De rol van AI bij vroegtijdigeziektevoorspellingin de gezondheidszorg
Thomas More Hogeschool
2025
Ik onderzocht hoe artificiële intelligentie longontsteking sneller en betrouwbaarder kan opsporen op borstkas-röntgenbeelden, en wat er nodig is om zo een systeem veilig, ethisch en juridisch verantwoord richting een ziekenhuis te ontwikkelen. De vraag kwam vanuit het AZ Sint-Maarten: er is nood aan ondersteuning bij triage van pneumoniedetectie.
Technisch bouwde ik een ResNet152-model en trainde dat op publieke Kaggle-datasets. De reality check volgde met geanonimiseerde pediatrische beelden uit AZ Sint-Maarten: door domain shift miste het eerste model te veel echte longontstekingen . Dat heb ik aangepakt met hertraining op pediatrische data, gericht croppen van het longveld en afstemming van helderheid/contrast. In de tweede evaluatie pikte het model alle echte positieve gevallen op.
Naast de prestaties besteed ik veel aandacht aan ethiek en regelgeving. Alle beelden zijn geanonimiseerd en lokaal verwerkt (GDPR). Met Grad-CAM-heatmaps maak ik beslissingen uitlegbaar. Het systeem ondersteunt artsen zij blijven eindverantwoordelijk. Qua regulering positioneer ik het als potentiële MDR-klasse IIa-software en situeer ik het project rond TRL 3→4: van labprototype naar testen in een relevante klinische omgeving. Ik bouwde ook een lokale Streamlit-interface die beelden uploadt, een voorspelling geeft en de heatmap toont. Conclusie: AI kan echt helpen bij triage en vroege detectie, maar robuuste praktijkinzet vraagt representatieve data, uitlegbaarheid, klinische validatie en moet ethisch verantwoord ontwikkeld worden.
Meer lezen