Plassen tegen de stank: hoe jouw urine onze riolering kan redden

Amber
Brouns

Iedereen moet plassen, maar toch staan we zelden stil bij water gebeurt wanneer onze plas door het toilet verdwijnt. Voor de meeste mensen is urine niet meer dan een onderdeel van het afvalwater. Maar wat als ik zeg dat we jouw urine naar een waardevolle grondstof kunnen omzetten? Dit goedje kan een sleutel zijn in de strijd tegen stinkende riolen, beschadigingen aan de rioolinfrastructuur én vervuilende emissies. Ook kan het bijdragen als oplossing voorde grote stikstofbelasting op onze waterzuiveringsinstallaties.

Een riool vol uitdagingen

Je staat er misschien niet bij stil, maar in onze riolering vinden er allerlei microbiële processen plaats. Sommige zijn nuttig voor ons, andere schadelijk. Een van de grootste boosdoeners is waterstofsulfide (H2S). Dit gas ontstaat onder zuurstofarme omstandigheden en zorgt voor de stinkende rioolgeur en aantasting van de pijpleidingen. Vandaag pakken we deze problemen vooral chemisch aan, met toevoeging van nitraat of ijzerzout. Dit werkt, maar de chemische stoffen zijn duur en niet-hernieuwbaar. Wat als we slimmer konden omgaan met wat we al in overvloed hebben? Stel je nu eens voor: minder stank in de straat én minder dure rioolwerken zonder dat daar (dure) chemicaliën voor nodig zijn. Dit kan, dankzij urine!

Urine, een gouden kans!

Urine bevat van nature veel stikstof, die via biologische voorbehandeling (nitrificatie) kan worden omgezet in nitraat (een vorm van stikstof). Dit nitraat kan vervolgens op een slimme manier in de riolering gedoseerd worden om schadelijke processen te onderdrukken en nuttige bacteriën te stimuleren. Op deze manier wordt urine een troef voor duurzaamheid. Zo verandert een alledaags afvalproduct in een circulaire grondstof die niet alleen stank en corrosie vermindert, maar ook de levensduur van riolen verlengt, de stikstofdruk op zuiveringsinstallaties verlaagt en de afhankelijkheid van niet-hernieuwbare chemicaliën vermindert. 

Maar hoe werkt dat precies? In een riool zonder zuurstof, maar in aanwezigheid van nitraat nemen deze twee belangrijke bacteriegroepen het over:

  1. Heterotrofe denitrificeerders: Deze gebruiken organische stoffen en zetten nitraat of genitrificeerde urine om naar stikstofgas. Dit proces is snel en efficiënt, en kan helpen de stikstofdruk op waterzuiveringsinstallaties en in het milieu te verlagen. 
  2. Sulfide-gedreven autotrofe denitrificeerders: Deze zetten ook nitraat om naar stikstofgas, maar in plaats van organische stoffen gebruiken ze sulfide (H2S) als energiebron, waardoor de stank en schade aan de riolering verlaagt. 

    De potentiële voordelen zijn aangegeven met groene pijlen. Ook worden de twee bacteriële processen weergegeven: sulfide-gedreven autotrofe denitrificatie (SAD) en heterotrofe denitrificatie (HD). De rode pijl geeft de inhibitie van HD door sulfide aan.

    De potentiële voordelen zijn aangegeven met groene pijlen. Ook worden de twee bacteriële processen weergegeven: sulfide-gedreven autotrofe denitrificatie (SAD) en heterotrofe denitrificatie (HD). De rode pijl geeft de inhibitie van HD door sulfide aan.

Deze twee groepen spelen de hoofdrol in mijn onderzoek. In theorie zouden beide groepen elkaar kunnen helpen om de stikstofverwijdering in de riolering te vergemakkelijken. Maar de mening hierover in de literatuur is verdeeld. Sommige studies rapporteren synergie (samenwerking met een versterkend effect), andere juist competitie. Ook is bekend dat H2S giftig is voor de heterotrofen, maar de hoeveelheid H2S die nodig is om een toxisch effect te bekomen is niet eenduidig.

Daarom wou ik drie dingen onderzoeken: 

  1. Hoe snel kunnen heterotrofe denitrificeerders en sulfide-gedreven autotrofe denitrificeerders nitraat verwijderen?
  2. Wat gebeurt er als beide groepen tegelijk aanwezig zijn?
  3. Welke hoeveelheid H2S is toxisch voor heterotrofe denitrificatie?
  4. Is jouw urine voldoende om het nitraatniveau in de riolering voldoende hoog te houden?

Proefopzet

Om dit te onderzoeken werkte ik met activiteitstesten. Dit zijn testen waarbij de activiteit van bacteriën wordt opgevolgd in kleine flessen onder gecontroleerde omstandigheden: welke stoffenOpzet activiteitstesten. aanwezig zijn en, in welke hoeveelheden en welke bacteriën hun werk doen. Ik voerde drie soorten testen uit: 1) heterotrofe testen, met acetaat (een organische koolstofbron) als energiebron. 2) autotrofe testen met H₂S, en 3) gemengde testen met zowel acetaat als H₂S.

 

Opzet verrijking.

Tijdens deze testen mat ik hoe snel nitraat verdween, hoeveel sulfide omgezet werd en of het proces geremd werd door bepaalde stoffen. Voor de autotrofe testen moest ik het slib dat ik verkreeg van een echte waterzuiveringsinstallatie op voorhand voeden, ook wel verrijken genoemd, met H₂S, om de autotrofen op te kweken.

Bacteriën in de ring: Het gevecht om nitraat

Wat bleek? Heterotrofe denitrificatie is veruit de snelste: Hun activiteit was zes keer hoger dan sulfide-gedreven autotrofe denitrificatie in het begin. Sulfide-gedreven autotrofe denitrificatie startte traag, maar na verrijking verdubbelde hun activiteit bijna. Wanneer beide samen actief waren, bleek er geen samenwerking te zijn: Heterotrofe denitrificatie kreeg de bovenhand zolang er organische koolstof aanwezig was. Verder zorgde de invloed van H₂S op heterotrofe denitrificatie duidelijk voor remming.

De laatste onderzoeksvraag beantwoordde ik met een computermodel dat berekende hoeveel nitraat nodig is om de gewenste omstandigheden in stand te houden. Daaruit bleek dat voorbehandelde urine op zichzelf genoeg nitraat kan leveren om stank en corrosie in toom te houden, zonder dat er externe chemicaliën nodig zijn.

De toekomst door een porseleinen bril: Het belang van het onderzoek

Mijn onderzoek is belangrijk om drie redenen. 1) Het omvat een standaardmethode voor sulfide-gedreven autotrofe denitrificatie activiteit, die reproduceerbare testen mogelijk maakt. 2) Het geeft inzichten in de interacties tussen beide groepen, waarbij blijkt dat heterotrofe denitrificatie meestal domineert zolang er organische koolstof aanwezig is. 3) Een praktische vertaalslag, door laboresultaten te koppelen aan simulaties die aangeven hoeveel urine er precies nodig is.

De toekomst van onze riolen zou wel eens in ons toilet kunnen liggen. Wat vandaag wordt doorgespoeld, kan morgen het verschil maken tussen stinkende, corroderende leidingen en een duurzaam, circulair watersysteem. Urine is dus geen afval, maar een onverwachte bondgenoot in de strijd tegen stank, vervuiling en verspilling. Misschien wordt het dus tijd om jouw urine nuttig in te zetten als een kleine dagelijkse bijdrage aan een schonere en duurzamere waterzuivering!

Bibliografie

Bibliografie:

Abdul-Talib, S., Hvitved-Jacobsen, T., Vollertsen, J., & Ujang, Z. (2002). Half saturation constants for nitrate and nitrite by in-sewer anoxic transformations of wastewater organic matter. Water Science and Technology, 46(9), 185–192. https://doi.org/10.2166/wst.2002.0236 

An, S., Tang, K., & Nemati, M. (2010). Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: Effects of sulphide loading rate and sulphide to nitrate loading ratio. Water Research, 44(5), 1531–1541. https://doi.org/10.1016/j.watres.2009.10.037 

Auguet, O., Pijuan, M., Guasch-Balcells, H., Borrego, C. M., & Gutierrez, O. (2015). Implications of Downstream Nitrate Dosage in anaerobic sewers to control sulfide and methane emissions. Water Research, 68, 522–532. https://doi.org/10.1016/j.watres.2014.09.034 

Augustyniak, A., Sikora, P., Grygorcewicz, B., Despot, D., Braun, B., Rakoczy, R., Szewzyk, U., Barjenbruch, M., & Stephan, D. (2021). Biofilms in the gravity sewer interfaces: Making a friend from a foe. Reviews in Environmental Science and Bio/Technology, 20(3), 795–813. https://doi.org/10.1007/s11157-021-09582-0 

Bagreev, A., Bashkova, S., Locke, D. C., & Bandosz, T. J. (2001). Sewage Sludge-Derived Materials as Efficient Adsorbents for Removal of Hydrogen Sulfide. Environmental Science & Technology, 35(7), 1537–1543. https://doi.org/10.1021/es001678h 

Barker, P. S., & Dold, P. L. (1997). General model for biological nutrient removal activated-sludge systems: Model presentation. Water Environment Research, 69(5), 969–984. https://doi.org/10.2175/106143097X125669 

Bernal, D., Restrepo, I., & Grueso-Casquete, S. (2021). Key criteria for considering decentralization in municipal wastewater management. Heliyon, 7(3), e06375. https://doi.org/10.1016/j.heliyon.2021.e06375 100 

Biradar, P. M., Roy, S. B., D’Souza, S. F., & Pandit, A. B. (2010). Excess cell mass as an internal carbon source for biological denitrification. Bioresource Technology, 101(6), 1787–1791. https://doi.org/10.1016/j.biortech.2009.10.049 

Calise, F., Eicker, U., Schumacher, J., & Vicidomini, M. (2020). Wastewater Treatment Plant: Modelling and Validation of an Activated Sludge Process. Energies, 13(15), 3925. https://doi.org/10.3390/en13153925 

Campos, J. L., Carvalho, S., Portela, R., Mosquera-Corral, A., & Méndez, R. (2008). Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds. Bioresource Technology, 99(5), 1293–1299. https://doi.org/10.1016/j.biortech.2007.02.007 

Cardoso, R. B., Sierra-Alvarez, R., Rowlette, P., Flores, E. R., Gómez, J., & Field, J. A. (2006). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnology and Bioengineering, 95(6), 1148–1157. https://doi.org/10.1002/bit.21084 

Cherchi, C., Onnis-Hayden, A., El-Shawabkeh, I., & Gu, A. Z. (2009a). Implication of Using Different Carbon Sources for Denitrification in Wastewater Treatments. Water Environment Research, 81(8), 788–799. https://doi.org/10.2175/106143009X12465435982610 

Cherchi, C., Onnis-Hayden, A., El-Shawabkeh, I., & Gu, A. Z. (2009b). Implication of Using Different Carbon Sources for Denitrification in Wastewater Treatments. Water Environment Research, 81(8), 788–799. https://doi.org/10.2175/106143009X12465435982610 

Chua, S. L., Liu, Y., Yam, J. K. H., Chen, Y., Vejborg, R. M., Tan, B. G. C., Kjelleberg, S., Tolker-Nielsen, T., Givskov, M., & Yang, L. (2014). Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nature Communications, 5(1), 4462. https://doi.org/10.1038/ncomms5462 

Coördinatiecomissie Intergraal Waterbeleid. (2014). Code van goede praktijk voor het ontwerp, de aanleg en het onderhoud van rioleringsystemen: Deel 4: DWA-systemen (p. 34). Vlaamse 101 Milieumaatschappij. https://www.integraalwaterbeleid.be/nl/publicaties/code-goede[1]praktij…;

D’Aquino, A., Kalinainen, N., Auvinen, H., Andreottola, G., Puhakka, J. A., & Palmroth, M. R. T. (2023). Effects of inorganic ions on autotrophic denitrification by Thiobacillus denitrificans and on heterotrophic denitrification by an enrichment culture. Science of The Total Environment, 901, 165940. https://doi.org/10.1016/j.scitotenv.2023.165940 

Despot, D., Reinhold, L., & Barjenbruch, M. (2022). Assessment of limited downstream nitrate dosing for sulphide control in pressure sewers: Case study in Germany. Water Practice and Technology, 17(10), 2031–2047. https://doi.org/10.2166/wpt.2022.106 DHI. (2023). 

SUMO Database [Dataset]. DHI. https://www.dhigroup.com Di Capua, F., Pirozzi, F., Lens, P. N. L., & Esposito, G. (2019). Electron donors for autotrophic denitrification. Chemical Engineering Journal, 362, 922–937. https://doi.org/10.1016/j.cej.2019.01.069 

Dolejs, P., Paclík, L., Maca, J., Pokorna, D., Zabranska, J., & Bartacek, J. (2015). Effect of S/N ratio on sulfide removal by autotrophic denitrification. Applied Microbiology and Biotechnology, 99(5), 2383–2392. https://doi.org/10.1007/s00253-014-6140-6 

Duque, N., Bach, P. M., Scholten, L., Fappiano, F., & Maurer, M. (2022). A Simplified Sanitary Sewer System Generator for Exploratory Modelling at City-Scale. Water Research, 209, 117903. https://doi.org/10.1016/j.watres.2021.117903 

Elefsiniotis, P., & Wareham, D. G. (2007). Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme and Microbial Technology, 41(1–2), 92–97. https://doi.org/10.1016/j.enzmictec.2006.12.006 

European Environment Agency. (2019). Urban waste water treatment for 21st century challenges. Environmental Infromation Systems. https://www.eea.europa.eu/publications/urban-waste[1]water-treatment-fo… 102

European Parliament. (2023). Urban wastewater treatment Updating EU rules. https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739370/EPRS_BRI… 9739370_EN.pdf 

Fajardo, C., Mora, M., Fernández, I., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2014). Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor. Chemosphere, 97, 10–15. https://doi.org/10.1016/j.chemosphere.2013.10.028 

Fajardo, C., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2012). Autotrophic denitrification with sulphide in a sequencing batch reactor. Journal of Environmental Management, 113, 552– 556. https://doi.org/10.1016/j.jenvman.2012.03.018 

Fanning, J. (2000). The chemical reduction of nitrate in aqueous solution. Coordination Chemistry Reviews, 199(1), 159–179. https://doi.org/10.1016/S0010-8545(99)00143-5 

Faust, V., Markus, P., Schielke-Jenni, S., Timmer, M. J., De Paepe, J., Ganigué, R., Vlaeminck, S. E., & Udert, K. M. (2024). Conditions for successful nitrogen removal from source-separated urine by partial nitritation/anammox. PLOS Water, 3(5), e0000235. https://doi.org/10.1371/journal.pwat.0000235 

Fittschen, I., & Hahn, H. H. (1998). Characterization of the municipal wastewaterpart human urine and a preliminary comparison with liquid cattle excretion. Water Science and Technology, 38(6), 9–16. https://doi.org/10.2166/wst.1998.0231 

Fu, X., Hou, R., Yang, P., Qian, S., Feng, Z., Chen, Z., Wang, F., Yuan, R., Chen, H., & Zhou, B. (2022). Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Science of The Total Environment, 817, 153061. https://doi.org/10.1016/j.scitotenv.2022.153061 

Gadekar, S., Nemati, M., & Hill, G. A. (2006). Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: Reaction kinetics and stoichiometry. Water Research, 40(12), 2436– 2446. https://doi.org/10.1016/j.watres.2006.04.007 103 

Gao, R., Zhang, Z., Zhang, T., Liu, J., & Lu, J. (2020). Upstream Natural Pulsed Ventilation: A simple measure to control the sulfide and methane production in gravity sewer. Science of The Total Environment, 742, 140579. https://doi.org/10.1016/j.scitotenv.2020.140579 

Gao, Z., Zhang, Z., Li, Q., Wu, H., Wang, M., Tian, X., Wang, A., & Li, J. (2024). Improving contaminant removal and inhibiting CH4 and H2S emissions from septic tanks: Nitrified human urine as a source of electron acceptor. Science of The Total Environment, 951, 175410. https://doi.org/10.1016/j.scitotenv.2024.175410 

Gill, L. W., O’Luanaigh, N., Johnston, P. M., Misstear, B. D. R., & O’Suilleabhain, C. (2009). Nutrient loading on subsoils from on-site wastewater effluent, comparing septic tank and secondary treatment systems. Water Research, 43(10), 2739–2749. https://doi.org/10.1016/j.watres.2009.03.024 

Guerriero, G., Mattei, M. R., Papirio, S., Esposito, G., & Frunzo, L. (2022). Modelling the effect of SMP production and external carbon addition on S-driven autotrophic denitrification. Scientific Reports, 12(1), 7008. https://doi.org/10.1038/s41598-022-10944-z 

Guisasola, A., De Haas, D., Keller, J., & Yuan, Z. (2008). Methane formation in sewer systems. Water Research, 42(6–7), 1421–1430. https://doi.org/10.1016/j.watres.2007.10.014 

Gundlach, J., Bryla, M., Larsen, T. A., Kristoferitsch, L., Gründl, H., & Holzner, M. (2021). Novel NoMix toilet concept for efficient separation of urine and feces and its design optimization using computational fluid mechanics. Journal of Building Engineering, 33, 101500. https://doi.org/10.1016/j.jobe.2020.101500

Gutierrez, O., Mohanakrishnan, J., Sharma, K. R., Meyer, R. L., Keller, J., & Yuan, Z. (2008). Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Water Research, 42(17), 4549–4561. https://doi.org/10.1016/j.watres.2008.07.042 

Haaningnielsen, A., Lens, P., Vollertsen, J., & Hvitvedjacobsen, T. (2005). Sulfide–iron interactions in domestic wastewater from a gravity sewer. Water Research, 39(12), 2747–2755. https://doi.org/10.1016/j.watres.2005.04.048 104 

Horemans, B. (2023, 2024). Microbial Processes for Biobased Circular Economy: Chapter 7 Sulphur Management & Recovery. 

Huang, C., Liu, Q., Li, Z.-L., Ma, X., Hou, Y.-N., Ren, N.-Q., & Wang, A.-J. (2021). Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions. Water Research, 188, 116526. https://doi.org/10.1016/j.watres.2020.116526 

Huang, S., Yu, D., Chen, G., Wang, Y., Tang, P., Liu, C., Tian, Y., & Zhang, M. (2021). Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. Chemosphere, 278, 130413. https://doi.org/10.1016/j.chemosphere.2021.130413 

Hvitved-Jacobsen, T., Vollertsen, J., & Nielsen, A. H. (2013). Chapter 3: Microbiology in Sewer Networks. In Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks, Second Edition (0 ed., pp. 75–105). CRC Press. https://doi.org/10.1201/b14666 

Jahn, A., & Nielsen, P. H. (1998). Cell biomass and exopolymer composition in sewer biofilms. Water Science and Technology, 37(1). https://doi.org/10.1016/S0273-1223(97)00751-8 

Jiang, F., Chen, Y., Mackey, H. R., Chen, G. H., & Van Loosdrecht, M. C. M. (2011). Urine nitrification and sewer discharge to realize in-sewer denitrification to simplify sewage treatment in Hong Kong. Water Science and Technology, 64(3), 618–626. https://doi.org/10.2166/wst.2011.491 

Jiang, F., Liang, Z.-S., Peng, G.-L., Qian, J., & Chen, G.-H. (2013a). Nitrogen removal capacity of simultaneously autotrophic and heterotrophic denitrification in a sewer receiving nitrified source-separated urine. Water Practice and Technology, 8(1), 33–40. https://doi.org/10.2166/wpt.2013.005 

Jiang, F., Liang, Z.-S., Peng, G.-L., Qian, J., & Chen, G.-H. (2013b). Nitrogen removal capacity of simultaneously autotrophic and heterotrophic denitrification in a sewer receiving nitrified source-separated urine. Water Practice and Technology, 8(1), 33–40. https://doi.org/10.2166/wpt.2013.005 105 

Jiang, G., Gutierrez, O., Sharma, K. R., & Yuan, Z. (2010). Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Water Research, 44(14), 4241– 4251. https://doi.org/10.1016/j.watres.2010.05.030 

Jiang, G., Sun, J., Sharma, K. R., & Yuan, Z. (2015). Corrosion and odor management in sewer systems. Current Opinion in Biotechnology, 33, 192–197. https://doi.org/10.1016/j.copbio.2015.03.007 

Jimenez, J., Bott, C., Love, N., & Bratby, J. (2015). Source Separation of Urine as an Alternative Solution to Nutrient Management in Biological Nutrient Removal Treatment Plants. Water Environment Research, 87(12), 2120–2129. https://doi.org/10.2175/106143015X14212658613884 

Jin, P., Shi, X., Sun, G., Yang, L., Cai, Y., & Wang, X. C. (2018). Co-Variation between Distribution of Microbial Communities and Biological Metabolization of Organics in Urban Sewer Systems. Environmental Science & Technology, 52(3), 1270–1279. https://doi.org/10.1021/acs.est.7b05121 

Kalogo, Y., & Verstraete, W. (1999). Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment: Motives and perspectives. World Journal of Microbiology and Biotechnology, 15(5), 523–534. https://doi.org/10.1023/A:1008950121308 

Kang, J.-H., Namgung, H.-G., Cho, J.-I., Yoo, S. S., Lee, B.-J., & Ji, H. W. (2020). Removal of Hydrogen Sulfide in Septic Tanks for Treating Black Water via an Immobilized Media of Sulfur-Oxidizing Bacteria. International Journal of Environmental Research and Public Health, 17(3), 684. https://doi.org/10.3390/ijerph17030684 

Kleerebezem, R., & Mendezà, R. (2002). Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Science and Technology, 45(10), 349– 356. https://doi.org/10.2166/wst.2002.0368 

Knowles, R. (1982). Denitrification. Microbiological Reviews, 46(1), 43–70. https://doi.org/10.1128/mr.46.1.43-70.1982 106 Koenig, A., & Liu, L. (2004). Autotrophic Denitrification of High–Salinity Wastewater Using Elemental Sulfur: Batch Tests. Water Environment Research, 76(1), 37–46. https://doi.org/10.2175/106143004X141564 

Kou, Z., Huo, P., Qi, X., Gu, Y., Huang, X., & Liang, P. (2024). Effect of dissolved oxygen on sulfur autotrophic denitrification and how to address it: An experimental and modelling work. Water Research, 267, 122415. https://doi.org/10.1016/j.watres.2024.122415 

Lan, L., Zhao, J., Wang, S., Li, X., Qiu, L., Liu, S., & Bin Nasry, A. A. N. (2019). NO and N2O accumulation during nitrite-based sulfide-oxidizing autotrophic denitrification. Bioresource Technology Reports, 7, 100190. https://doi.org/10.1016/j.biteb.2019.100190 

Larsen, T. A., Riechmann, M. E., & Udert, K. M. (2021). State of the art of urine treatment technologies: A critical review. Water Research X, 13, 100114. https://doi.org/10.1016/j.wroa.2021.100114 

Li, W., Zheng, T., Ma, Y., & Liu, J. (2019). Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations. Science of The Total Environment, 695, 133815. https://doi.org/10.1016/j.scitotenv.2019.133815 

Li, Y., Liu, L., & Wang, H. (2022). Mixotrophic denitrification for enhancing nitrogen removal of municipal tailwater: Contribution of heterotrophic/sulfur autotrophic denitrification and bacterial community. Science of The Total Environment, 814, 151940. https://doi.org/10.1016/j.scitotenv.2021.151940 

Liang, Z., Sun, J., Zhan, C., Wu, S., Zhang, L., & Jiang, F. (2020a). Effects of sulfide on mixotrophic denitrification by Thauera -dominated denitrifying sludge. Environmental Science: Water Research & Technology, 6(4), 1186–1195. https://doi.org/10.1039/C9EW01014A 

Liang, Z., Sun, J., Zhan, C., Wu, S., Zhang, L., & Jiang, F. (2020b). Effects of sulfide on mixotrophic denitrification by Thauera -dominated denitrifying sludge. Environmental Science: Water Research & Technology, 6(4), 1186–1195. https://doi.org/10.1039/C9EW01014A 107 

Libralato, G., Volpi Ghirardini, A., & Avezzù, F. (2012). To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management. Journal of Environmental Management, 94(1), 61–68. https://doi.org/10.1016/j.jenvman.2011.07.010 

Lin, H.-W., Rabaey, K., Keller, J., Yuan, Z., & Pikaar, I. (2015). Scaling-Free Electrochemical Production of Caustic and Oxygen for Sulfide Control in Sewers. Environmental Science & Technology, 49(19), 11395–11402. https://doi.org/10.1021/acs.est.5b02188 

Lu, H., Chandran, K., & Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Research, 64, 237–254. https://doi.org/10.1016/j.watres.2014.06.042 

Lu, H., Huang, H., Yang, W., Mackey, H. R., Khanal, S. K., Wu, D., & Chen, G.-H. (2018a). Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification. Water Research, 133, 165–172. https://doi.org/10.1016/j.watres.2018.01.022 Lu, H., 

Huang, H., Yang, W., Mackey, H. R., Khanal, S. K., Wu, D., & Chen, G.-H. (2018b). Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification. Water Research, 133, 165–172. https://doi.org/10.1016/j.watres.2018.01.022 

Malik, M. A. (n.d.). 1.7: Density and Specific Gravity Measurements. Chemistry LibreTexts. 1.7: Density and specific gravity measurements - Chemistry LibreTexts Manconi, I., Carucci, A., & Lens, P. (2007). Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system. Biotechnology and Bioengineering, 98(3), 551–560. https://doi.org/10.1002/bit.21383 

Maurer, M., Rothenberger, D., & Larsen, T. A. (2005). Decentralised wastewater treatment technologies from a national perspective: At what cost are they competitive? Water Supply, 5(6), 145–154. https://doi.org/10.2166/ws.2005.0059 

Metcalf, & Eddy. (2014). Chapter 7: Fundamentals of Biological Treatment. In G. Tchobanoglous, D. H. Stensel, R. Tsuchihashi, F. Burton, M. Abu-Orf, G. Bowden, W. Pfrang, Metcalf & Eddy, Inc, & 108 Albert Einstein College of Medicine (Eds.), Wastewater engineering: Treatment and resource recovery (Fifth Edition). McGraw-Hill Education. 

Mohanakrishnan, J., Gutierrez, O., Sharma, K. R., Guisasola, A., Werner, U., Meyer, R. L., Keller, J., & Yuan, Z. (2009). Impact of nitrate addition on biofilm properties and activities in rising main sewers. Water Research, 43(17), 4225–4237. https://doi.org/10.1016/j.watres.2009.06.021 

Möhle, R. B., Langemann, T., Haesner, M., Augustin, W., Scholl, S., Neu, T. R., Hempel, D. C., & Horn, H. (2007). Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Biotechnology and Bioengineering, 98(4), 747–755. https://doi.org/10.1002/bit.21448 

Muller, Inc. (2024). Gravity Sewer Mains & How They Work. Muller. Oh, J., & Silverstein, J. (1999). Acetate Limitation and Nitrite Accumulation during Denitrification. Journal of Environmental Engineering, 125(3), 234–242. https://doi.org/10.1061/(ASCE)0733- 9372(1999)125:3(234) 

Oh, S.-E., Kim, K.-S., Choi, H.-C., Cho, J., & Kim, I. S. (2000). Kinetics and physiological characteristics of autotrophic dentrification by denitrifying sulfur bacteria. Water Science and Technology, 42(3–4), 59–68. https://doi.org/10.2166/wst.2000.0359 

Oosterhuis, M., & Van Loosdrecht, M. C. M. (2009). Nitrification of urine for H2S control in pressure sewers. Water Practice and Technology, 4(3), wpt2009059. https://doi.org/10.2166/wpt.2009.059 

Otterpohl, R., Braun, U., & Oldenburg, M. (2004). Innovative technologies for decentralised water-, wastewater and biowaste management in urban and peri-urban areas. Water Science and Technology, 48(11–12), 23–32. https://doi.org/10.2166/wst.2004.0795 

Paing, J., Picot, B., Sambuco, J. P., & Rambaud, A. (2000). Sludge accumulation and methanogenic activity in an anaerobic lagoon. Water Science and Technology, 42(10–11), 247–255. https://doi.org/10.2166/wst.2000.0654 109 

Pan, Y., Ye, L., & Yuan, Z. (2013). Effect of H2S on N2O Reduction and Accumulation during Denitrification by Methanol Utilizing Denitrifiers. Environmental Science & Technology, 47(15), 8408–8415. https://doi.org/10.1021/es401632r Pang, Y., Hu, L., & Wang, J. (2022). 

Mixotrophic denitrification using pyrite and biodegradable polymer composite as electron donors. Bioresource Technology, 351, 127011. https://doi.org/10.1016/j.biortech.2022.127011 

Park, K., Lee, H., Phelan, S., Liyanaarachchi, S., Marleni, N., Navaratna, D., Jegatheesan, V., & Shu, L. (2014). Mitigation strategies of hydrogen sulphide emission in sewer networks – A review. International Biodeterioration & Biodegradation, 95, 251–261. https://doi.org/10.1016/j.ibiod.2014.02.013 

Peirano, C., Guerrero, L., Barahona, A., Montalvo, S., Huiliñir, C., Da Silva, C., & Borja, R. (2020). Assessment of simultaneous autotrophic–heterotrophic denitrification with high removal of nitrogen, sulfur and carbon: Optimization through response surface methodology. Journal of Chemical Technology & Biotechnology, 95(3), 631–638. https://doi.org/10.1002/jctb.6244 

Phscale Core Team. (2024, June 4). The Importance of pH in Sewage Water Treatment. The Importance of pH in Sewage Water Treatment. https://phscale.org/water-ph/ph-of-sewage[1]water/ 

Pikaar, I., Flugen, M., Lin, H.-W., Salehin, S., Li, J., Donose, B. C., Dennis, P. G., Bethke, L., Johnson, I., Rabaey, K., & Yuan, Z. (2019). Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control. Water Research, 167, 115032. https://doi.org/10.1016/j.watres.2019.115032 

Pikaar, I., Li, E., Rozendal, R. A., Yuan, Z., Keller, J., & Rabaey, K. (2012). Long-term field test of an electrochemical method for sulfide removal from sewage. Water Research, 46(9), 3085–3093. https://doi.org/10.1016/j.watres.2012.03.013 

Randall, D. G., & Naidoo, V. (2018). Urine: The liquid gold of wastewater. Journal of Environmental Chemical Engineering, 6(2), 2627–2635. https://doi.org/10.1016/j.jece.2018.04.012 110 

Ren, D., Zuo, Z., Xing, Y., Ji, P., Yu, T., Zhu, D., Liu, Y., & Huang, X. (2022). Simultaneous control of sulfide and methane in sewers achieved by a physical approach targeting dominant active zone in sediments. Water Research, 211, 118010. https://doi.org/10.1016/j.watres.2021.118010 

Reyes-Avila, J., Razo-Flores, E., & Gomez, J. (2004). Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Research, 38(14–15), 3313–3321. https://doi.org/10.1016/j.watres.2004.04.035 

Rocher, V., Laverman, A. M., Gasperi, J., Azimi, S., Guérin, S., Mottelet, S., Villières, T., & Pauss, A. (2015). Nitrite accumulation during denitrification depends on the carbon quality and quantity in wastewater treatment with biofilters. Environmental Science and Pollution Research, 22(13), 10179–10188. https://doi.org/10.1007/s11356-015-4196-1 

Roothans, N., Van Loosdrecht, M. C. M., & Laureni, M. (2025). Metabolic labour division trade-offs in denitrifying microbiomes. The ISME Journal, 19(1), wraf020. https://doi.org/10.1093/ismejo/wraf020 

Salehi, R., & Chaiprapat, S. (2022). Predicting H2S emission from gravity sewer using an adaptive neuro-fuzzy inference system. Water Quality Research Journal, 57(1), 20–39. https://doi.org/10.2166/wqrj.2021.018 Sharma, E., Sivakumar, M., Kelso, C., Zhang, S., Shi, J., Gao, J., Gao, S., Zhou, X., & Jiang, G. (2023). Effects of sewer biofilms on the degradability of carbapenems in wastewater using laboratory scale bioreactors. Water Research, 233, 119796. https://doi.org/10.1016/j.watres.2023.119796 

Shen, Q., Fangying, J., Jiazhi, W., Dexin, F., Qian, Z., Lei, J., Anrong, C., & Li, K. (2020). The influence mechanism of temperature on solid phase denitrification based on denitrification performance, carbon balance, and microbial analysis. Smets, I. (2024, 2025). Wastewater Treatment Technology Biodegradation: Carbon and nutrient removal. 111 Soliman, M., & Eldyasti, A. (2018). Ammonia-Oxidizing Bacteria (AOB): Opportunities and applications—a review. Reviews in Environmental Science and Bio/Technology, 17(2), 285– 321. https://doi.org/10.1007/s11157-018-9463-4 Stewart, P. S. (2003). Diffusion in Biofilms. Journal of Bacteriology, 185(5), 1485–1491. https://doi.org/10.1128/JB.185.5.1485-1491.2003 

Sun, J., Hu, S., Sharma, K. R., Ni, B.-J., & Yuan, Z. (2014). Stratified Microbial Structure and Activity in Sulfide- and Methane-Producing Anaerobic Sewer Biofilms. Applied and Environmental Microbiology, 80(22), 7042–7052. https://doi.org/10.1128/AEM.02146-14 

Sun, J., Hu, S., Sharma, K. R., Ni, B.-J., & Yuan, Z. (2015). Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities. Water Research, 69, 80–89. https://doi.org/10.1016/j.watres.2014.11.004 

Sun, Q., Fang, Y.-K., Liu, W.-Z., Xie, N., Dong, H., Guadie, A., Liu, Y., Cheng, H.-Y., & Wang, A.-J. (2023). Synergistic between autotrophic and heterotrophic microorganisms for denitrification using bio-S as electron donor. Environmental Research, 231, 116047. https://doi.org/10.1016/j.envres.2023.116047 

Sun, Y., & Nemati, M. (2012). Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresource Technology, 114, 207–216. https://doi.org/10.1016/j.biortech.2012.03.061 

Sutherland-Stacey, L. (n.d.). Research Employee DCM Process Control Ltd. PO Box 113233 Newmarket Auckland 1149, New Zealand phone: + 64 9 520 3774 fax: + 64 9 520 3779 email: Nzoffice@ dcmprocesscontrol.com www.dcmprocesscontrol.com. 

Talaiekhozani, A., Bagheri, M., Goli, A., & Talaei Khoozani, M. R. (2016). An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. Journal of Environmental Management, 170, 186–206. https://doi.org/10.1016/j.jenvman.2016.01.021 112 

Team Economie en Nematoden, Biological Recovery & Re-use Technology, WIMEK, Vijn, M., & Weijma, J. (2020). Menselijke urine als meststof voor eetbare planten: Inzameling, medicijnresten, wet- en regelgeving en maatschappelijke acceptatie. Wageningen University & Research, Wetenschapswinkel. https://doi.org/10.18174/516515 

Terpstra, P. M. J. (1999). Sustainable water usage systems: Models for the sustainable utilization of domestic water in urban areas. Water Science and Technology, 39(5), Fit. https://doi.org/10.1016/S0273-1223(99)00088-8 

Udert, K., & Jenni, S. (2013). Chapter 20: Biological nitrogen conversion processes. In J. Lienert (Ed.), Source Separation and Decentralization for Wastewater Management (pp. 291–302). 

IWA Publishing. Udert, K., & Lienert, J. (Eds.). (2013). Chapter 17: Wastewater composition. In E. Friedler, D. Buttler, & Y. Alfiya, Source Separation and Decentralization for Wastewater Management (pp. 241–254). IWA Publishing. Verma, S., Kuila, A., & Jacob, S. (2023). Role of Biofilms in Waste Water Treatment. Applied Biochemistry and Biotechnology, 195(9), 5618–5642. https://doi.org/10.1007/s12010-022- 04163-5 

VMM. (n.d.). Indicator influent- en effluentvrachten van RWZI’s Toestan, grafieken en evolutie doorheen de jaren. Vlaamse Milieumaatschappij (VMM). https://vmm.vlaanderen.be/feiten[1]cijfers/water/riolering-en-waterzuiv…;

VMM. (2024). Watergebruik door huishoudens. https://www.vmm.be/publicaties/watergebruik-door[1]huishoudens 

Wang, D., Xu, S., Jiang, C., Wang, X., Yang, D., Kuai, B., & Zhuang, X. (2023). The effects, mechanisms, and applications of sulfide as both an inhibitor and electron donor in novel biological nitrogen removal process. Science of The Total Environment, 894, 164784. https://doi.org/10.1016/j.scitotenv.2023.164784 113 

Wang, H., Chen, N., Feng, C., & Deng, Y. (2021). Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources. Science of The Total Environment, 780, 146521. https://doi.org/10.1016/j.scitotenv.2021.146521 

Wang, S., Zhu, H., Zheng, G., Dong, F., & Liu, C. (2022). Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions. Applied and Environmental Microbiology, 88(22), e01072-22. https://doi.org/10.1128/aem.01072-22 

Wang, T., Guo, Z., Shen, Y., Cui, Z., & Goodwin, A. (2020). Accumulation mechanism of biofilm under different water shear forces along the networked pipelines in a drip irrigation system. Scientific Reports, 10(1), 6960. https://doi.org/10.1038/s41598-020-63898-5 

Wang, X., Wang, W., Zhang, Y., Zhang, J., Li, J., Wang, S., & Chen, G. (2019). Isolation and characterization of Acinetobacter sp. JQ1004 and evaluation of its inhibitory kinetics by free ammonia. Desalination and Water Treatment, 147, 316–325. https://doi.org/10.5004/dwt.2019.23757 

Weissenberger, J. (2002). Betonkorrosion ein Forschungprojekt aus Norwegen. Schwefelwasserstroff in Abwassersystemen. https://link.springer.com/content/pdf/10.1007/s00506-012-0380- 4.pdf?pdf=inline%20link 

Withers, P. J., Jordan, P., May, L., Jarvie, H. P., & Deal, N. E. (2014). Do septic tank systems pose a hidden threat to water quality? Frontiers in Ecology and the Environment, 12(2), 123–130. https://doi.org/10.1890/130131 

World Health Organisation. (2024). Guidelines for safe recreational water environments: Volume 1. Coastal and fresh waters (No. WHO/HEP/ECH/WASH/2024.3). World Health Organization. https://iris.who.int/bitstream/handle/10665/376869/9789240094703-eng.pd… Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037. https://doi.org/10.1016/j.watres.2011.11.080 114 

Xu, G., Feng, C., Fang, F., Chen, S., Xu, Y., & Wang, X. (2015). The heterotrophic-combined-with[1]autotrophic denitrification process: Performance and interaction mechanisms. https://doi.org/doi.org/10.2166/wst.2015.097 

Xu, G., Peng, J., Feng, C., Fang, F., Chen, S., Xu, Y., & Wang, X. (2015). Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis. Applied Microbiology and Biotechnology, 99(15), 6527–6536. https://doi.org/10.1007/s00253-015-6532-2 

Xu, J., Yang, L., & Zhou, X. (2023). A systematical review of blackwater treatment and resource recovery: Advance in technologies and applications. Resources, Conservation and Recycling, 197, 107066. https://doi.org/10.1016/j.resconrec.2023.107066 

Xu, Z., Chen, X., Li, H., Wan, D., & Wan, J. (2020). Combined heterotrophic and autotrophic system for advanced denitrification of municipal secondary effluent in full-scale plant and bacterial community analysis. Science of The Total Environment, 717, 136981. https://doi.org/10.1016/j.scitotenv.2020.136981 

Yang, G., Xu, Q., Wang, D., Tang, L., Xia, J., Wang, Q., Zeng, G., Yang, Q., & Li, X. (2018). Free ammonia[1]based sludge treatment reduces sludge production in the wastewater treatment process. Chemosphere, 205, 484–492. https://doi.org/10.1016/j.chemosphere.2018.04.140 

Yu, C., Qiao, S., & Zhou, J. (2023). Sulfide-driven nitrous oxide recovery during the mixotrophic denitrification process. Journal of Environmental Sciences, 125, 443–452. https://doi.org/10.1016/j.jes.2021.12.003 

Yuan, Y., Bian, A., Chen, F., Xu, X., Huang, C., Chen, C., Liu, W., Cheng, H., Chen, T., Ding, C., Li, Z., & Wang, A. (2019). Continuous sulfur biotransformation in an anaerobic-anoxic sequential batch reactor involving sulfate reduction and denitrifying sulfide oxidization. Chemosphere, 234, 568–578. https://doi.org/10.1016/j.chemosphere.2019.06.109 

Zhan, M., Zeng, W., Wu, C., Chen, G., Meng, Q., Hao, X., & Peng, Y. (2024). Impact of organic carbon on sulfide-driven autotrophic denitrification: Insights from isotope fractionation and 115 functional genes. Water Research, 255, 121507. https://doi.org/10.1016/j.watres.2024.121507 

Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., & Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Research, 42(1–2), 1–12. https://doi.org/10.1016/j.watres.2007.07.013 

Zhang, L., Keller, J., & Yuan, Z. (2009). Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Research, 43(17), 4123–4132. https://doi.org/10.1016/j.watres.2009.06.013 

Zhang, Z., Zhang, C., Yang, Y., Zhang, Z., Tang, Y., Su, P., & Lin, Z. (2022). A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. Journal of Cleaner Production, 376, 134109. https://doi.org/10.1016/j.jclepro.2022.134109 

Zhou, Y., Pijuan, M., & Yuan, Z. (2007). Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms. Biotechnology and Bioengineering, 98(4), 903–912. https://doi.org/10.1002/bit.21458 

Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533–616. https://doi.org/10.1128/mmbr.61.4.533-616.1997

Download scriptie (2.16 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2025
Promotor(en)
Benjamin Horemans en Siegfried Vlaeminck
Thema('s)