtiniemi, and Fabian Mauss. Potential levels of soot, nox, hc and co for methanol combustion. Technical Paper 2016-01-0887, SAE International, 2016. 
[59] Arne G¨udden, Stefan Pischinger, Jos´e Geiger, Benedikt Heuser, and Martin M¨uther. An experimental study on methanol as a fuel in large bore high speed engine appli cations– port fuel injected spark ignited combustion. Fuel, 303:121292, 2021. 
[60] Yajie Zhang, Zhiqiang Mu, Yanju Wei, Zengqiang Zhu, Ruiheng Du, and Shenghua Liu. Comprehensive study on unregulated emissions of heavy-duty si pure methanol engine with egr. Fuel, 320:123974, 2022. 
[61] Xiaoyan Li, Xudong Zhen, Yang Wang, Daming Liu, and Zhi Tian. The knock study of high compression ratio si engine fueled with methanol in combination with different egr rates. Fuel, 257:116098, 2019. 
[62] G.H. Abd-Alla. Using exhaust gas recirculation in internal combustion engines: a review. Energy Conversion and Management, 43(8):1027–1042, 2002. 
[63] Ward Suijs and Tijl Jooris. Improving part-load performance of a methanol-fueled engine by means of exhaust gas recirculation, 2019. Master of Science in Electrome chanical Engineering. 
[64] S. Verhelst, J. Vancoillie, K. Naganuma, M. De Paepe, J. Dierickx, Y. Huyghebaert, and T. Wallner. Setting a best practice for determining the egr rate in hydrogen internal combustion engines. International Journal of Hydrogen Energy, 38(5):2490 2503, 2013. 
[65] Haiqiao Wei, Tianyu Zhu, Gequn Shu, Linlin Tan, and Yuesen Wang. Gasoline engine exhaust gas recirculation– a review. Applied Energy, 99:534–544, 2012. [66] Sham Radhey, Rajesh Saluja, Gurwinder Singh, Vineet Kumar, and Shubham Par mar. Experimental investigation to study the effects of using hot and partially cold 153 egr in direct injection diesel engine. TECHNOLOGY, 04:1–4, 08 2016. 
[67] Xiongbo Duan, Yiqun Liu, Jingping Liu, Ming-Chia Lai, Marcis Jansons, Genmiao Guo, Shiheng Zhang, and Qijun Tang. Experimental and numerical investigation of the effects of low-pressure, high-pressure and internal egr configurations on the performance, combustion and emission characteristics in a hydrogen-enriched heavy duty lean-burn natural gas si engine. Energy Conversion and Management, 195:1319 1333, 2019. 
[68] David B Roth, Philip Keller, and Michael Becker. Requirements of external egr systems for dual cam phaser turbo gdi engines. Technical report, SAE Technical Paper, 2010. 
[69] Cinzia Tornatore, Fabio Bozza, Vincenzo De Bellis, Luigi Teodosio, Gerardo Valentino, and Luca Marchitto. Experimental and numerical study on the influ ence of cooled egr on knock tendency, performance and emissions of a downsized spark-ignition engine. Energy, 172:968–976, 2019. 
[70] Yangyang Li, Peng Wang, Shuqian Wang, Jingping Liu, Yunkun Xie, and Wenjun Li. Quantitative investigation of the effects of cr, egr and spark timing strategies on performance, combustion and nox emissions characteristics of a heavy-duty natural gas engine fueled with 99Fuel, 255:115803, 2019. 
[71] Bin Wu, Lejun Wang, Xinwei Shen, Rongbin Yan, and Peng Dong. Comparison of lean burn characteristics of an si engine fueled with methanol and gasoline under idle condition. Applied Thermal Engineering, 95:264–270, 2016. 
[72] Xinlei Liu, Priybrat Sharma, Mickael Silva, Abdullah S. AlRamadan, Emre Cenker, Qinglong Tang, Gaetano Magnotti, and Hong G. Im. Computational investigation of methanol pre-chamber combustion in a heavy-duty engine. Applications in Energy and Combustion Science, 15:100192, 2023. 
[73] Bin Wang, Fangxi Xie, Wei Hong, Jiakun Du, Hong Chen, and Yan Su. The effect of structural parameters of pre-chamber with turbulent jet ignition system on com bustion characteristics of methanol-air pre-mixture. Energy Conversion and Man agement, 274:116473, 2022. 
[74] R. Novella, J. Gomez-Soriano, I. Barbery, and P.J. Martinez-Hernandiz. Exploring the passive the pre-chamber ignition concept for spark-ignition engines fueled with natural gas under egr-diluted conditions. Energy, 294:130909, 2024. 
[75] Ponnya Hlaing, Manuel Echeverri, Paula Burgos, Emre Cenker, Moez Ben Houidi, and Bengt Johansson. Analysis of fuel properties on combustion characteristics in a narrow-throat pre-chamber engine. SAE International Journal of Advances and Current Practices in Mobility, 3, 04 2021. 
[76] Sipeng Zhu, Sam Akehurst, Andrew Lewis, and Hao Yuan. A review of the pre chamber ignition system applied on future low-carbon spark ignition engines. Re newable and Sustainable Energy Reviews, 154:111872, 2022. 
[77] Yi-Hao Pu, Quinten Dejaegere, Magnus Svensson, and Sebastian Verhelst. Renewable methanol as a fuel for heavy-duty engines: A review of technologies enabling single 154 fuel solutions. Energies, 17(7), 2024. 
[78] Karpov V. Gussak L. and Tikhonov Y. The application of lag-process in prechamber engines. SAE Technical Paper 790692, 1979. 
[79] Ashish Shah, Per Tunestal, and Bengt Johansson. Effect of pre-chamber volume and nozzle diameter on pre-chamber ignition in heavy duty natural gas engines. SAE Technical Papers, 2015, 04 2015. 
[80] Wei Li, Junfang Ma, Tao Zhu, Haiqiao Wei, and Jiaying Pan. Nozzle design of plug-and-play passive pre-chamber ignition systems for natural gas engines. Applied Sciences, 13(16), 2023. 
[81] Elisa Toulson, Harold Schock, and William Attard. A review of pre-chamber initiated jet ignition combustion systems. SAE Technical Papers, 10 2010. 
[82] K. Christianen J. Dierickx, S. Verhelst. Study of the combustion of hydrogen and methanol in dual-fuel engines. PhD thesis, Ghent University, 2023. 
[83] S. Devos B. De Cock. Effect of intake conditions on the performance of a diesel methanol dual-fuel engine. Master’s thesis, Ghent University, 2022. 
[84] J. Verbiest and T. Janvier. Optimisation of a methanol-diesel dual-fuel marine engine towards a sustainable shipping industry. Master’s thesis, Ghent University, 2018. 
[85] Q. Dejaegere. The effect of intake air conditions and hydrous methanol on combustion in a diesel-methanol dual-fuel engine. Master’s thesis, Ghent University, 2021. 
[86] A. Van Gijzeghem. Ontwerp en implementatie van een egr systeem op een diesel methanol dual-fuel motor. Master’s thesis, Ghent University, 2021. 
[87] Vancoillie, Jeroen and Verhelst, Sebastian and Demuynck, Joachim and Galle, Jonas and Sileghem, Louis and Van De Ginste, Maarten. Experimental evaluation of lean burn and EGR as load control strategies for methanol engines. In SAE TECHNICAL PAPER SERIES, page 18. Society of Automotive Engineers, 2012. 
[88] John B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill Edu cation, New York, 2nd edition, 2018. 
[89] Zhongjie Zhang and Zhaolei Zheng. Numerical simulation of the effects of the egr ratio and ignition timing on a supercharged and high compression ratio hybrid gasoline engine. Fuel, 341:127695, 2023. 
[90] Xiaolong He, Ramalingam Ramanujam, and Paul Miles. Characterization of the tumble flow in a spark-ignition engine using particle image velocimetry and planar laser-induced fluorescence. International Journal of Engine Research, 8(2):109–124, 2007. Impact of Tumble on Combustion in SI Engines. 
[91] Mehmet Kaplan. Influence of swirl, tumble, and squish flows on combustion charac teristics and emissions in internal combustion engine: A review. European Mechanical Science, 3(3):94–102, 2019. 
[92] DieselNet. International: Imo marine engine regulations. https://dieselnet.com/ standards/inter/imo.php#nox, 2025. Accessed: 2025-05-22. 155 
[93] Jos´e Manuel Luj´an, H´ector Climent, Ricardo Novella, and Manuel Eduardo Rivas Perea. Influence of a low pressure egr loop on a gasoline turbocharged direct injection engine. Applied Thermal Engineering, 89:432–443, 2015. 
[94] Diming Lou, Yedi Ren, Yunhua Zhang, and Xia Sun. Study on the effects of egr and spark timing on the combustion, performance, and emissions of a stoichiometric natural gas engine. ACS Omega, 5(41):26763–26775, 2020. PMID: 33111003. 
[95] Tim Watling and Julian Cox. Factors affecting three-way catalyst light-off: A simu lation study. SAE International Journal of Engines, 7:1311–1325, 05 2014. [96] S. Zhu, S. Akehurst, A. Lewis, and H. Yuan. A review of the pre-chamber ignition sys tem applied on future low-carbon spark ignition engines. Renewable and Sustainable Energy Reviews, 154:111872, 2022. 
[97] Elisa Toulson, Harold J. Schock, and William P. Attard. A review of pre-chamber initiated jet ignition combustion systems. SAE Technical Paper, 2010(01-2263), 2010. 
[98] Ashish Shah, Per Tunestal, and Bengt Johansson. Effect of pre-chamber volume and nozzle diameter on pre-chamber ignition in heavy duty natural gas engines. SAE Technical Paper, 2015(01-0867), 2015. 
[99] Ko Onodera, Tomohiro Kato, Satoshi Ogano, Kosuke Fujimoto, Katsuyoshi Kato, and Toyoharu Kaneko. Engine oil formulation technology to prevent pre-ignition in turbocharged direct injection spark ignition engines. In SAE Technical Paper Series. SAE International, 2015

Download scriptie (20.09 MB)
Genomineerde shortlist NBN Sustainability Award
Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2025
Promotor(en)
Sebastian Verhelst
Thema('s)