Hoe kies je ervoor gezonder en duurzamer te eten?

Jill
Deygers

 

image 858

Bron afbeelding: Eric Scheel/Pexels

Het kan toch niet alle dagen frieten zijn? Je moet voldoende variëren in voeding voor een gezond lichaam. De variatie in voeding, voedselbiodiversiteit genoemd, heb ik in mijn onderzoek in kaart gebracht. Benieuwd hoe jij scoort?

Wat at jij gisteren?

Voedselbiodiversiteit verwijst naar de verscheidenheid van planten, dieren en zelfs andere organismen (vb. gist in je brood) die dienen als voeding. Vaak worden voedingsgroepen, zoals vlees en groenten, gebruikt als maatstaf. Uniek aan mijn onderzoek is dat we voedselbiodiversiteit hebben onderzocht tot op soortniveau. Dat wil zeggen dat we de meer specifieke groenten hebben opgelijst: tomaat, komkommer, sla… 

Het in kaart brengen van voedselbiodiversiteit is echter geen eenvoudige taak. Verschillende voedingsproducten komen van dezelfde soort (vb. kippenfilet en ei komen van dezelfde soort: kip). Bovendien eet je vaak verwerkte producten en niet alle soorten puur en afzonderlijk. Zo wordt tarwe gebruikt in verschillende gerechten, denk maar aan pasta, brood, cake… Bij mij werden standaardrecepten gebruikt om alles te herleiden tot ingrediënten. Probeer zelf eens op te lijsten welke soorten jij gisteren allemaal gegeten hebt. 

Eet goed, leef goed

Er zijn twee hoofdredenen waarom voedselbiodiversiteit belangrijk is: gezondheid en voedselzekerheid in de toekomst. Door je voeding meer te variëren, verhoog je enerzijds de kans om specifieke, gezonde voedingsstoffen binnen te krijgen. Bovendien verlaag je zo de kans op een overdosis aan specifieke, schadelijke stoffen. Anderzijds heeft een meer diverse productie als voordeel dat voedsel in de toekomst beter gegarandeerd blijft: hoe meer diverse gewassen worden geteeld, hoe groter de kans dat sommige van deze gewassen kunnen overleven in veranderende klimaatomstandigheden.

Hoe meet je voedselbiodiversiteit als een expert?

Wetenschappers hebben het begrip biodiversiteit opgedeeld in drie verschillende aspecten: rijkheid, gelijkmatigheid en onderling verschil. Rijkheid is simpelweg het aantal geconsumeerde soorten. Gelijkmatigheid focust op de verdeling van deze soorten. Je kan je inbeelden dat als je tien verschillende soorten voeding in gelijke hoeveelheden consumeert, dit een hogere biodiversiteitsscore oplevert dan wanneer iemand één soort in grote hoeveelheden eet en de overige negen in zeer kleine hoeveelheden. Ten slotte heeft onderling verschil te maken met hoeveel twee voedingsproducten van elkaar verschillen. Zo is het logisch dat er nutritioneel meer verschil is tussen kip en appels dan tussen appels en peren. Aangezien het bepalen van onderling verschil heel complex is, is in mijn onderzoek gefocust op rijkheid en gelijkmatigheid.

Het “zottere” rekenwerk

De data waarop ik onderzoek deed, bestonden uit voedselenquêtes van ongeveer een half miljoen mensen uit verschillende Europese landen. Nadat alles werd opgedeeld op soortniveau, kon het rekenwerk beginnen. Ik heb vier verschillende formules gebruikt om iedereen een voedselbiodiversiteitsscore te geven. Uit de resultaten bleek dat er twee interessante en eenvoudige formules waren. De eerste is heel gemakkelijk, want die is gewoon tellen hoeveel soorten in iemands dieet zitten (enkel rijkheid). At je gisteren kip, rijst en erwtjes, dan zou je score voor rijkheid voor die maaltijd drie zijn. De tweede houdt enkel rekening met het aandeel van de meest geconsumeerde soort. Hoe kleiner het aandeel van de meest geconsumeerde soort, hoe gevarieerder je eet.

Keep it simple en eet gevarieerd

Er zijn twee zaken die echt naar voor komen uit de resultaten. Ten eerste leven mensen met een hogere score langer, hoera! Ten tweede is het zo dat de resultaten van een simpele formule heel goed overeen kwamen met de resultaten van een moeilijkere formules. Zo zie je maar, het hoeft niet altijd ingewikkeld en moeilijk te zijn om goede resultaten weer te geven.

image 865

Streefdoelen in de toekomst

In de toekomst zou onderzocht kunnen worden of een hogere biodiversiteitsscore ook andere positieve gevolgen heeft. Hoe zit het bijvoorbeeld met de ecologische voetafdruk van mensen met een hoge score? Is die hoger, omdat ze veel geïmporteerde soorten eten of juist lager, omdat ze focussen op lokale seizoensgroenten? Is er evolutie in de tijd: eten mensen nu biodiverser dan vroeger? Wat zou een goede streefscore zijn en hoe kunnen we dat bereiken? Nog genoeg stof tot nadenken dus!

Alleszins, voor jullie beste lezer, geldt gewoon: variated food every day, can keep the doctor away!

Bibliografie

Ahern, S. M., Caton, S. J., Bouhlal, S., Hausner, H., Olsen, A., Nicklaus, S., Møller, P., & Hetherington, M. M. (2013). Eating a rainbow. introducing vegetables in the first years of life in 3 European countries. Appetite, 71, 48–56. https://doi.org/10.1016/j.appet.2013.07.005 Aizen, M. A., Aguiar, S., Biesmeijer, J. C., Garibaldi, L. A., Inouye, D. W., Jung, C., Martins, D. J., Medel, R., Morales, C. L., Ngo, H., Pauw, A., Paxton, R. J., Sáez, A., & Seymour, C. L. (2019). Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biology, 25(10), 3516– 3527. https://doi.org/10.1111/gcb.14736 Antonelli, A., Fry, C., Smith, R., Simmonds, M., Kersey, P., Pritchard, H., Abbo, M., Acedo, C., Adams, J., Ainsworth, A., Allkin, B., Annecke, W., Bachman, S., Bacon, K., Bárrios, S., Barstow, C., Battison, A., Bell, E., Bensusan, K., . . . Zhang, B. (2020). State of the world’s plants and fungi 2020. Kew, Royal Botanic Gardens. https://doi.org/10.34885/172 Aremu, S. O., & Nweze, C. C. (2017). Determination of vitamin A content from selected Nigerian fruits using spectrophotometric method. Bangladesh Journal of Scientific and Industrial Research, 52(2), 153–158. https: //doi.org/10.3329/bjsir.v52i2.32940 Arimond, M., Wiesmann, D., Becquey, E., Carriquiry, A., Daniels, M. C., Deitchler, M., Fanou-Fogny, N., Joseph, M. L., Kennedy, G., Martin-Prevel, Y., & Torheim, L. E. (2010). Simple food group diversity indicators predict micronutrient adequacy of women’s diets in 5 diverse, resourcepoor settings. The Journal of Nutrition, 140(11, Suppl.), S2059–S2069. https://doi.org/10.3945/jn.110.123414 Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., Getz, W. M., Harte, J., Hastings, A., Marquet, P. A., Martinez, N. D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J. W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., . . . Smith, A. B. (2012). Approaching a state shift in Earth’s biosphere. Nature, 486(7401), 52– 58. https://doi.org/10.1038/nature11018 75 Barr, S. B., & Wright, J. C. (2010). Postprandial energy expenditure in wholefood and processed-food meals: Implications for daily energy expenditure. Food & Nutrition Research, 54(1), Article 5144. https://doi.org/ 10.3402/fnr.v54i0.5144 Bezerra, I. N., & Sichieri, R. (2011). Household food diversity and nutritional status among adults in Brazil. The International Journal of Behavioral Nutrition and Physical Activity, 8(1), Article 22. https://doi.org/10. 1186/1479-5868-8-22 Bilalis, D., Papastylianou, P., Konstantas, A., Patsiali, S., Karkanis, A., & Efthimiadou, A. (2010). Weed-suppressive effects of maize–legume intercropping in organic farming. International Journal of Pest Management, 56(2), 173–181. https://doi.org/10.1080/09670870903304471 Bioversity International. (2017). Mainstreaming agrobiodiversity in sustainable food systems: Scientific foundations for an agrobiodiversity index. https://hdl.handle.net/10568/89049 Borkotoky, K., Unisa, S., & Gupta, A. K. (2018). State-level dietary diversity as a contextual determinant of nutritional status of children in India: A multilevel approach. Journal of Biosocial Science, 50(1), 26–52. https: //doi.org/10.1017/S0021932017000013 Buckland, G., Gonzalez, C. A., Agudo, A., Vilardell, M., Berenguer, A., Amiano, P., Ardanaz, E., Arriola, L., Barricarte, A., Basterretxea, M., Chirlaque, M. D., Cirera, L., Dorronsoro, M., Egues, N., Huerta, J. M., Larranaga, N., Marin, P., Martinez, C., Molina, E., . . . Moreno-Iribas, C. (2009). Adherence to the Mediterranean diet and risk of coronary heart disease in the Spanish EPIC cohort study. American Journal of Epidemiology, 170(12), 1518–1529. https://doi.org/10.1093/aje/kwp282 Burlingame, B., Charrondiere, R., & Mouille, B. (2009). Food composition is fundamental to the cross-cutting initiative on biodiversity for food and nutrition. Journal of Food Composition and Analysis, 22(5), 361–365. https://doi.org/10.1016/j.jfca.2009.05.003 Cade, J. E. (2017). Measuring diet in the 21st century: Use of new technologies. Proceedings of the Nutrition Society, 76(3), 276–282. https: //doi.org/10.1017/S0029665116002883 Cámara, M., Giner, R. M., González-Fandos, E., López-García, E., Mañes, J., Portillo, M. P., Rafecas, M., Domínguez, L., & Martínez, J. A. (2021). Food-based dietary guidelines around the world: A comparative analysis to update AESAN Scientific Committee dietary recommendations. Nutrients, 13(9), Article 3131. https://doi.org/10.3390/nu13093131 Carroll, R. J., Midthune, D., Subar, A. F., Shumakovich, M., Freedman, L. S., Thompson, F. E., & Kipnis, V. (2012). Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. American Journal of Epidemiology, 175(4), 340–347. https://doi.org/10.1093/aje/kwr317 Commission on Genetic Resources for Food and Agriculture. (2015a). The second report on the state of the world’s animal genetic resources for food and agriculture. Food & Agriculture Organization of the United Nations. https://www.fao.org/3/i4787e/i4787e.pdf Commission on Genetic Resources for Food and Agriculture. (2015b). The second report on the state of the world’s animal genetic resoures for food and agriculture - in brief. Food & Agriculture Organization of the United Nations. https://www.fao.org/3/a1260e/a1260e.pdf Convention on Biological Diversity. (2006). Convention text - Article 2: Use of terms. https://www.cbd.int/convention/text/ Daly, A. J., Baetens, J. M., & De Baets, B. (2018). Ecological diversity: Measuring the unmeasurable. Mathematics, 6(7), Article 119. https://doi. org/10.3390/math6070119 de Oliviera Otto, M. C. d. O., Padhye, N. S., Bertoni, A. G., Jr, D. R. J., & Mozaffarian, D. (2015). Everything in moderation - dietary Diversity and quality, central obesity and risk of diabetes. PLOS ONE, 10(10), Article e0141341. https://doi.org/10.1371/journal.pone.0141341 Declerck, F. A. J., Fanzo, J., Palm, C., & Remans, R. (2011). Ecological approaches to human nutrition. Food and Nutrition Bulletin, 32(1, Suppl.), S41–S50. https://doi.org/10.1177/15648265110321S106 Dhakal, C., & Lange, K. (2021). Crop yield response functions in nutrient application: A review. Agronomy Journal, 113(6), 5222–5234. https: //doi.org/10.1002/agj2.20863 Dokova, K. G., Pancheva, R. Z., Usheva, N. V., Haralanova, G. A., Nikolova, S. P., Kostadinova, T. I., Egea Rodrigues, C., Singh, J., Illner, A.-K., & Aleksandrova, K. (2022). Nutrition transition in Europe: East-West dimensions in the last 30 years - A narrative review. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.919112 EAT-Lancet Commission. (2020). Diets for a better future. https://eatforum. org/knowledge/diets-for-a-better-future/ Ellison, A. M. (2010). Partitioning diversity. Ecology, 91(7), 1962–1963. https: //doi.org/10.1890/09-1692.1 Ferrari, P., Day, N. E., Boshuizen, H. C., Roddam, A., Hoffmann, K., Thiébaut, A., Pera, G., Overvad, K., Lund, E., Trichopoulou, A., Tumino, R., Gullberg, B., Norat, T., Slimani, N., Kaaks, R., & Riboli, E. (2008). The evaluation of the diet/disease relation in the EPIC study: Considerations for the calibration and the disease models. International Journal of Epidemiology, 37(2), 368–378. https://doi.org/10.1093/ije/dym242 Food & Agriculture Organization of the United Nations. (2016). Voluntary guidelines for mainstreaming biodiversity into policies, programmes and national and regional plans of action on nutrition. Commission on Genetic Resources for Food and Agriculture. https://www.fao.org/3/ i5248e/i5248e.pdf Food & Agriculture Organization of the United Nations. (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. https: //www.fao.org/3/ca9229en/ca9229en.pdf Food & Agriculture Organization of the United Nations. (2022). Fra 2020 remote sensing survey. https://doi.org/10.4060/cb9970en Food & Agriculture Organization of the United Nations, & Bioversity International. (2017). Guidelines on assessing biodiverse foods in dietary intake surveys. https://www.fao.org/3/i6717e/i6717e.pdf Food & Agriculture Organization of the United Nations, & FHI 360. (2016). Minimum dietary diversity for women - A guide to measurement. https: //www.fao.org/3/i5486e/i5486e.pdf Food & Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations Children’s Fund, World Food Programme, & World Health Organization. (2022). The state of food security and nutrition in the world 2022. Food & Agriculture Organization of the United Nations. https://doi.org/10.4060/cc0639en Food & Agriculture Organization of the United Nations, & World Health Organization. (2019). Sustainable healthy diets: Guiding principles. https: //www.fao.org/3/ca6640en/ca6640en.pdf General Assembly of the United Nations. (2015). A/RES/70/1 - Transforming our world: The 2030 Agenda for Sustainable Development. https:// undocs.org/en/A/RES/70/1 Global Panel on Agriculture and Food Systems for Nutrition. (2020). Future food systems: For people, our planet, and prosperity. https://www. glopan.org/wp-content/uploads/2020/09/Foresight-2.0_Future-FoodSystems_For-people-our-planet-and-prosperity.pdf Gómez, G., Nogueira Previdelli, Á., Fisberg, R. M., Kovalskys, I., Fisberg, M., Herrera-Cuenca, M., Cortés Sanabria, L. Y., Yépez García, M. C., Rigotti, A., Liria-Domínguez, M. R., Guajardo, V., Quesada, D., Murillo, A. G., & Brenes, J. C. (2020). Dietary diversity and micronutrients adequacy in women of childbearing age: Results from ELANS study. Nutrients, 12(7), Article 1994. https://doi.org/10.3390/nu12071994 Green, A., Nemecek, T., Smetana, S., & Mathys, A. (2021). Reconciling regionallyexplicit nutritional needs with environmental protection by means of nutritional life cycle assessment. Journal of Cleaner Production, 312, Article 127696. https://doi.org/10.1016/j.jclepro.2021.127696 Gustafson, D., Gutman, A., Leet, W., Drewnowski, A., Fanzo, J., & Ingram, J. (2016). Seven food system metrics of sustainable nutrition security. Sustainability, 8(3), Article 196. https://doi.org/10.3390/su8030196 Haftenberger, M., Lahmann, P. H., Panico, S., Gonzalez, C. A., Seidell, J. C., Boeing, H., Giurdanella, M. C., Krogh, V., Bueno-de-Mesquita, H. B., Peeters, P. H. M., Skeie, G., Hjartåker, A., Rodriguez, M., Quirós, J. R., Berglund, G., Janlert, U., Khaw, K. T., Spencer, E. A., Overvad, K., . . . Slimani, N. (2002). Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutrition, 5(6b), 1147–1162. https://doi.org/10.1079/PHN2002396 Hall, K. D., Heymsfield, S. B., Kemnitz, J. W., Klein, S., Schoeller, D. A., & Speakman, J. R. (2012). Energy balance and its components: Implications for body weight regulation. The American Journal of Clinical Nutrition, 95(4), 989–994. https://doi.org/10.3945/ajcn.112.036350 Hanley-Cook, G. T., Daly, A. J., Remans, R., Jones, A. D., Murray, K. A., Huybrechts, I., De Baets, B., & Lachat, C. (2022). Food biodiversity: Quantifying the unquantifiable in human diets. Critical Reviews in Food Science and Nutrition, 1–15. https://doi.org/10.1080/10408398.2022. 2051163 Hanley-Cook, G. T., Huybrechts, I., Biessy, C., Remans, R., Kennedy, G., DeschasauxTanguy, M., Murray, K. A., Touvier, M., Skeie, G., Kesse-Guyot, E., Argaw, A., Casagrande, C., Nicolas, G., Vineis, P., Millett, C. J., Weiderpass, E., Ferrari, P., Dahm, C. C., Bueno-de-Mesquita, H. B., . . . Lachat, C. (2021). Food biodiversity and total and cause-specific mortality in 9 European countries: An analysis of a prospective cohort study. PLOS Medicine, 18(10), Article e1003834. https://doi.org/10.1371/journal. pmed.1003834 Hannesson, R. (2007). Global warming and fish migrations. Natural Resource Modeling, 20(2), 301–319. https://doi.org/10.1111/j.1939-7445.2007. tb00209.x Hazo, H., & Yirgalem, A. (2022). Comparison of different sweet potato (Ipomoea batatas L.) varieties in terms of nutritional value. Journal of 79 Nutrition and Food Sciences, 11(6), Article 1000047. https://www. longdom.org/open-access-pdfs/comparison-of-different-sweet-potatoipomoea-batatas-l-varieties-in-terms-of-nutritional-value.pdf Heip, C., Herman, P., & Soetaert, K. (1998). Indices of diversity and evenness. Océanis, 24(4), 61–87. https://www.vliz.be/imisdocs/publications/ 221019.pdf Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432. https://doi.org/10.2307/1934352 Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2019). The global assessment report on biodiversity and ecosystem services: Summary for policymakers. https://doi.org/10. 5281/zenodo.3553579 International Agency for Research on Cancer. (2023). EPIC - European Prospective Investigation into Cancer and Nutrition. https://epic.iarc.fr/ Jones, S. K., Estrada-Carmona, N., Juventia, S. D., Dulloo, M. E., Laporte, M.-A., Villani, C., & Remans, R. (2021). Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nature Food, 2(9), 712–723. https://doi.org/10.1038/s43016-021-00344- 3 Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375. https://doi. org/10.1111/j.2006.0030-1299.14714.x Kalaitzis, P., van Dijk, G., & Baourakis, G. (2007, April 23–25). Euro-Mediterranean supply chain developments and trends in trade structures, in the fresh fruit and vegetable sector [Paper presentation]. European Association of Agricultural Economists 103rd Seminar, Barcelo- na, Spain. https: //doi.org/10.22004/ag.econ.9428 Kant, A. K., Schatzkin, A., Harris, T. B., Ziegler, R. G., & Block, G. (1993). Dietary diversity and subsequent mortality in the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. The American Journal of Clinical Nutrition, 57(3), 434–440. https://doi.org/ 10.1093/ajcn/57.3.434 Katanoda, K., Kim, H.-S., & Matsumura, Y. (2006). New Quantitative Index for Dietary Diversity (QUANTIDD) and its annual changes in the Japanese. Nutrition, 22(3), 283–287. https://doi.org/10.1016/j.nut.2005.06.014 Kennedy, G. L., Pedro, M. R., Seghieri, C., Nantel, G., & Brouwer, I. (2007). Dietary diversity score is a useful indicator of micronutrient intake in non-breast-feeding Filipino children. The Journal of Nutrition, 137(2), 472–477. https://doi.org/10.1093/jn/137.2.472 Khoury, C. K., Bjorkman, A. D., Dempewolf, H., Ramirez-Villegas, J., Guarino, L., Jarvis, A., Rieseberg, L. H., & Struik, P. C. (2014). Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences, 111(11), 4001– 4006. https://doi.org/10.1073/pnas.1313490111 Kolodziejczyk, J. K., Merchant, G., & Norman, G. J. (2012). Reliability and validity of child/adolescent food frequency questionnaires that assess foods and/or food groups. Journal of Pediatric Gastroenterology and Nutrition, 55(1), 4–13. https://doi.org/10.1097/MPG.0b013e318251550e Lachat, C., Raneri, J. E., Smith, K. W., Kolsteren, P., Van Damme, P., Verzelen, K., Penafiel, D., Vanhove, W., Kennedy, G., Hunter, D., Odhiambo, F. O., Ntandou-Bouzitou, G., De Baets, B., Ratnasekera, D., Ky, H. T., Remans, R., & Termote, C. (2018). Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proceedings of the National Academy of Sciences, 115(1), 127–132. https://doi.org/10. 1073/pnas.1709194115 Lam, Y. Y., & Ravussin, E. (2017). Variations in energy intake: It is more complicated than we think. The American Journal of Clinical Nutrition, 106(5), 1169–1170. https://doi.org/10.3945/ajcn.117.167742 Lasek, O., Barteczko, J., Barc, J., & Micek, P. (2020). Nutrient content of dif- ´ ferent wheat and maize varieties and their impact on metabolizable energy content and nitrogen utilization by broilers. Animals, 10(5), Article 907. https://doi.org/10.3390/ani10050907 Lee, H.-A., Huang, T.-T., Yen, L.-H., Wu, P.-H., Chen, K.-W., Kung, H.-H., Liu, C.-Y., & Hsu, C.-Y. (2022). Precision nutrient management using artificial intelligence based on digital data collection framework. Applied Sciences, 12(9), Article 4167. https://doi.org/10.3390/app12094167 Leinster, T., & Cobbold, C. A. (2012). Measuring diversity: The importance of species similarity. Ecology, 93(3), 477–489. https://doi.org/10.1890/ 10-2402.1 Li, D. (2018). hillR: Taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers [Computer software]. Journal of Open Source Software, 3(31), Article 1041. https://doi.org/10.21105/joss. 01041 Loftas, T. (Ed.). (1995). Dimensions of need. Food & Agriculture Organization of the United Nations. https://www.fao.org/3/U8480E/U8480E00.htm Lynch, S. R., & Cook, J. D. (1980). Interaction of vitamin C and iron. Annals of the New York Academy of Sciences, 355(1), 32–44. https://doi.org/ 10.1111/j.1749-6632.1980.tb21325.x Margalef, R. (1973). Information theory in ecology (Translation Bureau (NJB) Foreign Languages Division, Department of the Secretary of State of Canada, Trans.). Traslation Series, 2609, 1–140. https://digital.csic.es/ bitstream/10261/284346/1/Margalef_1973.pdf (Original work published in 1957) Menhinick, E. F. (1964). A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology, 45(4), 859–861. https://doi.org/10.2307/1934933 Moreno, C., & Rodríguez, P. (2010). A consistent terminology for quantifying species diversity? Oecologia, 163(2), 279–282. https://doi.org/10. 1007/s00442-010-1591-7 Neira, D. P., Fernández, X. S., Rodríguez, D. C., Montiel, M. S., & Cabeza, M. D. (2016). Analysis of the transport of imported food in Spain and its contribution to global warming. Renewable Agriculture and Food Systems, 31(1), 37–48. https://doi.org/10.1017/S1742170514000428 Nicholson, C. C., Emery, B. F., & Niles, M. T. (2021). Global relationships between crop diversity and nutritional stability. Nature Communications, 12, Article 5310. https://doi.org/10.1038/s41467-021-25615-2 Novotny, J. A., Gebauer, S. K., & Baer, D. J. (2012). Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. The American Journal of Clinical Nutrition, 96(2), 296–301. https://doi.org/10.3945/ajcn.112.035782 Nubel. (2023). Internubel: Database of tradenames. Retrieved May 20, 2023, from https://www.internubel.be/ Odum, H., Cantlon, J., & Kornicker, L. (1960). An organizational hierarchy postulate for the interpretation of species-individual distributions, species entropy, ecosystem evolution, and the meaning of a species-variety index. Ecology, 41(2), 395–399. https://eurekamag.com/research/024/ 200/024200366.php Peet, R. (2003). The measurement of species diversity. Annual Review of Ecology and Systematics, 5(1), 285–307. https://doi.org/10.1146/ annurev.es.05.110174.001441 Phillips, K. M., McGinty, R. C., Couture, G., Pehrsson, P. R., McKillop, K., & Fukagawa, N. K. (2021). Dietary fiber, starch, and sugars in bananas at different stages of ripeness in the retail market. PLOS ONE, 16(7), Article e0253366. https://doi.org/10.1371/journal.pone.0253366 Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187), Article 1246752. https://doi.org/10.1126/science. 1246752 Pollefliet, L. (2022). Scoren met je scriptie [Scoring with your thesis]. Owl Press. Posit team. (2023). RStudio: Integrated Development Environment for R [Computer software]. Posit Software, PBC. http://www.posit.co/ Powell, B., Thilsted, S. H., Ickowitz, A., Termote, C., Sunderland, T., & Herforth, A. (2015). Improving diets with wild and cultivated biodiversity from across the landscape. Food Security, 7(3), 535–554. https://doi. org/10.1007/s12571-015-0466-5 R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/ Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., & Rieseberg, L. (2018). Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology, 69(1), 789–815. https://doi.org/10.1146/annurevarplant-042817-040256 Rathje, W. L., & Murphy, C. (2001). Rubbish!: The Archaeology of garbage. University of Arizona Press. https://books.google.be/books/about/ Rubbish.html?id=1i_B1c573OQC&redir_esc=y Remans, R., Wood, S. A., Saha, N., Anderman, T. L., & DeFries, R. S. (2014). Measuring nutritional diversity of national food supplies. Global Food Security, 3(3), 174–182. https://doi.org/10.1016/j.gfs.2014.07.001 Riboli, E., Hunt, K. J., Slimani, N., Ferrari, P., Norat, T., Fahey, M., Charrondière, U. R., Hémon, B., Casagrande, C., Vignat, J., Overvad, K., Tjønneland, A., Clavel-Chapelon, F., Thiébaut, A., Wahrendorf, J., Boeing, H., Trichopoulos, D., Trichopoulou, A., Vineis, P., . . . Saracci, R. (2002). European Prospective Investigation into Cancer and Nutrition (EPIC): Study populations and data collection. Public Health Nutrition, 5(6b), 1113– 1124. https://doi.org/10.1079/PHN2002394 Riboli, E., & Kaaks, R. (1997). The EPIC Project: Rationale and study design. European Prospective Investigation into Cancer and Nutrition. International Journal of Epidemiology, 26(1, Suppl.), S6–S14. https://doi.org/ 10.1093/ije/26.suppl_1.S6 Ricotta, C. (2005). Through the jungle of biological diversity. Acta Biotheoretica, 53(1), 29–38. https://doi.org/10.1007/s10441-005-7001-6 Risch, S. J., & Hansen, M. K. (1982). Plant growth, flowering phenologies, and yields of corn, beans and squash grown in pure stands and mixtures in Costa Rica. Journal of Applied Ecology, 19(3), 901–916. https://doi. org/10.2307/2403292 Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S. I., Lambin, E., Lenton, T., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P., Costanza, R., Svedin, U., . . . Foley, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2), Article 32. https://doi.org/10.5751/ES-03180-140232 Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Crowley, J. (2021). Ggally: Extension to ’ggplot2’ (R package version 2.1.2) [Computer software]. https://CRAN.R-project.org/ package=GGally Schoeller, D. A. (1995). Limitations in the assessment of dietary energy intake by self-report. Metabolism, 44, 18–22. https://doi.org/10.1016/ 0026-0495(95)90204-X Secretariat of the Convention on Biological Diversity. (2020). Global Diversity Outlook 5. https://www.cbd.int/gbo/gbo5/publication/gbo-5-en.pdf Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j. 1538-7305.1948.tb01338.x Sheehy, J. E., Mitchell, P. L., Allen, L. H., & Ferrer, A. B. (2006). Mathematical consequences of using various empirical expressions of crop yield as a function of temperature. Field Crops Research, 98(2), 216–221. https: //doi.org/10.1016/j.fcr.2006.02.008 Siegel, K. R., Ali, M. K., Srinivasiah, A., Nugent, R. A., & Narayan, K. M. V. (2014). Do we produce enough fruits and vegetables to meet global health need? PLOS ONE, 9(8), Article e104059. https://doi.org/10. 1371/journal.pone.0104059 Smith, A. F., Jobe, J. B., & Mingay, D. J. (1991). Retrieval from memory of dietary information. Applied Cognitive Psychology, 5(3), 269–296. https: //doi.org/10.1002/acp.2350050308 Spence, C., Wang, Q. J., & Youssef, J. (2017). Pairing flavours and the temporal order of tasting. Flavour, 6(1), Article 4. https://doi.org/10.1186/ s13411-017-0053-0 Stevens, G. A., Beal, T., Mbuya, M. N. N., Luo, H., Neufeld, L. M., Addo, O. Y., Adu-Afarwuah, S., Alayón, S., Bhutta, Z., Brown, K. H., Jefferds, M. E., Engle-Stone, R., Fawzi, W., Hess, S. Y., Johnston, R., Katz, J., Krasevec, J., McDonald, C. M., Mei, Z., . . . Young, M. F. (2022). Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. The Lancet Global Health, 10(11), e1590–e1599. https://doi.org/10.1016/S2214-109X(22)00367-9 Tenny, S., & Boktor, S. W. (2022). Incidence. In StatPearls: Content is king. StatPearls Publishing. Retrieved May 20, 2023, from https://www.ncbi. nlm.nih.gov/books/NBK430746/ Thiébaut, A. C., Freedman, L. S., Carroll, R. J., & Kipnis, V. (2007). Is it necessary to correct for measurement error in nutritional epidemiology? Annals of Internal Medicine, 146(1), 65–67. https://doi.org/10.7326/0003- 4819-146-1-200701020-00012 Thrupp, L. A. (2000). Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. International Affairs, 76(2), 265–281. https://doi.org/10.1111/1468-2346. 00133 Tian, X., Wu, M., Zang, J., Zhu, Y., & Wang, H. (2017). Dietary diversity and adiposity in Chinese men and women: An analysis of four waves of cross-sectional survey data. European Journal of Clinical Nutrition, 71(4), 506–511. https://doi.org/10.1038/ejcn.2016.212 United Nations Environment Programme. (2021). Food Waste Index Report 2021. https://www.unep.org/resources/report/unep-food-waste-indexreport-2021 van der Toorn, J. E., Cepeda, M., Kiefte-de Jong, J. C., Franco, O. H., Voortman, T., & Schoufour, J. D. (2020). Seasonal variation of diet quality in a large middle-aged and elderly Dutch population-based cohort. European Journal of Nutrition, 59(2), 493–504. https://doi.org/10.1007/ s00394-019-01918-5 Wang, X.-W., Grodstein, F., Bhupathiraju, S. N., Sun, Q., Zhang, X., Hu, F., Weiss, S. T., & Liu, Y.-Y. (2021). Nutritional redundancy in human diet. bioRxiv. https://doi.org/10.1101/2021.02.04.429776 Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis [Computer software]. Springer-Verlag. https://link.springer.com/book/10.1007/ 978-3-319-24277-4 Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., De Vries, W., Majele Sibanda, L., . . . Murray, C. J. L. (2019). Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), 447–492. https://doi.org/ 10.1016/S0140-6736(18)31788-4 85 Women’s Dietary Diversity Project Study Group. (2017). Development of a dichotomous indicator for population-level assessment of dietary diversity in women of reproductive age. Current Developments in Nutrition, 1(12), Article e001701. https://doi.org/10.3945/cdn.117.001701 Zhang, Q., Chen, X., Liu, Z., Varma, D. S., Wan, R., & Zhao, S. (2017). Diet diversity and nutritional status among adults in southwest China. PLOS ONE, 12(2), Article e0172406. https://doi.org/10.1371/journal.pone. 0172406 Zimmerer, K. S. (2015). Understanding agrobiodiversity and the rise of resilience: Analytic category, conceptual boundary object or meta-level transition? Resilience, 3(3), 183–198. https://doi.org/10.1080/21693293. 2015.1072311

Universiteit of Hogeschool
Universiteit Gent
Thesis jaar
2023
Promotor(en)
Prof. Dr. Carl Lachat, Dr. Aisling Daly, Dr. Giles Hanley-Cook