Tien kleuren tegen gifschimmels: sneller en slimmer mycotoxines opsporen met licht en AI

Wannes luts
De Martelaere

Door slimme belichting en AI‑algoritmes kan de voedselketen sneller screenen op gevaarlijke mycotoxines in granen — zonder dure of trage laboprocedures. Mijn masteronderzoek laat zien dat je met een handvol zorgvuldig gekozen golflengten kleine monsters betrouwbaar kunt beoordelen. Dat opent de deur naar screening op individuele korrels, waardoor voedselveiligheid stijgt én onnodige verspilling van grote partijen (bijv. volledige scheepsladingen) kan dalen.

Waarom dit ertoe doet

Schimmels die gewassen aantasten, kunnen gifstoffen — mycotoxines — produceren, zoals aflatoxinen en deoxynivalenol. Deze stoffen zijn schadelijk voor de gezondheid. In Europa gelden daarom strikte limieten voor mycotoxineconcentraties in voedingsproducten. Vandaag gebeurt kwaliteitscontrole vaak steekproefsgewijs en met labotesten die tijd, geld en gespecialiseerde apparatuur vragen. Wat als we sneller, vaker en goedkoper kunnen screenen — dicht bij de oogst, in een silo of op de productielijn? En wat als we niet alleen batches, maar ook individuele producten kunnen bekijken in plaats van enkel op steekproeven te vertrouwen? Dat verhoogt de veiligheid en helpt verspilling te voorkomen.

Wat ik onderzocht

In mijn masterproef combineerde ik optische spectroscopie met machine learning om monsters van granen (zoals tarwe of maïs) razendsnel te beoordelen. Met spectroscopie meet je de ‘vingerafdruk’ van licht dat door of van een monster komt — bijvoorbeeld fluorescentie of gereflecteerd licht. Die metingen vertaalde ik naar duidelijke beslissingen: is een partij verdacht of lijkt ze veilig binnen gangbare normen? Belangrijk: naast nauwkeurigheid zocht ik naar praktische eenvoud. Daarom onderzocht ik hoe we het aantal benodigde golflengten drastisch kunnen terugbrengen, zodat geen dure set‑ups met een volledige spectrale scan meer nodig zijn. Zo zetten we een stap richting automatische inline‑sortering in de voedingsindustrie.

“Met ongeveer tien slim gekozen golflengten behoud je bijna de prestaties van volledige spectrums, maar wordt het systeem eenvoudiger en goedkoper.”

Wat is er nieuw aan mijn aanpak?

Veel studies gebruiken volledige spectrale informatie: honderden meetpunten over een brede golflengterange. Dat levert veel data op, maar maakt sensoren duurder en verwerking zwaarder. Ik testte selectiemethoden die automatisch die golflengten kiezen die het meest informatief zijn voor mycotoxinedetectie. Zo ontstaat een ‘lightweight’ sensorconcept: minder meetpunten, minder ruis en sneller rekenwerk — zonder de essentie te verliezen.

De resultaten in mensentaal

Het kernresultaat is eenvoudig: je hebt géén volledige regenboog aan data nodig. Met ongeveer tien zorgvuldig geselecteerde golflengten behaal je prestaties die dicht in de buurt komen van klassieke, uitgebreide spectrale metingen. In gewone taal: met weinig invoer kan het systeem nog steeds onderscheid maken tussen veilige en mogelijk gecontamineerde granen. Dat baan maakt voor compacte, betaalbare en draagbare of inline‑systemen die niet alleen de voedselveiligheid verbeteren, maar ook tijdig onnodige voedselverspilling kunnen vermijden.

Van labo naar praktijk

Stel je een graansilo of productielijn voor waar monsters automatisch onder een lichtbron passeren. Een sensor meet slechts een handvol golflengten en een algoritme geeft in realtime een inschatting: ‘oké’ of ‘verdacht — stuur naar het lab’. Zo’n triagesysteem maakt snellere beslissingen mogelijk, beperkt onnodige vernietiging van gezonde batches en houdt tóch de lat voor voedselveiligheid hoog. Het is geen vervanging van referentielaboratoria, maar een slimme filter die ze gerichter inzet.

Waar ligt de winst?

  • Snelheid: minder meetpunten betekent kortere meet‑ en rekentijd.
  • Kost: eenvoudige optiek en elektronica volstaan, wat het systeem betaalbaarder maakt.
  • Schaalbaarheid: door de lage complexiteit is inline of mobiele inzet realistischer.
  • Duurzaamheid: betere triage kan voedselverspilling verminderen

Grenzen en volgende stappen

Een eerlijk verhaal bevat ook nuances. Niet elke mycotoxine laat zich even gemakkelijk ‘zien’ met licht en natuurlijke contaminaties zijn vaak complex (bijv. meerdere toxines tegelijk in complexe ratios). Daarom zijn realistische veldproeven cruciaal: meten op verschillende graansoorten, oogstjaren en vochtigheidscondities. Ook samenwerking met industrie en controle‑instanties is essentieel om de techniek af te stemmen op echte beslismomenten.

Slot

Met licht en AI kunnen we mycotoxines sneller opsporen en tegelijk de drempel verlagen om vaker te testen. Dat is goed voor boeren, verwerkers én consumenten. De volgende stap is duidelijk: de stap van prototypes naar praktijkpilots, zodat deze technologie breder inzetbaar wordt — van veld tot fabriek.

 

Door Wannes Luts De Martelaere — Master in Photonics Engineering (VUB/UGent)

Bibliografie

  1. LB Bullerman. Significance of mycotoxins to food safety and human health. Journal of Food Protection, 42(1):65–86, 1979.
  2. Sofia Agriopoulou, Eygenia Stamatelopoulou, and Theodoros Varzakas. Advances in anal- ysis and detection of major mycotoxins in foods. Foods, 9(4):518, 2020.
  3. JI Pitt. Toxigenic fungi and mycotoxins. British medical bulletin, 56(1):184–192, 2000.
  4. S Marin, AJ Ramos, Germ ́an Cano-Sancho, and V Sanchis. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and chemical toxicology, 60:218–237, 2013.
  5. Massimo Reverberi, Alessandra Ricelli, Slaven Zjalic, Anna A Fabbri, and Corrado Fanelli. Natural functions of mycotoxins and control of their biosynthesis in fungi. Applied micro- biology and biotechnology, 87:899–911, 2010.
  6. Aycan Cinar and Elif Onba ̧sı. Mycotoxins: The hidden danger in foods. Mycotoxins and food safety, pages 1–21, 2019.
  7. Kajal Karsauliya, C Yahavi, Anushka Pandey, Manisha Bhateria, Ashish Kumar Sonker, Harshita Pandey, Manu Sharma, and Sheelendra Pratap Singh. Co-occurrence of myco- toxins: A review on bioanalytical methods for simultaneous analysis in human biological samples, mixture toxicity and risk assessment strategies. Toxicon, 218:25–39, 2022.
  8. PMCP Kirk, Paul Cannon, David Minter, and Joost Stalpers. Ainsworth and bisby’s dictionary of the fungi., 2008.
  9. Gary P Munkvold, Silvina Arias, Ines Taschl, and Christiane Gruber-Dorninger. Myco- toxins in corn: Occurrence, impacts, and management. In Corn, pages 235–287. Elsevier, 2019.
  10. Zsolt R ́aduly, L ́aszl ́o Szab ́o, Anett Madar, Istv ́an P ́ocsi, and L ́aszl ́o Csernoch. Toxicological and medical aspects of aspergillus-derived mycotoxins entering the feed and food chain. Frontiers in microbiology, 10:2908, 2020.
  11. Inger V ̈olkel, Eva Schr ̈oer-Merker, and Claus-Peter Czerny. The carry-over of mycotoxins in products of animal origin with special regard to its implications for the european food safety legislation, 2011.
  12. Michael J Sweeney and Alan DW Dobson. Mycotoxin production by aspergillus, fusarium and penicillium species. International journal of food microbiology, 43(3):141–158, 1998.
  13. A ́kos Mesterh ́azy, Judit Ol ́ah, and Jo ́zsef Popp. Losses in the grain supply chain: Causes and solutions. Sustainability, 12(6):2342, 2020.
  14. Rahim Khan, Farooq Anwar, and Farinazleen Mohamad Ghazali. A comprehensive review

    of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon, 2024.

  15. Shabir Ahmad Mir, BN Dar, Manzoor Ahmad Shah, Sajad Ahmad Sofi, Afshan Mumtaz Hamdani, Carlos AF Oliveira, Motahareh Hashemi Moosavi, Amin Mousavi Khaneghah, and Anderson S Sant’Ana. Application of new technologies in decontamination of my- cotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology, 148:111976, 2021.
  16. Lien Smeesters, Thomas Kuntzel, Hugo Thienpont, and Ludovic Guilbert. Handheld flu- orescence spectrometer enabling sensitive aflatoxin detection in maize. Toxins, 15(6):361, 2023.
  17. Wenhua Wang, Qi Zhang, Fei Ma, and Peiwu Li. Simultaneous determination of aflatoxins, fumonisin b1, t-2 and cyclopiazonic acid in agri-products by immunomagnetic solid-phase extraction coupled with uhplc-ms/ms. Food Chemistry, 378:132020, 2022.
  18. Dakai Guo, Qingwen Huang, Rui Zhao, Wenbo Guo, Kai Fan, Zheng Han, Zhihui Zhao, and Dongxia Nie. Mil-101 (cr)@ fe3o4 nanocomposites as magnetic solid-phase extrac- tion adsorbent for the determination of multiple mycotoxins in agricultural products by ultra-high-performance liquid chromatography tandem mass spectrometry. Food Control, 146:109540, 2023.
  19. Chencheng Wei, Handong Wang, Gaozheng Li, Jianhua Li, Fang Zhang, Yuezhong Wu, and Zuquan Weng. Multiplex detection methods for mycotoxins in agricultural products: a systematic review. Food Control, 158:110207, 2024.
  20. Ke-Yu Xing, Juan Peng, Shan Shan, Dao-Feng Liu, Yi-Na Huang, and Wei-Hua Lai. Green enzyme-linked immunosorbent assay based on the single-stranded binding protein-assisted aptamer for the detection of mycotoxin. Analytical Chemistry, 92(12):8422–8426, 2020.
  21. Xiaoqian Tang, Xin Li, Peiwu Li, Qi Zhang, Ran Li, Wen Zhang, Xiaoxia Ding, Jiawen Lei, and Zhaowei Zhang. Development and application of an immunoaffinity column enzyme immunoassay for mycotoxin zearalenone in complicated samples. PloS one, 9(1):e85606, 2014.
  22. Jyoti Singh and Alka Mehta. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food science & nutrition, 8(5):2183–2204, 2020.
  23. Jie Li, Xiuli Xu, Xiujuan Wang, Chen Li, Xuesong Feng, Yuan Zhang, and Feng Zhang. Construction of a magnetic covalent organic framework for magnetic solid-phase extrac- tion of afm1 and afm2 in milk prior to quantification by lc–ms/ms. Microchimica Acta, 189(4):149, 2022.
  24. Yan Yang, Zhuoqun Su, Di Wu, Jianghua Liu, Xianlong Zhang, Yongning Wu, and Guo- liang Li. Low background interference sers aptasensor for highly sensitive multiplex my- cotoxin detection based on polystyrene microspheres-mediated controlled release of raman reporters. Analytica Chimica Acta, 1218:340000, 2022.
  25. Mengxiang Qiao, Yong Liu, and Min Wei. Dual-signal output fluorescent aptasensor based on dna programmability and gold nanoflowers for multiple mycotoxins detection. Analytical and Bioanalytical Chemistry, 415(2):277–288, 2023.
  26. Lien Smeesters, Wendy Meulebroeck, S Raeymaekers, and Hugo Thienpont. Non- destructive detection of mycotoxins in maize kernels using diffuse reflectance spectroscopy. Food Control, 70:48–57, 2016.
  27. B Jia, W Wang, XZ Ni, X Chu, SC Yoon, and KC Lawrence. Detection of mycotoxins and toxigenic fungi in cereal grains using vibrational spectroscopic techniques: A review. World Mycotoxin Journal, 13(2):163–178, 2020.
  28. Yong-Kyoung Kim, Insuck Baek, Kyung-Min Lee, Geonwoo Kim, Seyeon Kim, Sung-Youn Kim, Diane Chan, Timothy J Herrman, Namkuk Kim, and Moon S Kim. Rapid detection of single-and co-contaminant aflatoxins and fumonisins in ground maize using hyperspectral imaging techniques. Toxins, 15(7):472, 2023.
  29. David J Griffiths and Darrell F Schroeter. Introduction to Quantum Mechanics, third edition. Cambridge University Press, 2020.
  30. Indy Magnus, Fatemeh Abbasi, Hugo Thienpont, and Lien Smeesters. Laser-induced fluo- rescence spectroscopy enhancing pistachio nut quality screening. Food Control, 158:110192, 2024.
  31. Cecile Levasseur-Garcia. Updated overview of infrared spectroscopy methods for detecting mycotoxins on cereals (corn, wheat, and barley). Toxins, 10(1):38, 2018.
  32. Wen-Hao Su, Hong-Ju He, and Da-Wen Sun. Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review. Critical reviews in food science and nutrition, 57(5):1039–1051, 2017.
  33. Lien Smeesters, Indy Magnus, Martin Virte, Hugo Thienpont, and Wendy Meulebroeck. Potato quality assessment by monitoring the acrylamide precursors using reflection spec- troscopy and machine learning. Journal of Food Engineering, 311:110699, 2021.
  34. Lien Smeesters, Wendy Meulebroeck, S Raeymaekers, and Hugo Thienpont. Optical de- tection of aflatoxins in maize using one-and two-photon induced fluorescence spectroscopy. Food Control, 51:408–416, 2015.
  35. Balkis Aouadi, John-Lewis Zinia Zaukuu, Flora Vit ́alis, Zsanett Bodor, Orsolya Feh ́er, Zoltan Gillay, George Bazar, and Zoltan Kovacs. Historical evolution and food control achievements of near infrared spectroscopy, electronic nose, and electronic tongue—critical overview. Sensors, 20(19):5479, 2020.
  36. Dushani L Palliyaguru and Felicia Wu. Global geographical overlap of aflatoxin and hep- atitis c: controlling risk factors for liver cancer worldwide. Food Additives & Contaminants: Part A, 30(3):534–540, 2013.
  37. Xiaohu Luo, Ren Wang, Li Wang, Yong Wang, and Zhengxing Chen. Structure elucidation and toxicity analyses of the degradation products of aflatoxin b1 by aqueous ozone. Food Control, 31(2):331–336, 2013.
  38. LGC Standards GmbH. Certified reference material for aflatoxin b1. Certificate of Analysis, DRE-C10047100:1–6, 2022.
  39. LGC Standards GmbH. Certified reference material for aflatoxin b2. Certificate of Analysis, DRE-C10047200:1–6, 2025.
  40. AA El-Banna, JI Pitt, and L Leistner. Production of mycotoxins by penicillium species. Systematic and Applied Microbiology, 10(1):42–46, 1987.
  41. Sherif O Sherif, Emad E Salama, and Mosaad A Abdel-Wahhab. Mycotoxins and child health: The need for health risk assessment. International journal of hygiene and environ- mental health, 212(4):347–368, 2009.
  42. Annie Pfohl-Leszkowicz and Richard A Manderville. Ochratoxin a: An overview on toxicity and carcinogenicity in animals and humans. Molecular nutrition & food research, 51(1):61– 99, 2007.
  43. T. K ̋oszegi and M. Po’or. Ochratoxin a: Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins, 8(4):111, 2016.
  44. Javad Hashemi and Naader Alizadeh. Investigation of solvent effect and cyclodextrins on fluorescence properties of ochratoxin a. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(1):121–126, 2009.
  45. Iris Cagnasso, Glauco Tonachini, Silvia Berto, Agnese Giacomino, Luisa Mandrile, An- drea Maranzana, and Francesca Durbiano. Comprehensive study on the degradation of ochratoxin a in water by spectroscopic techniques and dft calculations. RSC advances, 9(34):19844–19854, 2019.
  46. CM Placinta, JP Felix D’Mello, and AMC Macdonald. A review of worldwide contamina- tion of cereal grains and animal feed with fusarium mycotoxins. Animal feed science and technology, 78(1-2):21–37, 1999.
  47. Gary P Munkvold. Fusarium species and their associated mycotoxins. Mycotoxigenic fungi: methods and protocols, pages 51–106, 2017.
  48. Ran Ran, Canhua Wang, Zheng Han, Aibo Wu, Dabing Zhang, and Jianxin Shi. Determi- nation of deoxynivalenol (don) and its derivatives: Current status of analytical methods. Food control, 34(1):138–148, 2013.
  49. Chengzhi Wang, Xiaping Fu, Ying Zhou, and Feng Fu. Deoxynivalenol detection beyond the limit in wheat flour based on the fluorescence hyperspectral imaging technique. Foods, 13(6):897, 2024.
  50. Karolina Ropejko and Magdalena Twaruz ̇ek. Zearalenone and its metabolites—general overview, occurrence, and toxicity. Toxins, 13(1):35, 2021.
  51. Del Zotto Stefania Della Riccia Giacomo. A multivariate regression model for detection of fumonisins content in maize from near infrared spectra. Food Chem, 141:4289–4294, 2013.
  52. Venkataramana Mudili, Chandra Nayaka Siddaih, Madhukar Nagesh, Phanikumar Gara- pati, Kalagatur Naveen Kumar, Harishchandra Sreepathi Murali, Tapani Yli Mattila, and Harsh Vardan Batra. Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from india. Journal of the Science of Food and Agriculture, 94(13):2674–2683, 2014.
  53. M Hove, Christof Van Poucke, Emmanuel Njumbe-Ediage, LK Nyanga, and Sarah De Saeger. Review on the natural co-occurrence of afb1 and fb1 in maize and the combined toxicity of afb1 and fb1. Food Control, 59:675–682, 2016.
  54. Trevor K Smith, Ewen G McMillan, and Jorge B Castillo. Effect of feeding blends of fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. Journal of animal science, 75(8):2184– 2191, 1997.
  55. LF Kubena, TS Edrington, RB Harvey, SA Buckley, TD Phillips, GE Rottinghaus, and HH Casper. Individual and combined effects of fumonisin b1 present in fusarium monili- forme culture material and t-2 toxin or deoxynivalenol in broiler chicks. Poultry Science, 76(9):1239–1247, 1997.
  56. Panagiotis D Tassis, Ioannis A Tsakmakidis, Veronika Nagl, Nicole Reisinger, Eleni Tzika, Christiane Gruber-Dorninger, Ilias Michos, Nikolaos Mittas, Athina Basioura, and Dian Schatzmayr. Individual and combined in vitro effects of deoxynivalenol and zearalenone on boar semen. Toxins, 12(8):495, 2020.
  57. AS Ficheux, Y Sibiril, and D Parent-Massin. Co-exposure of fusarium mycotoxins: in vitro myelotoxicity assessment on human hematopoietic progenitors. Toxicon, 60(6):1171–1179, 2012.
  58. European Commission. Mycotoxins. https://food.ec.europa.eu/food-safety/ chemical-safety/contaminants/catalogue/mycotoxins_en, 2024. Accessed: 2025-04- 29.
  59. U.S. Food and Drug Administration. Mycotoxins. https://www.fda.gov/food/ natural-toxins-food/mycotoxins, 2024. Accessed: 2025-04-29.
  60. V Fern ́andez-Iban ̃ez, A Soldado, A Mart ́ınez-Fern ́andez, and B De la Roza-Delgado. Appli- cation of near infrared spectroscopy for rapid detection of aflatoxin b1 in maize and barley as analytical quality assessment. Food Chemistry, 113(2):629–634, 2009.
  61. Eloisa D Caldas and Angela CS Silva. Mycotoxins in corn-based food products consumed in brazil: an exposure assessment for fumonisins. Journal of Agricultural and Food Chemistry, 55(19):7974–7980, 2007.
  62. Khayria M Abdel-Gawad and AA Zohri. Fungal flora and mycotoxins of six kinds of nut seeds for human consumption in saudi arabia. Mycopathologia, 124:55–64, 1993.
  63. PD Andrade, M Homem de Mello, JA Fran ̧ca, and ED Caldas. Aflatoxins in food products consumed in brazil: a preliminary dietary risk assessment. Food Additives & Contaminants: Part A, 30(1):127–136, 2013.
  64. Shahzad Z Iqbal. Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science, 42:237–247, 2021.
  65. Susan J MacDonald, Sharron Anderson, Paul Brereton, Roger Wood, and Andrew Damant. Determination of zearalenone in barley, maize and wheat flour, polenta, and maize-based baby food by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. Journal of AOAC International, 88(6):1733–1740, 2005.
  66. Carlo Brera, Francesca Debegnach, Valentina Minardi, Elena Pannunzi, Barbara De Santis, and Marina Miraglia. Immunoaffinity column cleanup with liquid chromatography for determination of aflatoxin b1 in corn samples: interlaboratory study. Journal of AOAC International, 90(3):765–772, 2007.
  67. Antonello Santini, Rosalia Ferracane, Maria Carmela Somma, Alejandro Arag ́on, and Al- berto Ritieni. Multitoxin extraction and detection of trichothecenes in cereals: an improved lc-ms/ms approach. Journal of the Science of Food and Agriculture, 89(7):1145–1153, 2009.
  68. Barbara De Santis, Francesca Debegnach, Emanuela Gregori, Simona Russo, Francesca Marchegiani, Gabriele Moracci, and Carlo Brera. Development of a lc-ms/ms method for the multi-mycotoxin determination in composite cereal-based samples. Toxins, 9(5):169, 2017.
  69. Dong-Ho Kim, Sung-Yong Hong, Jea Woo Kang, Sung Min Cho, Kyu Ri Lee, Tae Kyung An, Chan Lee, and Soo Hyun Chung. Simultaneous determination of multi-mycotoxins in cereal grains collected from south korea by lc/ms/ms. Toxins, 9(3):106, 2017.
  70. Xian Zhang, Ke He, Yun Fang, Tong Cao, Narayan Paudyal, Xiao-feng Zhang, Hou-hui Song, Xiao-liang Li, and Wei-huan Fang. Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin a and zearalenone in corn, wheat, and feed samples. Journal of Zhejiang University. Science. B, 19(11):871, 2018.
  71. Birgitta Maria Kunz, Felicitas Wanko, Sabine Kemmlein, Arnold Bahlmann, Sascha Rohn, and Ronald Maul. Development of a rapid multi-mycotoxin lc-ms/ms stable isotope dilu- tion analysis for grain legumes and its application on 66 market samples. Food Control, 109:106949, 2020.
  72. Ihuoma E Chibuzor-Onyema, Obinna T Ezeokoli, Michael Sulyok, Iviwe Notununu, Awan- wee Petchkongkaew, Christopher T Elliott, Rasheed A Adeleke, Rudolf Krska, and Chi- bundu N Ezekiel. Metataxonomic analysis of bacterial communities and mycotoxin reduc- tion during processing of three millet varieties into ogi, a fermented cereal beverage. Food Research International, 143:110241, 2021.
  73. Laura Anfossi, Cristina Giovannoli, and Claudio Baggiani. Mycotoxin detection. Current opinion in biotechnology, 37:120–126, 2016.
  74. Jiayi Chen, Pengjie Luo, Zhiwei Liu, Zixian He, Yimeng Pang, Hongtao Lei, Zhenlin Xu, Hong Wang, and Xiangmei Li. Rainbow latex microspheres lateral flow immunoassay with smartphone-based device for simultaneous detection of three mycotoxins in cereals.Analytica Chimica Acta, 1221:340138, 2022.
  75. Qing Yu, Heng Li, Chenglong Li, Suxia Zhang, Jianzhong Shen, and Zhanhui Wang. Gold nanoparticles-based lateral flow immunoassay with silver staining for simultaneous detec- tion of fumonisin b1 and deoxynivalenol. Food Control, 54:347–352, 2015.
  76. Suquan Song, Na Liu, Zhiyong Zhao, Emmanuel Njumbe Ediage, Songling Wu, Changpo Sun, Sarah De Saeger, and Aibo Wu. Multiplex lateral flow immunoassay for mycotoxin determination. Analytical chemistry, 86(10):4995–5001, 2014.
  77. Wanjun Zhang, Shusheng Tang, Yongpeng Jin, Chunjiang Yang, Lidong He, Jiayi Wang, and Yiqiang Chen. Multiplex sers-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual raman labels and triple test lines. Journal of Hazardous Materials, 393:122348, 2020.
  78. Mohamad Kamal Abdul Kadir and Ibtisam E Tothill. Development of an electrochemical immunosensor for fumonisins detection in foods. Toxins, 2(4):382–398, 2010.
  79. Zhiwei Liu, Qicheng Hua, Jin Wang, Zaoqing Liang, Jiahao Li, Jinxiao Wu, Xing Shen, Hongtao Lei, and Xiangmei Li. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosensors and Bioelectronics, 158:112178, 2020.
  80. Yuhao Wu, Yaofeng Zhou, Hai Huang, Xirui Chen, Yuankui Leng, Weihua Lai, Xiaolin Huang, and Yonghua Xiong. Engineered gold nanoparticles as multicolor labels for simul- taneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor.Sensors and Actuators B: Chemical, 316:128107, 2020.
  81. Ruipeng Chen, Shuang Li, Yunfeng Sun, Bingyang Huo, Yating Xia, Yingkai Qin, Shuning Li, Baodi Shi, Defu He, Jun Liang, et al. Surface-enhanced raman spectroscopy aptasensor for simultaneous determination of ochratoxin a and zearalenone using au@ ag core-shell nanoparticles and gold nanorods. Microchimica Acta, 188:1–9, 2021.
  82. Ajay Kumar Yagati, Sachin Ganpat Chavan, Changyoon Baek, Min-Ho Lee, and Jun- hong Min. Label-free impedance sensing of aflatoxin b1 with polyaniline nanofibers/au nanoparticle electrode array. Sensors, 18(5):1320, 2018.
  83. Zakir Hossain, Mark Busman, and Chris M Maragos. Immunoassay utilizing imaging surface plasmon resonance for the detection of cyclopiazonic acid (cpa) in maize and cheese. Analytical and bioanalytical chemistry, 411:3543–3552, 2019.
  84. Xian Zhang, Chao-Rui Li, Wei-Cheng Wang, Jian Xue, Ya-Ling Huang, Xian-Xian Yang, Bin Tan, Xi-Peng Zhou, Chuang Shao, Shi-Jia Ding, et al. A novel electrochemical im- munosensor for highly sensitive detection of aflatoxin b1 in corn using single-walled carbon nanotubes/chitosan. Food chemistry, 192:197–202, 2016.
  85. Jessica MD Machado, Ruben RG Soares, Virginia Chu, and Jo ̃ao P Conde. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel myco- toxin detection. Biosensors and Bioelectronics, 99:40–46, 2018.
  86. Baoshan He and Xiaohai Yan. An amperometric zearalenone aptasensor based on sig- nal amplification by using a composite prepared from porous platinum nanotubes, gold nanoparticles and thionine-labelled graphene oxide. Microchimica Acta, 186:1–10, 2019.
  87. Baoshan He and Xiaohai Yan. A “signal-on” voltammetric aptasensor fabricated by hcpt@ aunfs/pei-rgo and fe3o4nrs/rgo for the detection of zearalenone. Sensors and Actuators B: Chemical, 290:477–483, 2019.
  88. Lin Lu and Sundaram Gunasekaran. Dual-channel ito-microfluidic electrochemical im- munosensor for simultaneous detection of two mycotoxins. Talanta, 194:709–716, 2019.
  89. Kundan Kumar Mishra, Vikram Narayanan Dhamu, Abhinav Kokala, Sriram Muthuku- mar, and Shalini Prasad. Advancing food safety: Two-plex electrochemical biosensor for mycotoxin detection in food matrices. Biosensors and Bioelectronics: X, page 100626, 2025.
  90. European Commission. Alert and cooperation network annual report 2022. https://food. ec.europa.eu/safety/rasff_en, 2023. Accessed: 2025-04-29.
  91. Herbert Fraenkel, Patrick B Gough, and William S Maughan. Method and apparatus for sorting agricultural products, May 20 1980. US Patent 4,203,522.
  92. Maksim N Moskovskiy, Aleksey V Sibirev, Anatoly A Gulyaev, Stanislav A Gerasimenko, Sergey I Borzenko, Maria M Godyaeva, Oleg V Noy, Egor I Nagaev, Tatiana A Matveeva, Ruslan M Sarimov, et al. Raman spectroscopy enables non-invasive identification of my- cotoxins p. fusarium of winter wheat seeds. In Photonics, volume 8, page 587. MDPI, 2021.
  93. Yong-Kyoung Kim, Insuck Baek, Kyung-Min Lee, Jianwei Qin, Geonwoo Kim, Byeung Kon Shin, Diane E Chan, Timothy J Herrman, Soon-kil Cho, and Moon S Kim. Investigation of reflectance, fluorescence, and raman hyperspectral imaging techniques for rapid detection of aflatoxins in ground maize. Food Control, 132:108479, 2022.
  94. M Aoun, C Siegel, GL Windham, WP Williams, and RJ Nelson. Application of reflectance spectroscopy to identify maize genotypes and aflatoxin levels in single kernels. World Mycotoxin Journal, 15(4):327–342, 2022.
  95. Xianbin Cheng, Andrea Vella, and Matthew J Stasiewicz. Classification of aflatoxin con- taminated single corn kernels by ultraviolet to near infrared spectroscopy. Food Control, 98:253–261, 2019.
  96. Tom C Pearson, Donald T Wicklow, Elizabeth B Maghirang, Feng Xie, and Floyd E Dowell. Detecting aflatoxin in single corn kernels by transmittance and reflectance spectroscopy. Transactions of the ASAE, 44(5):1247, 2001.
  97. TC Pearson, DT Wicklow, and MC Pasikatan. Reduction of aflatoxin and fumonisin contamination in yellow corn by high-speed dual-wavelength sorting. Cereal Chemistry, 81(4):490–498, 2004.
  98. Matthew J Stasiewicz, Titilayo DO Falade, Murithi Mutuma, Samuel K Mutiga, Jagger JW Harvey, Glen Fox, Tom C Pearson, James W Muthomi, and Rebecca J Nelson. Multi- spectral kernel sorting to reduce aflatoxins and fumonisins in kenyan maize. Food Control, 78:203–214, 2017.
  99. Gregor Kos, Markus Sieger, David McMullin, Celine Zahradnik, Michael Sulyok, Tuba Öner,BorisMizaikoff,andRudolfKrska.Anovelchemometricclassificationforftirspectra of mycotoxin-contaminated maize and peanuts at regulatory limits. Food Additives & Contaminants: Part A, 33(10):1596–1607, 2016.
  100. Kyung-Min Lee, Jessica Davis, Timothy J Herrman, Seth C Murray, and Youjun Deng. An empirical evaluation of three vibrational spectroscopic methods for detection of aflatoxins in maize. Food Chemistry, 173:629–639, 2015.
  101. Brigitta Gaspardo, Stefania Del Zotto, Emanuela Torelli, SR Cividino, Giuseppe Firrao, Giacomo Della Riccia, and Bruno Stefanon. A rapid method for detection of fumonisins b1 and b2 in corn meal using fourier transform near infrared (ft-nir) spectroscopy implemented with integrating sphere. Food Chemistry, 135(3):1608–1612, 2012.
  102. Bei Wang, Fei Shen, Xueming He, Yong Fang, Qiuhui Hu, and Xingquan Liu. Simultaneous detection of aspergillus moulds and aflatoxin b1 contamination in rice by laser induced fluorescence spectroscopy. Food Control, 145:109485, 2023.
  103. Haibo Yao, Zuzana Hruska, Russell Kincaid, Robert L Brown, Deepak Bhatnagar, and Thomas E Cleveland. Detecting maize inoculated with toxigenic and atoxigenic fungal strains with fluorescence hyperspectral imagery. Biosystems Engineering, 115(2):125–135, 2013.
  104. Fengle Zhu, Haibo Yao, Zuzana Hruska, Russell Kincaid, Robert L Brown, Deepak Bhat- nagar, and Thomas E Cleveland. Integration of fluorescence and reflectance visible near- infrared (vnir) hyperspectral images for detection of aflatoxins in corn kernels. Transactions of the ASABE, 59(3):785–794, 2016.
  105. Haibo Yao, Zuzana Hruska, Russell Kincaid, Robert L Brown, Deepak Bhatnagar, and Thomas E Cleveland. Svm-based feature extraction and classification of aflatoxin contam- inated corn using fluorescence hyperspectral data. In 2012 4th Workshop on Hyperspec- tral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pages 1–4. IEEE, 2012.
  106. Haibo Yao, Zuzana Hruska, Russell Kincaid, R Brown, T Cleveland, and D Bhatnagar. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with aspergillus flavus spores. Food additives and contaminants, 27(5):701–709, 2010.
  107. Wei Liu, Haiyang Deng, Yule Shi, Changhong Liu, and Lei Zheng. Application of multi- spectral imaging combined with machine learning for rapid and non-destructive detection of zearalenone (zen) in maize. Available at SSRN 4116066, 2023.
  108. Hyunjung Min and Byoung-Kwan Cho. Spectroscopic techniques for nondestructive detec- tion of fungi and mycotoxins in agricultural materials: A review. Journal of Biosystems Engineering, 40(1):67–77, 2015.
  109. Pauline Ong, I-Chun Tung, Ching-Feng Chiu, I-Lin Tsai, Hsi-Chang Shih, Suming Chen, and Yung-Kun Chuang. Determination of aflatoxin b1 level in rice (oryza sativa l.) through near-infrared spectroscopy and an improved simulated annealing variable selection method. Food Control, 136:108886, 2022.
  110. Han Song, Feng Li, Peiwen Guang, Xinhao Yang, Huanyu Pan, and Furong Huang. Detec- tion of aflatoxin b1 in peanut oil using attenuated total reflection fourier transform infrared spectroscopy combined with partial least squares discriminant analysis and support vector machine models. Journal of Food Protection, 84(8):1315–1320, 2021.
  111. C-L Lai, Y-M Fuh, and DY-C Shih. Detection of mycotoxin patulin in apple juice. Journal of Food and Drug Analysis, 8(2):5, 2000.
  112. Pranita Jaiswal, Shyam Narayan Jha, Jaspreet Kaur, Anjan Borah, and HG Ramya. Detec- tion of aflatoxin m1 in milk using spectroscopy and multivariate analyses. Food Chemistry, 238:209–214, 2018.
  113. Haibo Yao, Zuzana Hruska, Russell Kincaid, Ambrose Ononye, Robert L Brown, and Thomas E Cleveland. Spectral angle mapper classification of fluorescence hyperspectral image for aflatoxin contaminated corn. In 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pages 1–4. IEEE, 2010.
  114. Haibo Yao, Zuzana Hruska, Russell Kincaid, Robert L Brown, Deepak Bhatnagar, and Thomas E Cleveland. Hyperspectral image classification and development of fluorescence index for single corn kernels infected with aspergillus flavus. Transactions of the ASABE, 56(5):1977–1988, 2013.
  115. Hans Pettersson and Lena ̊Aberg. Near infrared spectroscopy for determination of myco- toxins in cereals. Food Control, 14(4):229–232, 2003.
  116. Marco Beyer, Friederike Pogoda, Franz K Ronellenfitsch, Lucien Hoffmann, and Thomas Udelhoven. Estimating deoxynivalenol contents of wheat samples containing different levels of fusarium-damaged kernels by diffuse reflectance spectrometry and partial least square regression. International Journal of Food Microbiology, 142(3):370–374, 2010.
  117. Feng Jin, Guihua Bai, Dadong Zhang, Yanhong Dong, Lingjian Ma, William Bockus, and Floyd Dowell. Fusarium-damaged kernels and deoxynivalenol in fusarium-infected us winter wheat. Phytopathology, 104(5):472–478, 2014.
  118. CS Tibola, JMC Fernandes, and R Delanora. Predicting wheat mycotoxin content using near-infrared reflectance spectroscopy. In Proceedings of the 2010 National Fusarium Head Blight Forum, December, pages 7–9, 2010.
  119. Denize Tyska, Adriano Olnei Mallmann, Juliano Kobs Vidal, Carlos Alberto Arau ́jo de Almeida, Luciane Tourem Gressler, and Carlos Augusto Mallmann. Multivariate method for prediction of fumonisins b1 and b2 and zearalenone in brazilian maize using near infrared spectroscopy (nir). PloS one, 16(1):e0244957, 2021.
  120. William Appaw, John-Lewis Zinia Zaukuu, Balkis Aouadi, Eric Tetteh Mensah, Ibok Nsa Oduro, and Zoltan Kovacs. Predicting aflatoxin contamination in white and yellow maize using vis/nir spectroscopy combined with pca-lda and plsr models through aquaphotomics approaches. Applied Food Research, page 100841, 2025.
  121. Annalisa De Girolamo, Salvatore Cervellieri, Angelo Visconti, and Michelangelo Pas- cale. Rapid analysis of deoxynivalenol in durum wheat by ft-nir spectroscopy. Toxins, 6(11):3129–3143, 2014.
  122. Marta Brada ́aˇcov ́a, Kristy`na Bezdˇekov ́a, and Pavl ́ına Smutin ́a. Pouˇzit ́ı ft-nir spectroscopy for the determination of mycotoxins in barley grain by ft-nir spectroscopy, 2020.
  123. Wei Liu, Haiyang Deng, Yule Shi, Changhong Liu, and Lei Zheng. Application of multi- spectral imaging combined with machine learning methods for rapid and non-destructive detection of zearalenone (zen) in maize. Measurement, 203:111944, 2022.
  124. Joseph R Lakowicz. Introduction to fluorescence. Springer, 1999.
    Indy Magnus. Combining spectroscopy and machine learning processing for precise sample classification. VUB, 2020.
  125. Robert K Neely, Jochem Deen, and Johan Hofkens. Optical mapping of dna: Single-molecule-based methods for mapping genomes. Biopolymers, 95(5):298–311, 2011.
  126. Feifei Tao, Haibo Yao, Zuzana Hruska, Loren W Burger, Kanniah Rajasekaran, and Deepak Bhatnagar. Recent development of optical methods in rapid and non-destructive detection of aflatoxin and fungal contamination in agricultural products. TrAC Trends in Analytical Chemistry, 100:65–81, 2018.
  127. Eugene Hecht. Optics, Fifth Edition. Pearson, 2017.
  128. Claudia Rasch, Maike B ̈ottcher, and Michael Kumke. Determination of aflatoxin b 1 in alcoholic beverages: comparison of one-and two-photon-induced fluorescence. Analytical and Bioanalytical Chemistry, 397:87–92, 2010.
  129. Romer Labs. Innovative diagnostic solutions for food and feed safety. https://www. romerlabs.com/en/. Accessed: Feb 9th 2025.
  130. Romer Labs. Product name: Aflatoxin in corn, low level. https://plm.erber.group/WDD/ ?partNumber=10007113&lotNumber=122294, 2024. Part Number:10007113, lot: 122294.
  131. Romer Labs. Product name: Deoxynivalenol in corn, high level. https://plm.erber. group/WDD/?partNumber=10007115&lotNumber=123359, 2024. Part Number:10007115, lot: 123359.
  132. Romer Labs. Product name: Zearalenone in corn, low level. https://www.romerlabs. com/at_en/shop/zearalenone-in-corn-low-level/#theme.catalog.product. additional.information.documents.detailed, 2024. Part Number:10003624, lot: M21055Z.
  133. Romer Labs. Product name: Afla, don, zea and fum in corn, mid level. https://www.romerlabs.com/at_en/shop/zearalenone-in-corn-low-level/ #theme.catalog.product.additional.information.documents.detailed, 2024. Part Number:10007114, lot: 123368.
  134. Romer Labs. Product name: Don, t-2, ht-2 and ota in wheat, low level. https: //plm.erber.group/WDD/?partNumber=10007116&lotNumber=123359, 2024. Part Num- ber:10007116, lot: 123359.
  135. Romer Labs. Wheat, blank. https://www.romerlabs.com/us_en/shop/wheat-blank/, 2025. Part Number:10003611, lot: 123359.
  136. Joseph A Curcio and Charles C Petty. The near infrared absorption spectrum of liquid water. Journal of the optical society of America, 41(5):302–304, 1951.
  137. Elias Alisaac, Jan Behmann, Anna Rathgeb, Petr Karlovsky, Heinz-Wilhelm Dehne, and Anne-Katrin Mahlein. Assessment of fusarium infection and mycotoxin contamination of wheat kernels and flour using hyperspectral imaging. Toxins, 11(10):556, 2019.
  138. Wannes Luts de Maretalere. Github repository with the full code (classifcation/regression) modeling pipeline. https://github.com/wannes122/MasterThesis.git, 2025.
  139. Trilogy Analytical Laboratory. Certified reference standards. https://trilogylab.com/ collections/certified-reference-standards, 2025. Accessed: 2025-05-26.
  140. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn- ing: Data Mining, Inference, and Prediction, volume 2. Springer, 2009.
Download scriptie (41.77 MB)
Universiteit of Hogeschool
Vrije Universiteit Brussel
Thesis jaar
2025
Promotor(en)
Lien Smeesters
Thema('s)