Wie een hersenoperatie ondergaat, verwacht dat elk detail zorgvuldig gepland wordt. Toch hangt het succes van bepaalde behandelingen af van de ervaring en keuzes van de arts. Daarom groeit de interesse om cruciale factoren – zoals de keuze van katheterpositie of injectiesnelheden van bepaalde stoffen – beter te kwantificeren. Mijn thesis focust op cerebrale arterioveneuze malformaties (AVM’s): misvormde clusters van hersenbloedvaten waarbij slagaders en aders rechtstreeks verbonden zijn. Een mogelijke behandeling is endovasculaire embolisatie, waarbij de arts via een microkatheter een stollingsmiddel inspuit, bijvoorbeeld een middel genaamd Onyx, dat stolt in de bloedvaten en de AVM (deels) blokkeert. Ik onderzocht specifiek de invloed van de Onyx-injectiesnelheid, met behulp van computationele vloeistofdynamica (CFD): computermodellen die bloed- en Onyxstromingen virtueel nabootsen in een virtuele kopie van de patiënts bloedvatenstelsel, als het ware een digitale tweeling. Daarmee kan men veilig virtueel simuleren hoe het middel zich in de bloedvaten verspreidt en welke invloed verschillende behandelingsscenario’s hebben. De resultaten tonen aan dat de injectiesnelheid een cruciale parameter is die verder kwantitatief onderzocht dient te worden.
Onze hersenen worden voorzien van zuurstof en voedingsstoffen door een uitgebreid netwerk van slagaders en aders, gelinkt door haarvaten, dat de bloedstroom reguleert. Bij een cerebrale arterioveneuze malformatie (AVM) gaat dit echter mis: dit is een vaatafwijking, gekenmerkt door een directe verbinding tussen slagader(s) en ader(s), zonder de gebruikelijke haarvaten ertussen. Dit leidt tot een complex netwerk van vaten dat de normale bloedcirculatie verstoort. De risico’s? Hersenbloedingen, epilepsie, andere neurologische problemen, etc. Een mogelijke behandeling is endovasculaire embolisatie: via een dunne katheter in de bloedvaten dicht bij de AVM injecteert de arts een stollingsmiddel, bijvoorbeeld Onyx, in het afwijkende vaatnetwerk. Daar stolt dit middel en wordt de AVM (gedeeltelijk) afgesloten, waardoor de kans op complicaties voor de patiënt verkleint.
Het resultaat van zo’n ingreep hangt echter af van de keuzes en ervaring van de arts. Denk bijvoorbeeld aan vragen zoals: hoe dichtbij de AVM wordt de katheter geplaatst? In welk bloedvat zit de katheter? Hoeveel stollingsmiddel wordt ingespoten? Hoe wordt dit ingespoten? Enzovoort… Daarom groeit de interesse in kwantificatie van deze parameters die mogelijk de uitkomst beïnvloeden. Hiervoor zijn tools zoals computationele vloeistofdynamica (CFD) bijzonder waardevol; dit zijn computermodellen die de bloed- en Onyx-stroming virtueel kunnen nabootsen in een digitale tweeling van de patiënt. Zo kan de verspreiding van Onyx in de bloedvaten worden gesimuleerd voor verschillende behandelingsscenario’s en kan de invloed van bepaalde parameters op een veilige, virtuele manier geëvalueerd worden.
Mijn thesis onderzocht hoe de Onyx-injectiesnelheid de Onyx-verspreiding in de bloedvaten beïnvloedt, via CFD-simulaties voor één specifieke patiënt. Momenteel wordt deze parameter in ziekenhuizen niet routinematig opgevolgd, ondanks richtlijnen van de Food and Drug Administration (FDA) die een snelheid van 0.16 ml/min aanbevelen en een strikte bovengrens van 0.30 ml/min – vanwege schadelijke effecten op de bloedvaten bij dierenstudies. Het patiënt-specifieke bloedvatenstelsel werd virtueel geconstrueerd op basis van medische beelden, en drie injectiesnelheden werden gesimuleerd: 0.08 ml/min, 0.16 ml/min (aanbevolen) en 0.32 ml/min. Zowel Onyx- als bloedstromingen werden gemodelleerd, gebruikmakend van literatuurgegevens en patiënt-specifieke informatie. Het voordeel van deze computermodellen? Je kan op een veilige, virtuele manier experimenteren met verschillende injectiesnelheden (of andere parameters) zonder risico’s voor de patiënt.
De simulatieresultaten toonden dat injectiesnelheid inderdaad een merkbare invloed heeft op het gedrag van de Onyx. Hogere snelheden kunnen in theorie voordelig zijn: kortere ingreep, dus minder verdoving en stralingsblootstelling. Het is echter belangrijk om na te gaan of een snelle injectie geen ongewenste effecten veroorzaakt. Volgens de simulaties versnellen hogere injectiesnelheden niet alleen de Onyx-progressie, maar veranderen ze ook de verdeling ervan over bloedvatvertakkingen stroomafwaarts. Om dit te kwantificeren, werd de verdeling van geïnjecteerde Onyx-massa over drie hartcycli (2.4 s) bepaald over twee vertakkingen stroomafwaarts van de katheter. Bij de lage injectiesnelheid (0.08 ml/min) stroomde 74% van de Onyx naar tak 1 en 26% naar tak 2. Voor de FDA-aanbevolen snelheid (0.16 ml/min) verdeelde de Onyx zich bijna gelijk (51% versus 49%). Bij de hoge snelheid (0.32 ml/min) draaide dit patroon om, met 39% naar tak 1 en 61% naar tak 2. Aangezien de katheter meer gericht was naar tak 1, betekent dit dat hogere injectiesnelheden de kans op ongewenste afsluiting van gezonde vaten (non-target embolisatie) kunnen vergroten. Een verklaring hiervoor is de verhoogde stromingsweerstand in tak 1 bij een hogere injectiesnelheid, doordat er meer en sneller viskeuze Onyx wordt geïnjecteerd, waardoor de stroming bemoeilijkt wordt.

Daarnaast veroorzaakten hogere injectiesnelheden een lichte stijging van de lokale drukverschillen (over een zone van ongeveer 4 mm net na de injectiesite), met maximale waarden van 0.44 Pa zonder Onyx-injectie en 4.47 Pa, 5.95 Pa en 8.85 Pa bij respectievelijk 0.08, 0.16 en 0.32 ml/min. Ook dit kan gelinkt worden aan de verhoogde stromingsweerstand in tak 1 bij een hogere injectiesnelheid, met als gevolg verhoogde drukken. Hoewel deze waarden klein bleven, wijzen verhoogde drukverschillen (en de daarmee gepaard gaande verhoogde wandschuifspanningen) wel op mogelijke risico’s voor vaatbeschadiging of bloedingen.
Deze studie illustreert dat de injectiesnelheid de uitkomst van de behandeling sterk kan beïnvloeden. Toch wordt deze vandaag nauwelijks gemonitord; dit kan dus beter... Bovendien tonen de gebruikte methoden potentieel voor de toekomst. Denk bijvoorbeeld aan de ontwikkeling van een pre-interventionele simulatie-tool: een virtuele testomgeving waarin verschillende behandelingsscenario’s getest worden op een virtuele kopie van het patiënt-specifieke bloedvatenstelsel, op basis waarvan men vooraf de veiligste en meest effectieve strategie voor de patiënt kan bepalen.
Dit onderzoek bewijst dat de Onyx-injectiesnelheid een cruciale parameter is die de Onyx-verspreiding en drukken in bloedvaten kan beïnvloeden, en zo ook de uitkomst van een endovasculaire embolisatie. Toekomstig onderzoek moet grotere patiëntengroepen, geoptimaliseerde simulatie-workflows, experimentele validatie en aandacht voor invloed van verschillende parameters omvatten. De studie onderstreept ook het potentieel van CFD-simulaties om op termijn dit soort ingrepen veiliger en efficiënter te maken door bij te dragen aan virtuele planning voorafgaand aan effectieve ingrepen.
[1] A. H. Care, “Arteriovenous malformation (avm),” n.d. [Online]. Available:
https://www.aurorahealthcare.org/services/neuroscience/brain-skull-base…
cerebrovascular-malformations/arteriovenous-malformation
[2] D. Menken, “Cerebral avm resection surgery - designer biomed - medical illustration,”
https://www.medillsb.com/illustration image details.aspx?AID=11565&
IID=226266, 2024, accessed: 2025-02-18.
[3] Mayo Clinic Staff, “Brain stereotactic radiosurgery,” 2023, accessed:
2025-02-18. [Online]. Available: https://www.mayoclinic.org/tests-procedures/
brain-stereotactic-radiosurgery/about/pac-20384679
[4] M. Pinkiewicz, M. Pinkiewicz, J. Walecki, and M. Zawadzki, “State of the art in the
role of endovascular embolization in the management of brain arteriovenous malformations—
a systematic review,” 12 2022.
[5] D. F. Vollherbst, R. Chapot, M. Bendszus, and M. A. M¨ohlenbruch, “Glue, onyx,
squid or phil? liquid embolic agents for the embolization of cerebral arteriovenous
malformations and dural arteriovenous fistulas,” pp. 25–38, 3 2022.
[6] P. M. Meyers, J. T. Fifi, K. M. Cockroft, T. R. Miller, C. A. Given, A. R. Zomorodi,
B. D. Jagadeesan, M. Mokin, P. Kan, T. L. Yao, O. Diaz, D. Huddle, R. J. Bellon, J. Seinfeld,
A. J. Polifka, D. Fiorella, R. V. Chitale, P. Kvamme, J. T. Morrow, J. Singer,
A. K. Wakhloo, A. S. Puri, V. R. Deshmukh, R. A. Hanel, L. F. Gonzalez, H. H. Woo,
and M. A. Aziz-Sultan, “Safety of the apollo onyx delivery microcatheter for embolization
of brain arteriovenous malformations: Results from a prospective post-market
study,” Journal of NeuroInterventional Surgery, vol. 13, pp. 935–941, 2021.
[7] P. Orlowski, P. Summers, J. A. Noble, J. Byrne, and Y. Ventikos, “Computational modelling
for the embolization of brain arteriovenous malformations,” Medical Engineering
and Physics, vol. 34, pp. 873–881, 9 2012.
[8] B. Zhang, X. Chen, X. Zhang, G. Ding, L. Ge, and S. Wang, “Computational modeling
and simulation for endovascular embolization of cerebral arteriovenous malformations
with liquid embolic agents,” Acta Mechanica Sinica/Lixue Xuebao, vol. 40, 1 2024.
[9] P. Reymond, F. Merenda, F. Perren, D. R¨ufenacht, and N. Stergiopulos, “Validation of
a one-dimensional model of the systemic arterial tree,” American Journal of Physiology
- Heart and Circulatory Physiology, vol. 297, 7 2009.
[10] A. Can, B. A. Gross, and R. Du, The natural history of cerebral arteriovenous malformations.
Elsevier, 2017.
[11] M. T. Lawton, W. C. Rutledge, H. Kim, C. Stapf, K. J. Whitehead, D. Y. Li, T. Krings,
K. TerBrugge, D. Kondziolka, M. K. Morgan, K. Moon, and R. F. Spetzler, “Brain
arteriovenous malformations,” Nature Reviews Disease Primers, vol. 1, 5 2015.
[12] C. C. McCuaig, “Update on classification and diagnosis of vascular malformations,”
pp. 448–454, 8 2017.
[13] F. H. Tomlinson, D. A. Rufenacht, T. M. Sundt, D. A. Nichols, and N. C. Fode,
“Arteriovenous fistulas of the brain and the spinal cord,” Journal of Neurosurgery,
vol. 79, pp. 16–27, 1993.
[14] N. Goettel, M. Rovira, and S. Bengali, Arteriovenous malformations. Elsevier, 1 2024,
pp. 333–344.
[15] F. Toulgoat and P. Lasjaunias, Vascular malformations of the brain. Elsevier B.V.,
2013, vol. 112, pp. 1043–1051.
[16] R. Chapot, P. Stracke, A. Velasco, H. Nordmeyer, M. Heddier, M. Stauder, P. Schooss,
and P. J. Mosimann, “The pressure cooker technique for the treatment of brain avms,”
Journal of Neuroradiology, vol. 41, pp. 87–91, 3 2014.
[17] O. Diaz and R. Scranton, Endovascular treatment of arteriovenous malformations. Elsevier
B.V., 12 2016, vol. 136, pp. 1311–1317.
[18] A. Mansur and I. Radovanovic, “Vascular malformations: An overview of their molecular
pathways, detection of mutational profiles and subsequent targets for drug therapy.”
Frontiers in neurology, vol. 14, p. 1099328, 2023.
[19] A. Laakso and J. Hernesniemi, “Arteriovenous malformations: Epidemiology and clinical
presentation,” pp. 1–6, 1 2012.
[20] M. F. Berman, R. R. Sciacca, J. Pile-Spellman, C. Stapf, E. S. C. Jr., J. P. Mohr, and
W. L. Young, “The epidemiology of brain arteriovenous malformations,” Neurosurgery,
vol. 47, no. 2, pp. 389–397, aug 2000.
[21] C. Stapf, H. Mast, R. R. Sciacca, A. Berenstein, P. K. Nelson, Y. P. Gobin, J. Pile-
Spellman, and J. P. Mohr, “The new york islands avm study: design, study progress,
and initial results.” Stroke; a journal of cerebral circulation, vol. 34, 2003.
[22] R. Al-Shahi, J. J. Bhattacharya, D. G. Currie, V. Papanastassiou, V. Ritchie, R. C.
Roberts, R. J. Sellar, and C. P. Warlow, “Prospective, population-based detection
of intracranial vascular malformations in adults: The scottish intracranial vascular
malformation study (sivms),” Stroke, vol. 34, pp. 1163–1169, 5 2003.
[23] M. R. Bokhari and S. R. A. Bokhari, Arteriovenous Malformation of the Brain.
Treasure Island (FL): StatPearls Publishing, 2023, statPearls [Internet]. [Online].
Available: https://www.ncbi.nlm.nih.gov/books/NBK430744/
[24] W. Guest and T. Krings, “Brain arteriovenous malformations: The role of imaging in
treatment planning and monitoring response,” pp. 205–222, 5 2021.
[25] C. Stapf, D. L. Labovitz, R. R. Sciacca, H. Mast, J. P. Mohr, and R. L. Sacco,
“Incidence of adult brain arteriovenous malformation hemorrhage in a prospective
population-based stroke survey,” Cerebrovascular Diseases, vol. 13, pp. 43–46, 2002.
[26] J. W. Osbun, M. R. Reynolds, and D. L. Barrow, Arteriovenous malformations: epidemiology,
clinical presentation, and diagnostic evaluation. Elsevier B.V., 2017, vol.
143, pp. 25–29.
[27] P. M. Crawford, C. R. West, D. W. Chadwick, and M. D. Shaw, “Arteriovenous malformations
of the brain: Natural history in unoperated patients,” Journal of Neurology
Neurosurgery and Psychiatry, vol. 49, pp. 1–10, 1986.
[28] R. D. Brown, D. O. Wiebers, G. Forbes, W. M. O’Fallon, D. G. Piepgras, W. R. Marsh,
and R. J. Maciunas, “The natural history of unruptured intracranial arteriovenous
malformations,” Journal of Neurosurgery, vol. 68, pp. 352–357, 1988.
[29] S. L. Ondra, H. Troupp, E. D. George, and K. Schwab, “The natural history of symptomatic
arteriovenous malformations of the brain: A 24-year follow-up assessment,”
Journal of Neurosurgery, vol. 73, pp. 387–391, 1990.
[30] M. B. Potts, W. L. Young, and M. T. Lawton, “Deep arteriovenous malformations in
the basal ganglia, thalamus, and insula: Microsurgical management, techniques, and
results,” Neurosurgery, vol. 73, pp. 417–429, 9 2013.
[31] Y. Weerakkody and F. Gaillard, Spetzler-Martin arteriovenous malformation grading
system. Radiopaedia.org, 5 2008.
[32] W. L. Young, “Reporting terminology for brain arteriovenous malformation clinical
and radiographic features for use in clinical trials,” pp. 1430–1442, 2001.
[33] D. Strozyk, R. G. Nogueira, and S. D. Lavine, “Endovascular treatment of intracranial
arteriovenous malformation,” pp. 399–418, 10 2009.
[34] J. L. Martinez and R. L. Macdonald, “Surgical strategies for acutely ruptured arteriovenous
malformations,” Frontiers of Neurology and Neuroscience, vol. 37, pp. 166–181,
2015.
[35] A. Zafar, B. Fiani, H. Hadi, M. Arshad, A. Cathel, M. Naeem, M. S. Parsons, M. Farooqui,
A. A. Bucklin, M. J. Leone, A. Baig, and S. A. Quadri, “Cerebral vascular
malformations and their imaging modalities,” pp. 2407–2421, 9 2020.
[36] B. A. Gross and R. Du, “Rate of re-bleeding of arteriovenous malformations in the first
year after rupture,” Journal of Clinical Neuroscience, vol. 19, pp. 1087–1088, 2012.
[37] J. C. Horton, W. A. Chambers, S. L. Lyons, R. D. Adams, and R. N. Kjellberg,
“Pregnancy and the risk of hemorrhage from cerebral arteriovenous malformations,”
Neurosurgery, vol. 27, pp. 867–872, 1990.
[38] J. L. Porras, W. Yang, E. Philadelphia, J. Law, T. Garzon-Muvdi, J. M. Caplan,
G. P. Colby, A. L. Coon, R. J. Tamargo, and J. Huang, “Hemorrhage risk of brain
arteriovenous malformations during pregnancy and puerperium in a north american
cohort,” Stroke, vol. 48, pp. 1507–1513, 6 2017.
[39] J. A. Hernesniemi, R. Dashti, S. Juvela, K. V¨a¨art, M. Niemel¨a, and A. Laakso, “Natural
history of brain arteriovenous malformations: A long-term follow-up study of risk of
hemorrhage in 238 patients,” Neurosurgery, vol. 63, pp. 823–829, 11 2008.
[40] L. D. Costa, M. C.Wallace, K. G. T. Brugge, C. O’Kelly, R. A. Willinsky, and M. Tymianski,
“The natural history and predictive features of hemorrhage from brain arteriovenous
malformations,” Stroke, vol. 40, pp. 100–105, 1 2009.
[41] S. Liu, H. X. Chen, Q. Mao, C. You, and J. G. Xu, “Factors associated with seizure
occurrence and long-term seizure control in pediatric brain arteriovenous malformation:
A retrospective analysis of 89 patients,” BMC Neurology, vol. 15, 8 2015.
[42] J. M. Boone and C. H. McCollough, “Computed tomography turns 50,” Physics
Today, vol. 74, no. 9, pp. 34–40, 2021. [Online]. Available: https://pubs.aip.org/
physicstoday/article/74/9/34/928331/Computed-tomography-turns-50Modern-high
[43] SUNY Upstate Medical University, “Image reconstruction,” SUNY Upstate Medical
University, 2025. [Online]. Available: https://www.upstate.edu/radiology/education/
rsna/ct/reconstruction.php
[44] M. Vella, M. D. Alexander, M. C. Mabray, D. L. Cooke, M. R. Amans, C. M. Glastonbury,
H. Kim, M. W. Wilson, D. E. Langston, M. B. Conrad, and S. W. Hetts,
“Comparison of mri, mra, and dsa for detection of cerebral arteriovenous malformations
in hereditary hemorrhagic telangiectasia,” American Journal of Neuroradiology,
vol. 41, pp. 969–975, 5 2020.
[45] G. Lloyd-Jones, “Mri signal production,” Radiology Masterclass, 2017, [Online;
accessed 21-May-2025]. [Online]. Available: https://www.radiologymasterclass.co.uk/
tutorials/mri/mri signal
[46] C. S. Albin and S. F. Zafar, VENOUS SINUS THROMBOSIS. Springer International
Publishing, 1 2022, pp. 117–121.
[47] NHS, “Angiography,” NHS, 2023. [Online]. Available: https://www.nhs.uk/
conditions/angiography/
[48] T. J. Kaufmann and D. F. Kallmes, “Diagnostic cerebral angiography: Archaic and
complication-prone or here to stay for another 80 years?” pp. 1435–1437, 6 2008.
[49] R.Bouezzeddine, “Digital subtraction angiography and ct angiography.”
[Online]. Available: https://www.medical-professionals.com/en/
digital-subtraction-angiography-and-ct-angiography/
[50] H. Ota, K. Takase, H. Rikimaru, M. Tsuboi, T. Yamada, A. Sato, S. Higano,
T. Ishibashi, and S. Takahashi, “Quantitative vascular measurements in arterial occlusive
disease,” Radiographics, vol. 25, pp. 1141–1158, 9 2005.
[51] C. S. Eddleman, H. J. Jeong, M. C. Hurley, S. Zuehlsdorff, G. Dabus, C. G. Getch, H. H.
Batjer, B. R. Bendok, and T. J. Carroll, “4d radial acquisition contrast-enhanced mr
angiography and intracranial arteriovenous malformations: Quickly approaching digital
subtraction angiography,” Stroke, vol. 40, pp. 2749–2753, 8 2009.
[52] S. F. Shakur, S. Amin-Hanjani, H. Mostafa, F. T. Charbel, and A. Alaraj, “Hemodynamic
characteristics of cerebral arteriovenous malformation feeder vessels with and
without aneurysms,” Stroke, vol. 46, pp. 1997–1999, 7 2015.
[53] S. F. Shakur, T. Valyi-Nagy, S. Amin-Hanjani, L. Ya’Qoub, V. A. Aletich, F. T. Charbel,
and A. Alaraj, “Effects of nidus microarchitecture on cerebral arteriovenous malformation
hemodynamics,” Journal of Clinical Neuroscience, vol. 26, pp. 70–74, 4 2016.
[54] S. M. Sargent, S. K. Bonney, Y. Li, S. Stamenkovic, M. M. Takeno, V. Coelho-Santos,
and A. Y. Shih, “Endothelial structure contributes to heterogeneity in brain capillary
diameter.” Vascular biology (Bristol, England), vol. 5, 1 2023.
[55] Klabunde, Richard E., “Basic hemodynamic principles,” CV Physiology, 2023.
[Online]. Available: https://cvphysiology.com/hemodynamics/h001
[56] Harvard Natural Sciences Lecture Demonstrations, “Poiseuille’s law,” Harvard
Natural Sciences Lecture Demonstrations, 2025. [Online]. Available: https:
//sciencedemonstrations.fas.harvard.edu/presentations/poiseuilles-law
[57] Klabunde, Richard E., “Determinants of resistance to flow (poiseuille’s equation),” CV
Physiology, 2023. [Online]. Available: https://cvphysiology.com/hemodynamics/h003
[58] B. Zhang, X. Chen, W. Qin, L. Ge, X. Zhang, G. Ding, and S. Wang, “Enhancing
cerebral arteriovenous malformation analysis: Development and application of patientspecific
lumped parameter models based on 3d imaging data,” Computers in Biology
and Medicine, vol. 180, 9 2024.
[59] J. A. Abbott, Syncope and Sudden Cardiac Death. Elsevier, 2000, pp. 23–27.
[60] A. Silverman and N. H. Petersen, Physiology, Cerebral Autoregulation. National Center
for Biotechnology Information, 2020.
[61] S. Rossitti, “Pathophysiology of increased cerebrospinal fluid pressure associated to
brain arteriovenous malformations: The hydraulic hypothesis.” Surgical neurology international,
vol. 4, p. 42, 2013.
[62] C. P. Derdeyn, G. J. Zipfel, F. C. Albuquerque, D. L. Cooke, E. Feldmann, J. P. Sheehan,
and J. C. Torner, “Management of brain arteriovenous malformations: A scientific
statement for healthcare professionals from the american heart association/american
stroke association,” pp. e200–e224, 8 2017.
[63] K. Irikura, S. Morii, Y. Miyasaka, M. Yamada, K. Tokiwa, and K. Yada, “Impaired
autoregulation in an experimental model of chronic cerebral hypoperfusion in rats,”
Stroke, vol. 27, pp. 1399–1404, 1996.
[64] N. Collins and A. Abd-Elsayed, Cerebral perfusion pressure. CRC Press, 1 2017, pp.
31–38.
[65] N. A. Lassen, “Normal average value of cerebral blood flow in younger adults is 50
ml/100 g/min,” Journal of Cerebral Blood Flow and Metabolism, vol. 5, pp. 347–349,
1985.
[66] S. Fantini, A. Sassaroli, K. T. Tgavalekos, and J. Kornbluth, “Cerebral blood flow and
autoregulation: current measurement techniques and prospects for noninvasive optical
methods,” Neurophotonics, vol. 3, p. 031411, 6 2016.
[67] R. Kim, Y. S. Do, and K. B. Park, “How to treat peripheral arteriovenous malformations,”
Korean Journal of Radiology, vol. 22, pp. 568–576, 4 2021.
[68] T. C. Cuong, L. M. Thang, N. L. Giang, N. A. Trung, L. V. Qui, T. T. T. Tha, N. D. N.
Huy, T. V. Lam, D. H. Linh, and N. M. Duc, “Recurrent head and neck arteriovenous
malformations: A case report,” Radiology Case Reports, vol. 18, pp. 766–770, 3 2023.
[69] A. J. Awad, B. P. Walcott, C. J. Stapleton, D. Ding, C. C. Lee, and J. S. Loeffler,
“Repeat radiosurgery for cerebral arteriovenous malformations,” pp. 945–950, 6 2015.
[70] R. F. Spetzler and N. A. Martin, “A proposed grading system for arteriovenous malformations,”
Journal of Neurosurgery, vol. 65, pp. 476–483, 1986.
[71] A. Hafez, P. Koroknay-P´al, E. Oulasvirta, A. A. Elseoud, M. T. Lawton, M. Niemel¨a,
and A. Laakso, “The application of the novel grading scale (lawton-young grading
system) to predict the outcome of brain arteriovenous malformation,” Clinical Neurosurgery,
vol. 84, pp. 529–536, 2 2019.
[72] G. M. Sicuri, N. Galante, and R. Stefini, Brain Arteriovenous Malformations Classifications:
A Surgical Point of View. Springer Science and Business Media Deutschland
GmbH, 2021, vol. 132, pp. 101–106.
[73] T. M. Dumont, P. Kan, K. V. Snyder, L. N. Hopkins, A. H. Siddiqui, and E. I. Levy,
“A proposed grading system for endovascular treatment of cerebral arteriovenous malformations:
Buffalo score,” Surgical Neurology International, vol. 6, 1 2015.
[74] Mayo Clinic, “Brain avm (arteriovenous malformation) – diagnosis and treatment,”
Mayo Clinic, 2025. [Online]. Available: https://www.mayoclinic.org/
diseases-conditions/brain-avm/diagnosis-treatment/drc-20350265
[75] A. K. Unnithan, “Overview of the current concepts in the management of arteriovenous
malformations of the brain,” pp. 212–220, 4 2020.
[76] J. Byun, D. H. Kwon, D. H. Lee, W. Park, J. C. Park, and J. S. Ahn, “Radiosurgery
for cerebral arteriovenous malformation (avm) : Current treatment strategy and radiosurgical
technique for large cerebral avm.” Journal of Korean Neurosurgical Society,
vol. 63, pp. 415–426, 7 2020.
[77] B. E. Pollock, R. W. Kline, S. L. Stafford, R. L. Foote, and P. J. Schomberg, “The
rationale and technique of staged-volume arteriovenous malformation radiosurgery,”
International Journal of Radiation Oncology Biology Physics, vol. 48, pp. 817–824, 10
2000.
[78] G. T. Szeifert, A. A. Kemeny, W. R. Timperley, and D. M. Forster, “The potential role
of myofibroblasts in the obliteration of arteriovenous malformations after radiosurgery,”
Neurosurgery, vol. 40, pp. 61–66, 1 1997.
[79] S. Fogh, L. Ma, N. Gupta, A. Sahgal, J. L. Nakamura, I. Barani, P. K. Sneed, M. Mc-
Dermott, and D. A. Larson, “High-precision volume-staged gamma knife surgery and
equivalent hypofractionation dose schedules for treating large arteriovenous malformations.”
Journal of neurosurgery, vol. 117 Suppl, pp. 115–119, 2012.
[80] C. P. Cifarelli, J. A. Vargo, T. Tenenholz, J. D. Hack, G. Guthrie, and J. S. Carpenter,
“Gamma knife radiosurgery for arteriovenous malformations using a four-dimensional
dynamic volume computed tomography angiography planning system as an alternative
to traditional catheter angiogram.” Cureus, vol. 10, p. e2788, 6 2018.
[81] S. N. Shah, S. S. Shah, P. Kaki, S. R. Satti, and S. A. Shah, “Efficacy of dose-escalated
hypofractionated radiosurgery for arteriovenous malformations,” Cureus, 1 2024.
[82] C. S. Haw, K. Terbrugge, R. Willinsky, and G. Tomlinson, “Complications of embolization
of arteriovenous malformations of the brain,” pp. 226–232, 2 2006.
[83] The Kingsley Clinic, “Embolization for arteriovenous malformations:
Minimally invasive treatment,” The Kingsley
Clinic, 2025. [Online]. Available: https://thekingsleyclinic.com/resources/
embolization-for-arteriovenous-malformations-minimally-invasive-treatment/
[84] WakeMed Health & Hospitals, “Embolization: What to expect,”
WakeMed Health & Hospitals, 2025. [Online]. Available:
https://www.wakemed.org/care-and-services/surgery/interventional-radiol…
vascular-tumors-and-arteriovenous-malformations-avm/embolization-what-to-expect
[85] Barnes-Jewish Hospital, “Avm embolization,” Barnes-Jewish Hospital, 2025. [Online].
Available: https://www.barnesjewish.org/Medical-Services/Neurology-Neurosurgery/
AVM-Arteriovenous-Malformation/AVM-Treatment/AVM-Embolization
[86] Mount Sinai Health System, “Endovascular embolization,” Mount Sinai Health
Library, 2025. [Online]. Available: https://www.mountsinai.org/health-library/
surgery/endovascular-embolization
[87] W. C. Jean, T. Huynh, A. X. Tai, D. R. Felbaum, H. R. Syed, and H. M. Ngo, “Outcome
of microsurgery for arteriovenous malformations in a resource-restricted environment:
Single-surgeon series from vietnam,” World Neurosurgery, vol. 132, pp. e66–e75, 12
2019.
[88] Eminence Neurosurgery, “Avm and davf – microsurgery,” Eminence Neurosurgery,
2025. [Online]. Available: https://eminenceneurosurgery.com.au/procedures/
avm-and-davf-microsurgery
[89] J. A. Ellis and S. D. Lavine, “Role of embolization for cerebral arteriovenous malformations,”
pp. 234–239, 10 2014.
[90] R. D. Leacy, S. A. Ansari, C. M. Schirmer, D. L. Cooke, C. J. Prestigiacomo, K. R. Bulsara,
and S. W. Hetts, “Endovascular treatment in the multimodality management of
brain arteriovenous malformations: report of the society of neurointerventional surgery
standards and guidelines committee,” Journal of NeuroInterventional Surgery, vol. 14,
pp. 1118–1124, 4 2022.
[91] S. Luzzi, M. D. Maestro, D. Bongetta, C. Zoia, A. V. Giordano, D. Trovarelli, S. R.
Dehcordi, and R. J. Galzio, “Onyx embolization before the surgical treatment of grade
iii spetzler-martin brain arteriovenous malformations: Single-center experience and
technical nuances,” World Neurosurgery, vol. 116, pp. e340–e353, 8 2018.
[92] N. V. de Oliveira Souza, T. Lamiraux, F. V. da Silva, V. M. Lima, A. Rouchaud,
S. Saleme, and C. Mounayer, “Endovascular treatment of spetzler-martin grade iii
arteriovenous malformations: A single-center 12 years’ experience stratified by the
spetzler-martin modified scale,” Neurosurgery, 12 2024.
[93] Y. Chen, R. Li, L. Ma, Y. Zhao, T. Yu, H. Wang, X. Ye, R. Wang, X. Chen, and
Y. Zhao, “Single-stage combined embolization and resection for spetzler-martin grade
iii/iv/v arteriovenous malformations: A single-center experience and literature review,”
Frontiers in Neurology, vol. 11, 10 2020.
[94] W. Huda and K. R. Peters, “Radiation-induced temporary epilation after a neuroradiologically
guided embolization procedure,” Radiology, vol. 193, pp. 642–644, 1994.
[95] R. B. Mooney, C. S. McKinstry, and H. A. Kamel, “Absorbed dose and deterministic
effects to patients from interventional neuroradiology,” British Journal of Radiology,
vol. 73, pp. 745–751, 2000.
[96] N. Kuwayama, A. Takaku, S. Endo, M. Nishijima, and T. Kamei, “Radiation exposure
in endovascular surgery of the head and neck,” American Journal of Neuroradiology,
vol. 15, pp. 1801–1808, 1994.
[97] M. K. Varma, K. Price, V. Jayakrishnan, B. Manickam, and G. Kessell, “Anaesthetic
considerations for interventional neuroradiology,” pp. 75–85, 2007.
[98] T. F. Massoud, G. J. Hademenos, W. L. Young, E. Gao, and J. Pile-Spellman, “Can
induction of systemic hypotension help prevent nidus rupture complicating arteriovenous
malformation embolization?: Analysis of underlying mechanisms achieved using a
theoretical model,” American Journal of Neuroradiology, vol. 21, pp. 1255–1267, 2000.
[99] K. Riedel, M. Thudium, A. Bostr¨om, J. Schramm, and M. Soehle, “Controlled arterial
hypotension during resection of cerebral arteriovenous malformations,” BMC Neurology,
vol. 21, 12 2021.
[100] Y. He, W. Bai, T. Li, F. K. Hui, Y. He, and B. Xu, “Curative transvenous embolization
for ruptured brain arteriovenous malformations: A single-center experience from
china,” World Neurosurgery, vol. 116, pp. e421–e428, 8 2018.
[101] S. N. Veloso, I. Lylyk, P. N. Lylyk, J. Lundquist, and P. Lylyk, Symptomatic Arteriovenous
Malformation (Spetzler-Martin Grade III): Staged Transarterial and Final
Transvenous Embolization; Complete Occlusion of the AVM and Excellent Clinical Outcome.
Springer International Publishing, 2021, pp. 1–12.
[102] F. C. Albuquerque, A. F. Ducruet, R. W. Crowley, R. E. Bristol, A. Ahmed, and C. G.
McDougall, “Transvenous to arterial onyx embolization,” Journal of NeuroInterventional
Surgery, vol. 6, pp. 281–285, 2014.
[103] B. C. Brahimaj, K. Keigher, and D. K. Lopes, “Transvenous arteriovenous malformation
embolization,” Journal of neurointerventional surgery, vol. 12, p. 332, 3 2020.
[104] C. J. Chen, P. Norat, D. Ding, G. A. Mendes, P. Tvrdik, M. S. Park, and M. Y.
Kalani, “Transvenous embolization of brain arteriovenous malformations: A review of
techniques, indications, and outcomes,” Neurosurgical Focus, vol. 45, pp. 1–7, 7 2018.
[105] I. Kuianova, A. Chupakhin, A. Besov, A. Gorbatykh, D. Kislitsin, K. Orlov, and
D. Parshin, “Rheological properties of non-adhesive embolizing compounds—the key to
fine-tuning embolization process-modeling in endovascular surgery,” Polymers, vol. 15,
2 2023.
[106] Medtronic, “Onyx™ liquid embolic system for peripheral embolization,” 2024.
[Online]. Available: https://europe.medtronic.com/xd-en/healthcare-professionals/
products/cardiovascular/peripheral-embolization/onyx-liquid-embolic-system.html
[107] A. H. White and F. T. Smith, “Computational modelling of the embolization process
for the treatment of arteriovenous malformations (avms),” Mathematical and Computer
Modelling, vol. 57, pp. 1312–1324, 3 2013.
[108] J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,”
pp. 86–100, 4 2008.
[109] kg m3.com, “Evoh - ethylene vinyl alcohol,” 2020. [Online]. Available: https:
//kg-m3.com/material/evoh-ethylene-vinyl-alcohol
[110] J. R¨ossberger, M. Fall, and R. Peeker, “Critical appraisal of dimethyl sulfoxide treatment
for interstitial cystitis: Discomfort, side-effects and treatment outcome,” Scandinavian
Journal of Urology and Nephrology, vol. 39, pp. 73–77, 2005.
[111] C. Mahajan and N. Gupta, Vasospasm. Elsevier Inc., 2016, pp. 103–109.
[112] T. Aizawa, Y. Hasegawa, G. Araki, K. Mori, K. Yoshida, N. Sato, S. Nagano, H. Nakamura,
M. Kato, and K. Kojima, “Studies on experimental cerebral vascular lesion.
reference to ischemic angionecrosis and microcirculation,” in Proceedings of the Annual
Meeting of the Japanese Society of Pathology. Keio University, Dept. of Internal
Medicine, School of Medicine, 1983, p. S15, abstract presentation.
[113] R. Siekmann, “Basics and principles in the application of onyx ld liquid embolic system
in the endovascular treatment of cerebral arteriovenous malformations.” Interventional
neuroradiology : journal of peritherapeutic neuroradiology, surgical procedures and related
neurosciences, vol. 11, pp. 131–40, 10 2005.
[114] Micro Therapeutics, Inc. (MTI), Onyx® Liquid Embolic System: Instructions for Use,
[Online]. Available: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.
cfm, Medtronic, 2023, retrieved from product labeling.
[115] X. Deng, M. Dong, C. Peng, X. Ding, K. Wang, K. Qin, and G. Chen, “Embolizing
intracranial arteriovenous malformations with onyx: experience at a single center with
250 patients.” Journal of interventional medicine, vol. 1, pp. 164–169, 8 2018.
[116] V. Panagiotopoulos, E. Gizewski, S. Asgari, J. Regel, M. Forsting, and I. Wanke,
“Embolization of intracranial arteriovenous malformations with ethylene-vinyl alcohol
copolymer (onyx),” American Journal of Neuroradiology, vol. 30, pp. 99–106, 1 2009.
[117] Medtronic, “Apollo™ and marathon™ flow directed microcatheters,” 2024. [Online].
Available: https://europe.medtronic.com/xd-en/healthcare-professionals/products/
neurological/avm-embolization/apollo-marathon.html
[118] I. Saatci, S. Geyik, K. Yavuz, and H. S. Cekirge, “Endovascular treatment of brain
arteriovenous malformations with prolonged intranidal onyx injection technique: Longterm
results in 350 consecutive patients with completed endovascular treatment course
- clinical article,” Journal of Neurosurgery, vol. 115, pp. 78–88, 7 2011.
[119] L. Pierot, C. Cognard, D. Herbreteau, H. Fransen, W. J. V. Rooij, E. Boccardi, A. Beltramello,
N. Sourour, K. Kupcs, A. Biondi, A. Bonaf´e, W. Reith, and A. Casasco, “Endovascular
treatment of brain arteriovenous malformations using a liquid embolic agent:
Results of a prospective, multicentre study (bravo),” European Radiology, vol. 23, pp.
2838–2845, 10 2013.
[120] P. Orlowski, F. Al-Senani, P. Summers, J. Byrne, J. A. Noble, and Y. Ventikos, “Towards
treatment planning for the embolization of arteriovenous malformations of the
brain: Intranidal hemodynamics modeling,” IEEE Transactions on Biomedical Engineering,
vol. 58, pp. 1994–2001, 7 2011.
[121] S. A. Wajihah and D. S. Sankar, “A review on non-newtonian fluid models for multilayered
blood rheology in constricted arteries,” pp. 1771–1796, 5 2023.
[122] K. Yamashita, W. Taki, H. Iwata, I. Nakahara, S. Nishi, A. Sadato, K. Matsumoto,
and H. Kikuchi, “Characteristics of ethylene vinyl alcohol copolymer (eval) mixtures,”
American Journal of Neuroradiology, vol. 15, pp. 1103–1105, 1994.
[123] G. Franzetti, M. Bonfanti, C. Tanade, C. S. Lim, J. Tsui, G. Hamilton, V. D´ıaz-
Zuccarini, and S. Balabani, “A computational framework for pre-interventional planning
of peripheral arteriovenous malformations,” Cardiovascular Engineering and Technology,
vol. 13, pp. 234–246, 4 2022.
[124] OpenStax CNX, “Blood flow, blood pressure, and resistance,”
Lumen Learning: Anatomy and Physiology II, Module 4,
2025. [Online]. Available: https://courses.lumenlearning.com/suny-ap2/chapter/
blood-flow-blood-pressure-and-resistance-no-content/
[125] A. M. Malek, S. L. Alper, and S. Izumo, “Hemodynamic shear stress and its role in
atherosclerosis,” Journal of the American Medical Association, vol. 282, pp. 2035–2042,
12 1999.
[126] M. Hu, B. Chen, and Y. Luo, “Computational fluid dynamics modelling of hemodynamics
in aortic aneurysm and dissection: a review.” Frontiers in bioengineering and
biotechnology, vol. 13, p. 1556091, 2025.
[127] F. Ene, P. Delassus, and L. Morris, “The influence of computational assumptions on
analysing abdominal aortic aneurysm haemodynamics,” Proceedings of the Institution
of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 228, pp.
768–780, 8 2014.
[128] D. Ren, J. Li, B. Zhou, S. Guo, and B. Guo, “Modeling of the dynamics of vascular
embolization by using porous media for the design of injection robots of embolic agents,”
Medical Engineering and Physics, vol. 101, 3 2022.
[129] C. A. Taylor, T. J. Hughes, and C. K. Zarins, “Finite element modeling of blood flow
in arteries,” Computer Methods in Applied Mechanics and Engineering, vol. 158, pp.
155–196, 1998.
[130] A. Niemann and D. Behme, “Deep learning-based semantic vessel graph extraction for
intracranial aneurysm rupture risk management,” International Journal of Computer
Assisted Radiology and Surgery, vol. 18, no. 3, pp. 473–481, Mar. 2023.
[131] V. Naik, “New fluent meshing workflow quickly wraps nonwatertight,
dirty geometries,” ANSYS Blog, Jun. 2019, [Online; accessed
21-May-2025]. [Online]. Available: https://www.ansys.com/blog/
fluent-meshing-workflow-wraps-non-watertight-geometries
[132] K. H. Yang, Isoparametric Formulation and Mesh Quality. Elsevier, 1 2017, pp. 111–
149.
[133] Simmetrix Inc., “Boundary layer meshing,” Online: Simmetrix, 2025. [Online].
Available: https://www.simmetrix.com/index.php/technologies/boundary-layers
[134] R. V. Garimella and M. S. Shephard, “Boundary layer mesh generation for viscous flow
simulations,” International Journal for Numerical Methods in Engineering, vol. 49, pp.
193–218, 9 2000.
[135] ANSYS Fluent Theory Guide, ANSYS Inc., 2013, release 15.0. [Online]. Available:
https://www.ansys.com
[136] P. Subrahmanyam and D. Rasky, “Entry, descent, and landing technological barriers
and crewed mars vehicle performance analysis,” pp. 1–26, 5 2017.
[137] P. O’Gorman, I. Chiavacci, and H. Knipe, “Propagation speed,” Radiopaedia.org,
Aug. 2021. [Online]. Available: https://radiopaedia.org/articles/propagation-speed
[138] L. Allard and G. Cloutier, “Power doppler ultrasound scan imaging of the level of red
blood cell aggregation: An in vitro study,” Journal of Vascular Surgery, vol. 30, pp.
157–168, 1999.
[139] R. A. Phillips, B. E. Smith, and V. M. Madigan, “Stroke volume monitoring: Novel
continuous wave doppler parameters, algorithms and advanced noninvasive haemodynamic
concepts,” Current Anesthesiology Reports, vol. 7, pp. 387–398, 12 2017.
[140] C. Zhang, N. Chau, and H. Ho, “Patient-specific blood flow analysis for cerebral arteriovenous
malformation based on digital subtraction angiography images,” Frontiers
in Bioengineering and Biotechnology, vol. 8, 7 2020.
[141] U. Themes, “Cerebral doppler sonography,” n.d., accessed: 2025-03-29. [Online].
Available: https://radiologykey.com/cerebral-doppler-sonography/
[142] L. Zarrinkoob, K. Ambarki, A. W˚ahlin, R. Birgander, A. Eklund, and J. Malm, “Blood
flow distribution in cerebral arteries,” Journal of Cerebral Blood Flow and Metabolism,
vol. 35, pp. 648–654, 3 2015.
[143] R. R. Diehl, H. Henkes, H. C. Nahser, D. Kuhne, and P. Berlit, “Blood flow velocity
and vasomotor reactivity in patients with arteriovenous malformations: A transcranial
doppler study,” Stroke, vol. 25, pp. 1574–1580, 1994.
[144] J. Tu, G.-H. Yeoh, and C. Liu, CFD Solution Analysis: Essentials. Elsevier, 2018,
pp. 211–253.
[145] B. Liu, J. Zheng, R. Bach, and D. Tang, “Influence of model boundary conditions on
blood flow patterns in a patient specific stenotic right coronary artery,” Biomedical
engineering online, vol. 14, p. S6, 2015.
[146] I. C. Campbell, J. Ries, S. S. Dhawan, A. A. Quyyumi, W. R. Taylor, and J. N. Oshinski,
“Effect of inlet velocity profiles on patient-specific computational fluid dynamics
simulations of the carotid bifurcation,” Journal of Biomechanical Engineering, vol. 134,
2012.
[147] T. Bomberna, “Computational fluid dynamics models for patient-specific planning of
liver transarterial radioembolization,” Doctoral Dissertation, Ghent University, Ghent,
Belgium, Sep. 2024, supervisors: Prof. Charlotte Debbaut, PhD and Prof. Geert
Maleux, PhD. Joint research with KU Leuven.
[148] J. Zeebroek, “Using cfd for the evaluation of side-hole catheters and injection velocity on
particle spread for transarterial liver cancer treatments: A patient-specific case study,”
Master’s Dissertation, Ghent University, Ghent, Belgium, 2024, supervisor: Prof. Dr.
Ir. Charlotte Debbaut. Counsellor: Tim Bomberna. Academic year 2023–2024.
[149] J. Aramburu, R. Ant´on, A. Rivas, J. C. Ramos, B. Sangro, and J. I. Bilbao, “Computational
assessment of the effects of the catheter type on particle–hemodynamics during
liver radioembolization,” Journal of Biomechanics, vol. 49, pp. 3705–3713, 11 2016.
[150] A. Taebi, N. Janibek, R. Goldman, R. Pillai, C. T. Vu, and E. Roncali, “The impact
of injection distance to bifurcations on yttrium-90 distribution in liver cancer radioembolization,”
Journal of Vascular and Interventional Radiology, vol. 33, pp. 668–677.e1,
6 2022.
[151] X. Lv, Z. Wu, and Y. Li, “Arteriovenous malformation in the brain: A theoretical
study explaining the behavior of liquid embolic agents during endovascular treatment,”
Neuroradiology Journal, vol. 26, pp. 661–668, 2013.
[152] Y. Li, X. xia Tian, T. Liu, and R. taoWang, “Association between whole blood viscosity
and arterial stiffness in patients with type 2 diabetes mellitus,” Endocrine, vol. 49, pp.
148–154, 5 2015.
[153] B. Stojadinovi´c and T. Tenne, “Effect of viscosity on the wave propagation: Experimental
determination of compression and expansion pulse wave velocity in fluid-fill
elastic tube,” Journal of Biomechanics, vol. 48, pp. 3969–3974, 11 2015.
[154] S. V. Golovin, A. K. Khe, and K. A. Gadylshina, “Hydraulic model of cerebral arteriovenous
malformations,” Journal of Fluid Mechanics, vol. 797, pp. 110–129, 6 2016.
[155] T. Y. Abay, J. P. Phillips, C. Uff, M. Roldan, and P. A. Kyriacou, “In vitro evaluation
of a non-invasive photoplethysmography based intracranial pressure sensor,” Applied
Sciences (Switzerland), vol. 13, 1 2023.
[156] L. Zacchetti, S. Magnoni, F. D. Corte, E. R. Zanier, and N. Stocchetti, “Accuracy of
intracranial pressure monitoring: Systematic review and meta-analysis,” Critical Care,
vol. 19, 12 2015.
[157] X. Chen, Y. Wang, and J. Yu, “Intra- and post-operative acute hemorrhagic complications
of onyx embolization of brain arteriovenous malformations: A single-center
experience,” Frontiers in Neurology, vol. 13, 9 2022.
[158] S. Schnell, C. Wu, and S. A. Ansari, “Four-dimensional mri flow examinations in cerebral
and extracerebral vessels - ready for clinical routine?” pp. 419–428, 8 2016.
[159] A. G. Morgan, M. J. Thrippleton, J. M.Wardlaw, and I. Marshall, “4d flow mri for noninvasive
measurement of blood flow in the brain: A systematic review,” pp. 206–218,
2 2021.
[160] D. T. Wymer, K. P. Patel, W. F. Burke, and V. K. Bhatia, “Phase-contrast mri:
Physics, techniques, and clinical applications,” Radiographics, vol. 40, pp. 122–140, 1
2020.
[161] C. Hoffman, S. Periyasamy, C. Longhurst, R. Medero, A. Roldan-Alzate, M. A. Speidel,
and P. F. Laeseke, “A technique for intra-procedural blood velocity quantitation using
time-resolved 2d digital subtraction angiography,” CVIR Endovascular, vol. 4, no. 1,
p. 11, 2021. [Online]. Available: https://doi.org/10.1186/s42155-020-00058-7
[162] D. Katritsis, L. Kaiktsis, A. Chaniotis, J. Pantos, E. P. Efstathopoulos, and V. Marmarelis,
“Wall shear stress: Theoretical considerations and methods of measurement,”
Progress in Cardiovascular Diseases, vol. 49, no. 5, pp. 307–329, 2007.
[163] X. Chen, J. Zhuang, H. Huang, and Y. Wu, “Fluid–structure interactions (fsi) based
study of low-density lipoproteins (ldl) uptake in the left coronary artery,” Scientific
Reports, vol. 11, 12 2021.
[164] A. M. Shaaban and A. J. Duerinckx, “Wall shear stress and early atherosclerosis: A
review,” pp. 1657–1665, 2000.
[165] H. Deng, X. Liu, T. Fang, Y. Li, and X. Min, “Dfa-net: Dual multi-scale feature
aggregation network for vessel segmentation in x-ray digital subtraction angiography,”
Journal of Big Data, vol. 11, 12 2024.
[166] R. Su, P. M. van der Sluijs, Y. Chen, S. Cornelissen, R. van den Broek, W. H. van
Zwam, A. van der Lugt, W. J. Niessen, D. Ruijters, and T. van Walsum, “Cave:
Cerebral artery–vein segmentation in digital subtraction angiography,” Computerized
Medical Imaging and Graphics, vol. 94, p. 101986, 2022. [Online]. Available:
https://doi.org/10.1016/j.compmedimag.2022.101986
[167] N. Ballas, L. Yao, C. Pal, and A. Courville, “Delving deeper into convolutional networks
for learning video representations,” in 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings. International Conference
on Learning Representations, ICLR, 2016.
[168] United Nations, “Sustainable development goals,” 2015. [Online]. Available:
https://sdgs.un.org/goals