Modelling Glacier Thickness and Evolution with Machine Learning: Evaluating the Instructed Glacier Model (IGM) on the Batysh-Sook Glacier through Inverse and Forward Modelling
De afvoer van smeltwater uit de gletsjers van het Tien Shan-gebergte in Kirgizië is van cruciaal belang voor de samenleving en economie in de stroomafwaarts gelegen vlaktes. In het droge Centraal-Azië is de landbouw sterk afhankelijk van irrigatie met dit water. De gletsjers functioneren als watertorens: ze herverdelen de schaarse neerslag over de seizoenen, wat grootschalige landbouw mogelijk maakt. Door klimaatverandering trekken de gletsjers zich echter snel terug, waardoor de inwoners van de vlaktes hun belangrijkste inkomensbron dreigen te verliezen.
Het doel van deze thesis is het evalueren van het Instructed Glacier Model (IGM). Dit
model gebruikt een neuraal netwerk als emulator om ijsstroming te beschrijven, wat computationele voordelen oplevert en het mogelijk maakt het model zowel invers (interpoleren van ijsdiktemetingen) als voorwaarts (voorspellen van gletsjerevolutie onder klimaatscenario’s) te gebruiken. De prestaties worden vergeleken met klassieke ruimtelijke interpolatiemethoden, zoals de vloeispanningsmethode, en met een hoger-ordemodel dat de gletsjerevolutie simuleert.
De evaluatie vindt plaats op de Batysh-Sook-gletsjer in de Tien Shan. De resultaten tonen dat het ge¨ınverteerde IGM consistente, nauwkeurige en gladde ijsdiktevelden genereert. Vooral in schaars bemonsterde zones presteert het model beter dan de
conventionele vloeispanningsmethode. Voor de gletsjerevolutie laten zowel IGM als het hoger-ordemodel zien dat de Batysh-Sook-gletsjer gevoeliger is voor opwarming dan veel omliggende gletsjers, waarschijnlijk door haar kleine huidige omvang. IGM volgt de trends van het hoger-ordemodel goed, al simuleert het in de historische periode iets minder smelt, waardoor het gletsjervolume groter blijft.
Deze bevindingen tonen aan dat IGM een veelbelovend instrument is voor zowel ijsdikteinterpolatie als projectie, vooral in gebieden met beperkte veldmetingen. Betere modellering van gletsjers zoals de Batysh-Sook kan leiden tot nauwkeurigere voorspellingen van toekomstige waterbeschikbaarheid, wat van groot belang is voor wetenschappelijk onderzoek en voor duurzaam waterbeheer in Centraal-Azië.
Meer lezen