Bouwen op Mars: geopolymeren van in situ grondstoffen

Jasper
Vitse

Het leven elders dan op Aarde mogelijk maken is één van de doelen van de Amerikaanse ruimtevaartorganisatie NASA. Toekomstige bemande missies naar Mars zullen het noodzakelijk maken om gebouwen en structuren te construeren met behulp van in situ natuurlijke grondstoffen. Deze studie richt zich op de geopolymerisatie van de gesimuleerde Mars ruwe grondstof MGS-1 (Mars Global Simulant), met als doel structuren op Mars te bouwen.

Onze planeet Aarde heeft reeds te maken met een handvol problemen. De exponentiële bevolkingsgroei, klimaatveranderingen, toenemende vervuiling en risico’s voor pandemieën vormen een bedreiging voor de mensheid. De uitbraak van COVID-19 is een actueel voorbeeld hiervan. Daarnaast heeft de mensheid meer en meer interesse in ruimtereizen en manieren om de ruimte te ontdekken. Zo werd afgelopen zomer, meer bepaald op 20 juli 2021, de eerste toeristische ruimtevlucht met succes uitgevoerd door het ruimtevaartbedrijf Blue Origin.

Vooraleer het mogelijk is om een verre reis naar Mars te maken, is het voorbereidende werk cruciaal om deze doelstellingen succesvol te kunnen volbrengen. De ruimtereis is namelijk niet zonder risico en zal met de toenemende evolutie van de technologie steeds haalbaarder vooropgesteld worden. Eens toegekomen op de planeet Mars, moet er een mogelijkheid zijn om daar te kunnen overleven. Vandaar dat dit onderzoek eerst bestudeert wat de atmosferische condities zijn op deze planeet. Verder wordt een tweede piste ingeslagen, namelijk het ontwerp van bouwmaterialen. Deze materialen moeten duurzaam zijn en voldoen aan de extreem lage temperaturen en drukken. Zo zal het bouwen met energie-efficiëntie toepassingen en het gebruik van duurzame materialen niet over het hoofd mogen gezien worden. 

De planeet Mars wordt door reeds voorgaand onderzoek uitgesproken als de meest haalbare kaart voor potentieel leven van de mensheid op een plaats elders dan op Aarde. Natriumhydroxide, lithiumhydroxide en natriumsilicaat worden in dit onderzoek gebruikt als alkali activatoren voor het geopolymerisatieproces. Naast MGS-1 wordt metakaolien gebruikt als additief om de hoeveelheid Al2O3 van de geopolymeerprecursor te verhogen. Door de hoge fijnheid en specifieke oppervlakte van metakaolien zal een betere reactiviteit en hogere densiteit van de geopolymeermatrix bekomen worden.

Door de alkaliconcentraties te variëren in een bereik van 6M tot 12M en de mechanische en chemische eigenschappen te analyseren, zal het meest optimale geopolymeermengsel worden bepaald. Tijdens dit onderzoek worden zowel kubusvormige als cilindrische geopolymeermonsters getest. De bedoeling van deze geproduceerde geopolymeren is om deze te karakteriseren op een chemische en mechanische wijze via laboratoriumtesten. De chemische karakterisering gebeurt door de analyse van de verschillende microstructuren en de samenstelling van de functionele groepen in de moleculen. Voor de mechanische karakterisering wordt de druksterkte van de geopolymeren opgemeten.

Na zeven dagen uitharden in de oven op 70 °C behaalde de geopolymeersamenstelling van 8M LiOH.H2O + 7.5 g NaOH de beste resultaten in termen van druksterkte. De cilindrische geopolymeren behalen een druksterkte van 30 ± 2 MPa. De FTIR (Fourier Transform Infrared Spectroscopy) analyse voor geopolymeren met de hoogste druksterkte toont drie verschillende pieken volgens het golflengtespectrum. De eerste twee pieken bij golflengtes van 3350 cm-1  en 1630 cm-1 houden respectievelijk verband met de rektrillingen van -OH groepen en watermoleculen. De piek die waargenomen wordt bij een golflengte van 967 cm-1 vertegenwoordigt de Si-O-Si asymmetrische rektrillingen in het geopolymeermengsel.

Deze geopolymeren met hoge sterkte geven de mogelijkheid voor gebruik in structurele doeleinden. Uit het onderzoek blijkt dat lithiumhydroxide beter presteert dan natriumhydroxide. Dit biedt verdere mogelijkheden voor de optimalisatie van het mengselontwerp met lithiumhydroxide om nog betere mechanische eigenschappen te verkrijgen.

Bibliografie

Adachi, H., Uchida, K. I., Saitoh, E., & Maekawa, S. (2013). Theory of the spin Seebeck effect. Reports on Progress in Physics76(3), 036501.

Albert, M. J. (2020). The dangers of decoupling: earth system crisis and the ‘Fourth Industrial Revolution’. Global Policy11(2), 245-254.

Aleem, M. A., & Arumairaj, P. D. (2012). Geopolymer concrete–a review. International journal of engineering sciences & emerging technologies1(2), 118-122.

Alexiadis, A., Alberini, F., & Meyer, M. E. (2017). Geopolymers from lunar and Martian soil simulants. Advances in Space Research59(1), 490-495.

Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials15, e00733.

Arioz, E., Arioz, Ö., & Koçkar, Ö. M. (2013). The effect of curing conditions on the properties of geopolymer samples. International Journal of Chemical Engineering and Applications4(6), 423.

Aryal, N., Chen, J., Bhattarai, K., Hennrich, O., Handayani, I., Kramer, M., ... & Gross, H. (2022). High Plasticity of the Amicetin Biosynthetic Pathway in Streptomyces sp. SHP 22-7 Led to the Discovery of Streptcytosine P and Cytosaminomycins F and G and Facilitated the Production of 12F-Plicacetin. Journal of Natural Products85(3), 530-539.

Ashbrook, J. (1953). A new determination of the rotation period of the planet Mars. The Astronomical Journal58, 145.

Atiş, C. D., Görür, E. B., Karahan, O. K. A. N., Bilim, C., İlkentapar, S. E. R. H. A. N., & Luga, E. (2015). Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Construction and building materials96, 673-678.

Atkin, B., & Skitmore, M. (2008). Stakeholder management in construction. Construction management and economics26(6), 549-552.

Aupoil, J., Champenois, J. B., de Lacaillerie, J. B. D. E., & Poulesquen, A. (2019). Interplay between silicate and hydroxide ions during geopolymerization. Cement and Concrete Research115, 426-432.

Baker, C. L., Jue, L. R., & Wills, J. H. (1950). The system Na2O-SiO2-H2O at 50, 70 and 90°. Journal of the American Chemical Society72(12), 5369-5382.

Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and concrete research35(4), 658-670.

Barrer, R. M. (1982). Hydrothermal chemistry of zeolites. Academic press.

Bassil, N. M., Bewsher, A. D., Thompson, O. R., & Lloyd, J. R. (2015). Microbial degradation of cellulosic material under intermediate-level waste simulated conditions. Mineralogical Magazine79(6), 1433-1441.

Bell, J. L., Sarin, P., Provis, J. L., Haggerty, R. P., Driemeyer, P. E., Chupas, P. J., van Deventer, J. S. J., Kriven, W. M. (2008) Atomic structure of a cesium aluminosilicate geopolymer : A pair distribution function study, Chemistry of Materials, 20(14), 4768-4776. doi:10.1021/cm703369s.

Bernal, S. A., Provis, J. L., Mejía de Gutiérrez, R., & van Deventer, J. S. (2015). Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Materials and Structures48(3), 653-669.

Bernal, S. A., van Deventer, J. S., & Provis, J. L. (2015). What happens to 5 year old metakaolin geopolymers’ the effect of alkali cation. In Calcined Clays for Sustainable Concrete (pp. 315-321). Springer, Dordrecht.

Bish, D. L., Blake, D. F., Vaniman, D. T., Chipera, S. J., Morris, R. V., Ming, D. W., ... & Gaboriaud, A. (2013). X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale crater. science341(6153), 1238932.

Boeder, P. A., & Soares, C. E. (2020, August). Mars 2020: mission, science objectives and build. In Systems Contamination: Prediction, Control, and Performance 2020 (Vol. 11489, p. 1148903). SPIE.

Cannon, K. M., Britt, D. T., Smith, T. M., Fritsche, R. F., & Batcheldor, D. (2019). Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants. Icarus317, 470-478.

Carlile, M. J., Watkinson, S. C., & Gooday, G. W. (2001). The fungi. Gulf Professional Publishing.

Certini, G., Karunatillake, S., Zhao, Y. Y. S., Meslin, P. Y., Cousin, A., Hood, D. R., & Scalenghe, R. (2020). Disambiguating the soils of mars. Planetary and Space Science186, 104922.

Chakraborty, S. (2019). Geopolymerization of Simulated Martian Soil (Doctoral dissertation, Tennessee Technological University).

Chen, C., Li, Q., Shen, L., & Zhai, J. (2012). Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Environmental technology33(11), 1313-1321.

Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments–a review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials279, 122496.

Chinyio, E., Singh, S., & Suresh, S. (2022). A review of stakeholder management in construction. Research Companion to Construction Economics, 422-444.

Christensen, T. H. (2011). Introduction to waste management. In Solid Waste Technology and Management (pp. 3-16). Wiley.

Cleland, D. I. (1995). Leadership and the project-management body of knowledge. International Journal of Project Management13(2), 83-88.

Cohen-Adad, R., Tranquard, A., Peronne, R., Negri, P., & Rollet, A. P. (1960). Le systeme eau-hydroxyde de sodium. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences251(19), 2035-2037.

Cortesão, M., Schütze, T., Marx, R., Moeller, R., & Meyer, V. (2020). Fungal biotechnology in space: why and how?. In Grand Challenges in Fungal Biotechnology (pp. 501-535). Springer, Cham.

Criado, M., Palomo, A., & Fernández-Jiménez, A. (2005). Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel84(16), 2048-2054.

D’Elia, A., Pinto, D., Eramo, G., Laviano, R., Palomo, A., & Fernández-Jiménez, A. (2020). Effect of alkali concentration on the activation of carbonate-high illite clay. Applied Sciences10(7), 2203.

Dadachova, E., Bryan, R. A., Huang, X., Moadel, T., Schweitzer, A. D., Aisen, P., ... & Casadevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PloS one2(5), e457.

Dass, R. S. (2017). The high probability of life on mars: a brief review of the evidence. Cosmology27, 62-73.

Davidovits, J. (1928a) The need to creat a new technical language for the transfer of basic scientific information. Transfer and Exploitation of Scientific and Technical Information, EUR7716. Luxembourg, Commission of the European Communities.

Davidovits, J. (1928b) Mineral polymers and methods of making them, U.S. Patent 4,349,386.

Davidovits, J. (1984) Synthetic mineral polymer compound of the silicoaluminates family and preparation process, U.S. Patent 4,472,199.

Davidovits, J. (1994, October). Properties of geopolymer cements. In First international conference on alkaline cements and concretes (Vol. 1, pp. 131-149). Kiev, Ukraine: Kiev State Technical University.

Davis, J. M., Balme, M., Grindrod, P. M., Williams, R. M. E., & Gupta, S. (2016). Extensive Noachian fluvial systems in Arabia Terra: Implications for early Martian climate. Geology44(10), 847-850.

Diamond, S. (1986). Particle morphologies in fly ash. Cement and Concrete Research16(4), 569-579.

Dobrijevic, M., & Bertrix, I. (2022). Les satellites de Jupiter et la troisième loi de Kepler.

Dundas, C. M., Bramson, A. M., Ojha, L., Wray, J. J., Mellon, M. T., Byrne, S., ... & Sutton, S. (2017, December). Ice exposures and landscape evolution in the Martian mid-latitudes. In AGU Fall Meeting Abstracts (Vol. 2017, pp. P52C-05).

Dupuis, R., Pellenq, R., Champenois, J. B., & Poulesquen, A. (2020). Dissociation mechanisms of dissolved alkali silicates in sodium hydroxide. The Journal of Physical Chemistry C124(15), 8288-8294.

Duxson P., Lukey, G. C., Separovic, F., Kriven W. M. and van Deventer J. S. J. (2005a) Modeling speciation in highly concentrated alkaline silicate solution. Industrial and Engineering Chemistry Research, 44, 8899-8908. doi:10.1021/ie050700i.

Duxson, P., and Provis, J. L. (2008) Designing precursors for geopolymers cements.

Journal of the American Ceramic Society, 91, 3864-3869. doi :10.1111/j.1551-2916.2008.02787.x

Duxson, P., Fernandez-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo A. and van Deventer J. S. J. (2007). ‘Geopolymer technology : the current state of the art.’ Journal of Materials Science, 42: 2917-2933.

Duxson, P., Lukey, G. C., Separovic, F. and van Deventer, J. S. J. (2005) The effect of alkali cations on aluminum incorporation in geopolymeric gels. Industrial and Engineering Chemistery Research, 44, 832-839. doi :10.1021/ie0494216.

Duxson, P., Mallicoat, S. W., Lukey, G. C., Kriven W.M. and van Deventer J. S. J. (2005). ‘Understanding the relationship between geopolymer composition, microstructure and mechanical properties.’ Colliods and Surfaces A: Physiochemical and Engineering Aspect, 269: 47-58.

Duxson, P., Mallicoatn S. W., Lukey, G. C., Kriven W. M. and van Deventer J. S. J. (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colliods and Surfaces A – Physicochemical and Engineering Aspects, 292, 8-20. doi:10.1016/j.colsurfa.2006.05.044.

Elwell, D. J., & Fu, G. (1995). Compression testing of concrete: cylinders vs. cubes (No. FHWA/NY/SR-95/119).

Fairén, A. G., Davila, A. F., Gago-Duport, L., Amils, R., & McKay, C. P. (2009). Stability against freezing of aqueous solutions on early Mars. Nature459(7245), 401-404.

Favier, A., Hot, J., Habert, G., de Lacaillerie, J. B. D. E., & Roussel, N. (2013, September). Rheology of geopolymer: comparative study between Portland cement and metakaolin based geopolymer. In 1st RILEM International Conference on Rheology and Processing of Construction Materials., RILEM Publications sarl, Paris: France (pp. 49-56).

Favier, A., Hot, J., Habert, G., Roussel, N., & de Lacaillerie, J. B. D. E. (2014). Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes. Soft Matter10(8), 1134-1141.

Feng, L., & Chen, Z. L. (2008). Research progress on dissolution and functional modification of cellulose in ionic liquids. Journal of Molecular Liquids142(1-3), 1-5.

Fernandez-Jiménez, A. and Palomo, A. (2003) Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel, 82,2259-2265. doi:10.1016/S0016-2361(03)00194-7.

Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous materials91(1-3), 111-119.

Gaboriaud, F., Nonat, A., Chaumont, D., & Craievich, A. (1999). Aggregation and gel formation in basic silico− calco− alkaline solutions studied: a SAXS, SANS, and ELS study. The Journal of Physical Chemistry B103(28), 5775-5781.

Gavezzotti, A. (2021). Organic crystal nucleation and growth: Little knowledge, much mystery. In Theoretical and Computational Chemistry (Vol. 20, pp. 201-229). Elsevier.

Gavezzotti, A. (2021). The Crystalline States of Organic Compounds (Vol. 20). Elsevier.

Golitsyn, G. S. (1971). Estimates of boundary layer parameters in the atmospheres of the terrestrial planets. In Symposium-International Astronomical Union (Vol. 40, pp. 297-303). Cambridge University Press.

Golitsyn, G. S. (1973). On the Martian dust storms. Icarus18(1), 113-119.

Golombek, M., Warner, N. H., Grant, J. A., Hauber, E., Ansan, V., Weitz, C. M., ... & Banerdt, W. B. (2020). Geology of the InSight landing site on Mars. Nature communications11(1), 1-11.

Gurvich, L. V., Bergman, G. A., Gorokhov, L. N., Iorish V. S;, Leonidov, V. Y. and Yungman, V. S. (1997) Thermodynamic properties of alkali metal hdroxides. Part 2. Potassium, rubidium, and cesium hydroxides. Journal of Physical and Chemical Reference Data, 26, 1031-1110.

Gurvich, L. V., Bergman, G. A., Gorokhov, L. N., Iorish, V. S., Leonidov, V. Y., & Yungman, V. S. (1996). Thermodynamic properties of alkali metal hydroxides. Part 1. Lithium and sodium hydroxides. Journal of Physical and Chemical Reference Data25(4), 1211-1276.

Haberle, R. M., Clancy, R. T., Forget, F., Smith, M. D., & Zurek, R. W. (Eds.). (2017). The atmosphere and climate of Mars. Cambridge University Press.

He, Y. T., Wan, J., & Tokunaga, T. (2008). Kinetic stability of hematite nanoparticles: the effect of particle sizes. Journal of nanoparticle research10(2), 321-332.

Hecht, M., Hoffman, J., Rapp, D., McClean, J., SooHoo, J., Schaefer, R., ... & Ponce, A. (2021). Mars oxygen ISRU experiment (MOXIE). Space Science Reviews217(1), 1-76.

Hos, J. P., McCormick, P. G., & Byrne, L. T. (2002). Investigation of a synthetic aluminosilicate inorganic polymer. Journal of Materials Science37(11), 2311-2316.

Howell (2022), E. Mars missions: A brief history.

Huang, Y., Gong, L., Pan, Y., Li, C., Zhou, T., & Cheng, X. (2018). Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance. RSC advances8(5), 2350-2356.

Iler, R. K., (1979). The Chemistry of Silica, John Wiley and Sons Inc., 835pp.

Ilić, B., Radonjanin, V., Malešev, M., Zdujić, M., & Mitrović, A. (2016). Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Applied Clay Science123, 173-181.

Jakosky, B.M., Haberle, R.M. (1992). "The Seasonal Behavior of Water on Mars". In Kieffer, H.H.; et al. (eds.). Mars. Tucson, AZ: University of Arizona Press. pp. 969–1016.

Johnson, F. S. (1965). Atmosphere of mars. Science150(3702), 1445-1448.

Johnson, T. E., Morrissey, L. J., Nemchin, A. A., Gardiner, N. J., & Snape, J. F. (2021). The phases of the Moon: Modelling crystallisation of the lunar magma ocean through equilibrium thermodynamics. Earth and Planetary Science Letters556, 116721.

Jones, J. M., Mason, P. E., & Williams, A. (2019). A compilation of data on the radiant emissivity of some materials at high temperatures. Journal of the Energy Institute92(3), 523-534.

Jones, J. P., Jones, S. C., Billings, K. J., Pasalic, J., Bugga, R. V., Krause, F. C., ... & Brandon, E. J. (2020). Radiation effects on lithium CFx batteries for future spacecraft and landers. Journal of Power Sources471, 228464.

Kading, B., & Straub, J. (2015). Utilising in-situ resources and 3D printing structures for a manned Mars mission. Acta Astronautica107, 317-326.

Kamps, O. M., Hewson, R. D., van Ruitenbeek, F. J. A., & van der Meer, F. D. (2020). Defining surface types of Mars using global CRISM summary product maps. Journal of Geophysical Research: Planets125(8), e2019JE006337.

Kaneco, S., Iiba, K., Hiei, N. H., Ohta, K., Mizuno, T., & Suzuki, T. (1999). Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol. Electrochimica Acta44(26), 4701-4706.

Karlsen, J. T. (2002). Project stakeholder management. Engineering Management Journal14(4), 19-24.

Karym, H., Chbihi, M. E. M., Benmokhtar, S., Belaaouad, S., & Moutaabbid, M. (2015). Caracterisation of the Kaolinite Clay Minerals (Nador-North Morocco) Using Infrared Spectroscopy and Calorimetry of Dissolution. International Journal of Recent Scientific Research6, 4444-4448.

Kass, D. M., Schofield, J. T., Kleinböhl, A., McCleese, D. J., Heavens, N. G., Shirley, J. H., & Steele, L. J. (2020). Mars Climate Sounder observation of Mars' 2018 global dust storm. Geophysical Research Letters47(23), e2019GL083931.

Kerr, R. A. (2013). "Radiation Will Make Astronauts' Trip to Mars Even Riskier". Science. 340 (6136): 1031.

Khalifa AZ, Cizer O, Pontikes Y et al. (2020) Advances in alkali-activation of clay minerals. Cement and Concrete Research 132: 106050

Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, conservation and recycling127, 221-232.

Kriven, W. M., Bell, J. L., Mallicoat, S. W., & Gordon, M. (2007). Intrinsic microstructure and properties of metakaolin-based geopolymers. In International Workshop on Geopolymer Binders-Interdependence of Composition, Structure and Properties (p. 71).

Kumaravel, S., & Girija, K. (2014). Development of high-strength Geopolymer concrete. Journal of Construction Engineering, Technology and Management4(1).

Lahoti, M., Tan, K. H., & Yang, E. H. (2019). A critical review of geopolymer properties for structural fire-resistance applications. Construction and Building Materials221, 514-526.

Laliberte, M. (2007). Model for calculating the viscosity of aqueous solutions. Journal of Chemical & Engineering Data52(2), 321-335.

Lam, L., Wong, Y. L., & Poon, C. S. (1998). Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cement and Concrete research28(2), 271-283.

Lambertin, D., Boher, C., Dannoux-Papin, A., Galliez, K., Rooses, A., & Frizon, F. (2013). Influence of gamma ray irradiation on metakaolin based sodium geopolymer. Journal of nuclear materials443(1-3), 311-315.

Larsen, S. E., Jørgensen, H. E., Landberg, L., & Tillman, J. E. (2002). Aspects of the atmospheric surface layers on Mars and Earth. Boundary-Layer Meteorology105(3), 451-470.

Lee, S., Kim, Y. J., & Moon, H. S. (2003). Energy‐Filtering Transmission Electron Microscopy (EF‐TEM) Study of a Modulated Structure in Metakaolinite, Represented by a 14 Å Modulation. Journal of the American Ceramic Society86(1), 174-176.

Lee, W. K. W., & Van Deventer, J. S. J. (2003). Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir19(21), 8726-8734.

Leovy, C. (2001). Weather and climate on Mars. Nature412(6843), 245-249.

Li, H., Meng, H., Lan, M., Zhou, J., Xu, M., Zhao, X., & Xiang, B. (2021). Development of a novel material and casting method for in situ construction on Mars. Powder Technology390, 219-229.

Li, Q., Creaser, D., & Sterte, J. (2002). An investigation of the nucleation/crystallization kinetics of nanosized colloidal faujasite zeolites. Chemistry of materials14(3), 1319-1324.

Li, X., & Gress, D. L. (2006). Mitigating Alkali–Silica Reaction in Concrete Containing Recycled Concrete Aggregate. Transportation Research Record1979(1), 30-35.

Li, Z. and Liu, S. (2007) Influence of slag as additive on compressive strenght of fly ash-based geopolymer. Journal of Materials in Civil Engineering, 19, 470-474. doi:10.1061/(ASCE)0899-1561(2007)19:6(470)

Lin, K. L., Lo, K. W., Cheng, T. W., Lin, W. T., & Lin, Y. W. (2020). Influence of SiC sludge on the microstructure of geopolymers. Materials13(9), 2203.

Lin, K. L., Lo, K. W., Cheng, T. W., Lin, W. T., & Lin, Y. W. (2020). Influence of SiC sludge on the microstructure of geopolymers. Materials13(9), 2203.

Lingyu, T., Dongpo, H., Jianing, Z. & Hongguang, W. (2021). Durability of geopolymers and geopolymer concretes: A review. REVIEWS ON ADVANCED MATERIALS SCIENCE, 60(1), 1-14.

Liu, J., Li, H., Sun, L., Guo, Z., Harvey, J., Tang, Q., ... & Jia, M. (2021). In-situ resources for infrastructure construction on Mars: A review. International Journal of Transportation Science and Technology.

Liu, J., Michalski, J. R., & Zhou, M. F. (2021). Intense subaerial weathering of eolian sediments in Gale crater, Mars. Science Advances7(32), eabh2687.

Livi, C. N., & Repette, W. L. (2017). Effect of NaOH concentration and curing regime on geopolymer. Revista IBRACON de Estruturas e Materiais10, 1174-1181.

Livi, C. N., & Repette, W. L. (2017). Effect of NaOH concentration and curing regime on geopolymer. Revista IBRACON de Estruturas e Materiais10, 1174-1181.

Lumley, J. S. (1993). The ASR expansion of concrete prisms made from cements partially replaced by ground granulated blast furnace slag. Construction and Building Materials7(2), 95-99.

MacKenzie, K. J. D., Brown, I. W. M., Meinhold, R. H., & Bowden, M. E. (1985). Outstanding problems in the kaolinite‐mullite reaction sequence investigated by 29Si and 27Al solid‐state nuclear magnetic resonance: I, metakaolinite. Journal of the American Ceramic Society68(6), 293-297.

MacKenzie, K. J., Brew, D. R., Fletcher, R. A., & Vagana, R. (2007). Formation of aluminosilicate geopolymers from 1: 1 layer-lattice minerals pre-treated by various methods: a comparative study. Journal of materials science42(12), 4667-4674.

Madavarapu, S. B. (2014). FTIR analysis of alkali activated slag and fly ash using deconvolution techniques. Arizona State University.

Majidi, B. (2009). Geopolymer technology, from fundamentals to advanced applications: a review. Materials Technology24(2), 79-87.

Masoumifard, N., Guillet‐Nicolas, R., & Kleitz, F. (2018). Synthesis of engineered zeolitic materials: from classical zeolites to hierarchical core–shell materials. Advanced Materials30(16), 1704439.

Massachusetts Institute of Technology. (2007, December 27). How Mars Could  Have Been Warm And Wet But Limestone Free. ScienceDaily. Retrieved May 9, 2022 from www.sciencedaily.com

Mesalam, R., Williams, H. R., Ambrosi, R. M., Kramer, D. P., Barklay, C. D., García-Cañadas, J., ... & Weston, D. P. (2019). Impedance spectroscopy characterization of neutron irradiated thermoelectric modules for space nuclear power. AIP Advances9(5), 055006.

Mills, J. N., Katzarova, M., & Wagner, N. J. (2022). Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization. Advances in Space Research69(1), 761-777.

Mittal, I., & Gupta, R. K. (2015). Natural resources depletion and economic growth in present era. SOCH-Mastnath Journal of Science & Technology (BMU, Rohtak)(ISSN: 0976-7312)10(3).

Mo, B. H., Zhu, H., Cui, X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied clay science99, 144-148.

Mo, B. H., Zhu, H., Cui, X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied clay science99, 144-148.

Monnin, C., & Dubois, M. (2005). Thermodynamics of the LiOH+ H2O system. Journal of Chemical & Engineering Data50(4), 1109-1113.

Montes, C., Broussard, K., Gongre, M., Simicevic, N., Mejia, J., Tham, J., ... & Davis, G. (2015). Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research56(6), 1212-1221.

Nahm, Steven. (2015). Re: What's the significance of % transmittance in FTIR?. Retrieved from:https://www.researchgate.net/post/Whats-the-significance-of-transmittan…

NASA, 2012. "Sodium hydroxide, NaOH, reacts the same as Lithium hydroxide and is much cheaper. Why NASA uses LiOH instead of NaOH on its space missions ?" eNotes Editorial

Naser, M. Z. (2019). Extraterrestrial construction materials. Progress in materials science105, 100577.

Naser, M. Z., & Chehab, A. I. (2018). Materials and design concepts for space-resilient structures. Progress in Aerospace Sciences98, 74-90.

Nath, S. K., Mukherjee, S., Maitra, S., & Kumar, S. (2017). Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry. Journal of Thermal Analysis and Calorimetry127(3), 1953-1961.

Nazari-Sharabian, M., Aghababaei, M., Karakouzian, M., & Karami, M. (2020). Water on Mars—a literature review. Galaxies8(2), 40.

Ng, L. M., & Simmons, R. (1999). Infrared spectroscopy. Analytical chemistry71(12), 343-350.

Nordberg, M. E., Mochel, E. L., Garfinkel, H. M., & Olcott, J. S. (1964). Strengthening by ion exchange. Journal of the American Ceramic Society47(5), 215-219.

Novais, R. M., Pullar, R. C., & Labrincha, J. A. (2020). Geopolymer foams: An overview of recent advancements. Progress in Materials Science109, 100621.

Novikova, N. D., Pierson, D. L., Poddubko, S. V., Deshevaya, Y. A., Ott, C. M., Castro, V. A., & Bruce, R. J. (2009). Microbiology of the international space station. US and Russian Cooperation in Space Biology and Medicine5, 263-278.

Paiva, H., Velosa, A., Cachim, P., & Ferreira, V. M. (2016). Effect of pozzolans with different physical and chemical characteristics on concrete properties. Materiales de Construcción66(322), e083-e083.

Pan, J. W., Feng, Y. T., Wang, J. T., Sun, Q. C., Zhang, C. H., & Owen, D. R. J. (2012). Modeling of alkali-silica reaction in concrete: a review. Frontiers of Structural and Civil Engineering6(1), 1-18.

Panda, B., Unluer, C., & Tan, M. J. (2018). Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cement and Concrete Composites94, 307-314.

Papajohn, D., Brinker, C., & El Asmar, M. (2017). MARS: Metaframework for assessing ratings of sustainability for buildings and infrastructure. Journal of Management in Engineering33(1), 04016026.

Paris, J. M., Roessler, J. G., Ferraro, C. C., DeFord, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production121, 1-18.

Pask, J. A. (1998). The Al 2 O 3-Sio 2 System: Logical Analysis of Phenomenological Experimental Data. In Ceramic Microstructures (pp. 255-262). Springer, Boston, MA.

Petrescu, R. V., Aversa, R., Apicella, A., Kozaitis, S., Abu-Lebdeh, T., & Petrescu, F. I. (2018). There is Life on Mars?. American Journal of Engineering and Applied Sciences11(1), 78-91.

Pickering, S. U. (1893). LXI.—The hydrates of sodium, potassium, and lithium hydroxides. Journal of the Chemical Society, Transactions63, 890-909.

Pla-García, J., Rafkin, S. C., Martinez, G. M., Vicente-Retortillo, Á., Newman, C. E., Savijärvi, H., ... & Harri, A. M. (2020). Meteorological predictions for Mars 2020 Perseverance Rover landing site at Jezero crater. Space science reviews216(8), 1-21.

Provis, J. L. (2009). Activating solution chemistry for geopolymers. In Geopolymers (pp. 50-71). Woodhead Publishing.

Provis, J. L. and Vlachos, D. G. (2006) Silica nanoparticle formation in the TPAOH-TEOS-H2O system : A population balance model. Journal of Physical Chemistry B, 110,3098-3108. doi:10.1021/jp056658m.

Provis, J. L., & Rees, C. A. (2009). Geopolymer synthesis kinetics. In Geopolymers (pp. 118-136). Woodhead Publishing.

Provis, J. L., (2006), Ph.D. Thesis, Department of Chemical and Biomolecular Engineering, University of Melbourne.

Provis, J. L., Duxson, P., Lukey, G. C., Separovic, F., Kriven, W. M., & Van Deventer, J. S. (2005). Modeling speciation in highly concentrated alkaline silicate solutions. Industrial & engineering chemistry research44(23), 8899-8908.

Provis, J. L., Lukey, G. C. and van Deventer, J. S. J. (2005b) Do geopolymers actually contain nanocrystalline zeolites? – A reexamination of existing results. Chemistry of Materials, 17, 3075-3085. doi:10.1021/cm050230i.

Provis, J. L., Muntingh, Y., Lloyd, R. R., Xu, H., Keyte, L. M., Lorenzen, L., ... & van Deventer, J. S. (2007, October). Will geopolymers stand the test of time?. In Ceramic Engineering and Science Proceedings (Vol. 28, No. 9, pp. 235-248).

Puligilla, S., & Mondal, P. (2015). Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cement and Concrete Research70, 39-49.

Radnai, T., May, P. M., Hefter, G. T., & Sipos, P. (1998). Structure of aqueous sodium aluminate solutions: A solution X-ray diffraction study. The Journal of Physical Chemistry A102(40), 7841-7850.

Rampe, E. B., Ming, D. W., Blake, D. F., Bristow, T. F., Chipera, S. J., Grotzinger, J. P., ... & Thompson, L. M. (2017). Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth and Planetary Science Letters471, 172-185.

Reches, Y. (2019). Concrete on Mars: Options, challenges, and solutions for binder-based construction on the Red Planet. Cement and Concrete Composites104, 103349.

Rees, C. A. (2007), PhD Thesis, Department of Chemical and Biomolecular Engineering, University of Melbourne.

Rees, C. A. (2007). Mechanisms and kinetics of gel formation in geopolymers (Doctoral dissertation).

Reyngold, M., Wu, A. J., McLane, A., Zhang, Z., Hsu, M., Stein, N. F., ... & Rimner, A. (2013). Toxicity and outcomes of thoracic re-irradiation using stereotactic body radiation therapy (SBRT). Radiation oncology8(1), 1-7.

Rickard, W. D., Kealley, C. S., & Van Riessen, A. (2015). Thermally induced microstructural changes in fly ash geopolymers: Experimental results and proposed model. Journal of the American Ceramic Society98(3), 929-939.

Rocha, J., & Klinowski, J. (1990). 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite. Physics and Chemistry of Minerals17(2), 179-186.

Romagnoli, M., Leonelli, C., Kamse, E., & Gualtieri, M. L. (2012). Rheology of geopolymer by DOE approach. Construction and Building Materials36, 251-258.

Roser, M., Ritchie, H., & Ortiz-Ospina, E. (2013). World population growth. Our world in data.

Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and building materials24(7), 1176-1183.

Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and concrete composites23(6), 441-454.

Saganti, P. B., Cucinotta, F. A., Wilson, J. W., Simonsen, L. C., & Zeitlin, C. (2004). Radiation climate map for analyzing risks to astronauts on the Mars surface from galactic cosmic rays. 2001 Mars Odyssey, 143-156.

Sagoe-Crentsil, K., & Weng, L. (2007). Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. Journal of materials science42(9), 3007-3014.

Saleh, H. M., & Eskander, S. B. (2020). Innovative cement-based materials for environmental protection and restoration. In New Materials in Civil Engineering (pp. 613-641). Butterworth-Heinemann.

Sarraf-mamoory, R., Demopoulos, G.P. & Drew, R.A.L. Preparation of fine copper powders from organic media by reaction with hydrogen under pressure: Part II. The kinetics of particle nucleation, growth, and dispersion. Metall Mater Trans B 27, 585–594 (1996). https://doi.org/10.1007/BF02915656

Shelby, J. E. (2005). Immiscibility/phase separation. In Introduction to Glass Science and Technology (pp. 51-71).

Sibly, R. M., & Hone, J. (2002). Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences357(1425), 1153-1170.

Simonson, J. M., Mesmer, R. E., & Rogers, P. S. Z. (1989). The enthalpy of dilution and apparent molar heat capacity of NaOH (aq) to 523 K and 40 MPa. The Journal of Chemical Thermodynamics21(6), 561-584.

Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and building materials85, 78-90.

Sipos, P. M., Hefter, G., & May, P. M. (2000). Viscosities and densities of highly concentrated aqueous MOH solutions (M+= Na+, K+, Li+, Cs+,(CH3) 4N+) at 25.0° C. Journal of Chemical & Engineering Data45(4), 613-617.

Škvára, F., Kopecký, L., Nemecek, J., & Bittnar, Z. D. E. N. Ì. K. (2006). Microstructure of geopolymer materials based on fly ash. Ceramics-Silikaty50(4), 208-215.

Smith, P. H., Bell III, J. F., Bridges, N. T., Britt, D. T., Gaddis, L., Greeley, R., ... & Wegryn, E. (1997). Results from the Mars Pathfinder camera. Science278(5344), 1758-1765.

Snell, C., Tempest, B., & Gentry, T. (2017). Comparison of the thermal characteristics of portland cement and geopolymer cement concrete mixes. Journal of Architectural Engineering23(2), 04017002.

Stella, P. M., & Herman, J. A. (2018). Mars Optimized Solar Cells.

Talling, B. (2002). Geopolymers give fire safety to cruise ships. Geopolymers.

Taylor, A. J., McDowell, J. C., & Elvis, M. (2022). Phobos and Mars orbit as a base for asteroid exploration and mining. Planetary and Space Science214, 105450.

Thampi, T., Sreevidya, V., & Venkatasubramani, R. (2014). Strength studies on geopolymer mortar for ferro geopolymer water tank. International Journal of Advanced Structures and Geotechnical Engineering3(2), 102-105.

Thomas, N. H., Ehlmann, B. L., Meslin, P. Y., Rapin, W., Anderson, D. E., Rivera‐Hernández, F. & Wiens, R. C. (2019). Mars Science Laboratory observations of chloride salts in Gale crater, Mars. Geophysical Research Letters46(19), 10754-10763.

Timoumi, R., François, P., Le Postollec, A., Dobrijevic, M., Grégoire, B., Poinot, P., & Geffroy-Rodier, C. (2022). Focused ultrasound extraction versus microwave-assisted extraction for extraterrestrial objects analysis. Analytical and Bioanalytical Chemistry414(12), 3643-3651.

Tuyan, M., Andiç-Çakir, Ö., & Ramyar, K. (2018). Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites Part B: Engineering135, 242-252.

Vail, J. G. (1952) Soluble Silicates: Their Properties and Uses, New York, Reinhold.

Van Chanh, N., Trung, B. D., & Van Tuan, D. (2008, November). Recent research geopolymer concrete. In The 3rd ACF International Conference-ACF/VCA, Vietnam (Vol. 18, pp. 235-241).

Van Deventer, J. S. J., Provis, J. L., Duxson, P., & Lukey, G. C. (2007). Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of hazardous materials139(3), 506-513.

Viviano-Beck, C. E., Murchie, S. L., Beck, A. W., & Dohm, J. M. (2017). Compositional and structural constraints on the geologic history of eastern Tharsis Rise, Mars. Icarus284, 43-58.

Walpole, R. E., Myers, R. H., Myers, S. L., & Keying, E. Y. (2013). Probability and Statistics for Engineers and Scientists: Pearson New International Edition. Pearson Higher Ed.

Wan-En, O., Yun-Ming, L., Li-Ngee, H., Abdullah, M. M. A. B., & Shee-Ween, O. (2020, June). The Effect of Sodium Carbonate on the Fresh and Hardened Properties of Fly Ash-Based One-Part Geopolymer. In IOP Conference Series: Materials Science and Engineering (Vol. 864, No. 1, p. 012197). IOP Publishing.

Wang, G., Zhao, D., Sorte, E., Holmes, S., Conradi, M. S., & Majzoub, E. H. (2015). First-principles investigation of the solubility of the hydroxides and hydrides of alkali metals.

Wang, H., Li, H., & Yan, F. (2005). Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects268(1-3), 1-6.

Webster, C. R., Mahaffy, P. R., Atreya, S. K., Flesch, G. J., Farley, K. A., MSL Science Team, ... & Pinet, P. (2013). Low upper limit to methane abundance on Mars. Science342(6156), 355-357.

Weldes, H. H., & Lange, K. R. (1969). Properties of soluble silicates. Industrial & Engineering Chemistry61(4), 29-44.

Weng, L., & Sagoe-Crentsil, K. (2007). Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems. Journal of materials science42(9), 2997-3006.

Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International journal of mineral processing59(3), 247-266.

Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International journal of mineral processing59(3), 247-266.

Xu, H., Lukey, G. C. and van Deventer, J. S. J. (2004) The activation of Class C-, Class F-fly ash and blast furnace slag using geopolymerisation. Proceeding of 8th CANMET/ ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Las Vegas, NV, Malhotra, V. M. (Ed.), 797-819.

Xue, Y., & Jin, S. (2013, December). Martian minerals components at Gale crater detected by MRO CRISM hyperspectral images. In 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA) (pp. 1067-1070). IEEE.

Yang, X., Zhu, W., & Yang, Q. (2008). The viscosity properties of sodium silicate solutions. Journal of Solution Chemistry37(1), 73-83.

Yaseen, S. A., Yiseen, G. A., & Li, Z. (2019). Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide. ACS omega4(6), 10160-10170.

Yashar, M., Ciardullo, C., Morris, M., Pailes-Friedman, R., Moses, R., & Case, D. (2019, July). Mars x-house: Design principles for an autonomously 3D-printed ISRU surface habitat. 49th International Conference on Environmental Systems.

Zeitlin, C., Cleghorn, T., Cucinotta, F., Saganti, P., Andersen, V., Lee, K., ... & Badhwar, G. (2004). Overview of the Martian radiation environment experiment. Advances in Space Research33(12), 2204-2210.

Zeri, M., S Alvalá, R. C., Carneiro, R., Cunha-Zeri, G., Costa, J. M., Rossato Spatafora, L., ... & Marengo, J. (2018). Tools for communicating agricultural drought over the Brazilian Semiarid using the soil moisture index. Water10(10), 1421.

Zhan, Y., Song, K., Shi, Z., Wan, C., Pan, J., Li, D., ... & Jiang, L. (2020). Influence of reduction temperature on Ni particle size and catalytic performance of Ni/Mg (Al) O catalyst for CO2 reforming of CH4. International Journal of Hydrogen Energy45(4), 2794-2807.

Zhang, Z., Wang, H., Provis, J. L., & Reid, A. (2013). Efflorescence: a critical challenge for geopolymer applications?. In Concrete Institute of Australia's Biennial National Conference 2013 (pp. 1-10). Concrete Institute of Australia.

Ziyuan, O., & Fugen, X. (2011). Major scientific issues involved in Mars exploration. Spacecraft Environment Engineering28(3), 205-217.

Download scriptie (13.36 MB)
Universiteit of Hogeschool
KU Leuven
Thesis jaar
2022
Promotor(en)
Prof. dr. Veerle Vandeginste, Prof. Dr.-Ing. Jiabin Li, Msc Jiawei Tan