Scriptiebank overzicht

De Vlaamse Scriptiebank is een vrij toegankelijke online databank. Het bevat intussen al meer dan 8.000 artikels en volledige scripties van bachelor- en masterstudenten die sinds 2002 hebben deelgenomen aan de Vlaamse Scriptieprijs.

Spatiotemporal modelling of air temperature over European cities using machine learning

Universiteit Gent
2024
Jonas
Blancke
Klimaatmodellen voorspellen dat de temperatuur wereldwijd zal blijven stijgen, samen met een toename van de intensiteit en frequentie van hittegolven. Daarbovenop krijgen steden te maken met extra opwarming door het stedelijk hitte-eilandeffect. Met een groeiende stedelijke bevolking, waaronder veel kwetsbare mensen, is het van cruciaal belang om effectieve mitigatiemaatregelen te implementeren om hittestress te verminderen. Hiervoor is temperatuurdata op hoge resolutie noodzakelijk.

Vaak worden numerieke modellen gebruikt om deze data te verkrijgen, maar deze zijn
computationeel zeer intensief, waardoor het moeilijk is om hoge resolutie data te verkrijgen over lange periodes en grote gebieden. Een computationeel goedkoop alternatief voor numerieke modellen zijn statistische modellen, vaak gebaseerd op machine learning technieken. Deze simuleren de temperatuur op basis van datagedreven relaties. De huidige machine learning modellen zijn echter meestal afgestemd op een enkele stad of een beperkte regio, wat resulteert in slechte prestaties voor steden met verschillende karakteristieken. Deze thesis onderzoekt de mogelijkheden om een machine learning model te ontwikkelen dat kan worden toegepast op steden over heel Europa.

De studie gebruikt ruimtelijke en temporele variabelen om een machine learning emulator van het numerieke UrbClim model te construeren. Daarnaast wordt het effect van het aantal steden in de trainingsset bestudeerd. Dit is cruciaal omdat grote datasets met numerieke trainingsdata, zoals die beschikbaar zijn gesteld voor UrbClim, vaak ontoegankelijk of rekenkundig te duur zijn om te verkrijgen
Meer lezen

Neural Tree Distillation to explain Deep Reinforcement Learning Policies

Vrije Universiteit Brussel
2021
Senne
Deproost
Genomineerde longlist mtech+prijs
Hoe kan je binnenkijken in het digitale brein van een AI? Dit werk focust zich op Explainable Artificial Intelligence (XAI) en een techniek om het gedrag van een Deep Reinforcement Learning (DRL) agent over te brengen naar een meer interpreteerbaar model. We verbeteren een recente techniek, dat van neurale bomen in combinatie met knowledge distillation, met een adaptieve vorm die ons kleinere en beter verstaanbare modellen oplevert.
Meer lezen

Vaak voorkomende problemen in het woninghuurrecht

Hogeschool PXL
2020
Goele
Bormans
In de praktijk neemt de interesse in “het samenwonen met meerdere personen in één en dezelfde woning” fors toe. Dit is voornamelijk te wijten aan het feit dat het alleen huren van een appartement of woning op financieel vlak vaak niet haalbaar is door de hoge huurkosten. Op juridisch vlak kan dit dan uiteraard ook voor huurrechtelijke problemen zorgen. In deze scriptie wordt er dan ook dieper ingegaan op de pijnpunten en wordt er gezocht naar eventuele oplossingen.
Meer lezen

Building a real estate spatial price prediction model for a web portal.

Universiteit Gent
2015
Kasper
Van Lombeek
Kan een algoritme elk huis in Vlaanderen schatten?Vastgoed wordt in België voornamelijk geschat op basis van intuïtie en ervaring. Vaak lijken deze schattingen giswerk. In tegenstelling tot andere vakgebieden, wordt statistiek hierbij nog maar zelden gebruikt. Tegenwoordig is er echter data in overvloed, en zijn analytische algoritmes efficiënter dan ooit.
Meer lezen